cosmopolitan/test/math/expf_test.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

88 lines
2.1 KiB
C
Raw Permalink Normal View History

// Copyright 2024 Justine Alexandra Roberts Tunney
//
// Permission to use, copy, modify, and/or distribute this software for
// any purpose with or without fee is hereby granted, provided that the
// above copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
// PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#define MAX_ERROR_ULP 1
#define GOTTA_TEST_THEM_ALL 0
float ident(float x) {
return x;
}
float (*veil)(float) = ident;
unsigned rand32(void) {
/* Knuth, D.E., "The Art of Computer Programming," Vol 2,
Seminumerical Algorithms, Third Edition, Addison-Wesley, 1998,
p. 106 (line 26) & p. 108 */
static unsigned long long lcg = 1;
lcg *= 6364136223846793005;
lcg += 1442695040888963407;
return lcg >> 32;
}
int main() {
// specials
if (expf(veil(0.f)) != 1.f)
return 1;
if (!isnan(expf(veil(NAN))))
return 2;
if (expf(veil(-INFINITY)) != 0.f)
return 3;
if (expf(veil(INFINITY)) != INFINITY)
return 4;
if (errno)
return 5;
// overflow
if (expf(veil(88.8)) != HUGE_VALF)
return 6;
if (errno != ERANGE)
return 7;
errno = 0;
// underflow
if (expf(veil(-104)) != 0.)
return 8;
if (errno != ERANGE)
return 9;
#if GOTTA_TEST_THEM_ALL
#pragma omp parallel for
for (long i = 0; i < 4294967296; ++i) {
#else
for (long r = 0; r < 100000; ++r) {
unsigned i = rand32();
#endif
union {
float f;
unsigned i;
} x, a, b;
x.i = i;
a.f = exp(x.f);
b.f = expf(x.f);
long ai = a.i;
long bi = b.i;
long e = bi - ai;
if (e < 0)
e = -e;
if (e > MAX_ERROR_ULP)
exit(99);
}
}