cosmopolitan/third_party/mbedtls/ecp_internal.h

267 lines
9.9 KiB
C
Raw Permalink Normal View History

#ifndef COSMOPOLITAN_THIRD_PARTY_MBEDTLS_ECP_INTERNAL_H_
#define COSMOPOLITAN_THIRD_PARTY_MBEDTLS_ECP_INTERNAL_H_
2021-06-16 03:18:59 +00:00
#include "third_party/mbedtls/config.h"
#include "third_party/mbedtls/ecp.h"
Add SSL to redbean Your redbean can now interoperate with clients that require TLS crypto. This is accomplished using a protocol polyglot that lets us distinguish between HTTP and HTTPS regardless of the port number. Certificates will be generated automatically, if none are supplied by the user. Footprint increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb - Add lseek() polyfills for ZIP executable - Automatically polyfill /tmp/FOO paths on NT - Fix readdir() / ftw() / nftw() bugs on Windows - Introduce -B flag for slower SSL that's stronger - Remove mbedtls features Cosmopolitan doesn't need - Have base64 decoder support the uri-safe alternative - Remove Truncated HMAC because it's forbidden by the IETF - Add all the mbedtls test suites and make them go 3x faster - Support opendir() / readdir() / closedir() on ZIP executable - Use Everest for ECDHE-ECDSA because it's so good it's so good - Add tinier implementation of sha1 since it's not worth the rom - Add chi-square monte-carlo mean correlation tests for getrandom() - Source entropy on Windows from the proper interface everyone uses We're continuing to outperform NGINX and other servers on raw message throughput. Using SSL means that instead of 1,000,000 qps you can get around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL handshakes, since redbean can do 2,627 per second and NGINX does 4.3k Right now, the SSL UX story works best if you give your redbean a key signing key since that can be easily generated by openssl using a one liner then redbean will do all the things that are impossibly hard to do like signing ecdsa and rsa certificates that'll work in chrome. We should integrate the let's encrypt acme protocol in the future. Live Demo: https://redbean.justine.lol/ Root Cert: https://redbean.justine.lol/redbean1.crt
2021-06-24 19:31:26 +00:00
/* clang-format off */
2021-06-15 18:39:36 +00:00
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
/**
* \brief Indicate if the Elliptic Curve Point module extension can
* handle the group.
*
* \param grp The pointer to the elliptic curve group that will be the
* basis of the cryptographic computations.
*
* \return Non-zero if successful.
*/
unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
/**
* \brief Initialise the Elliptic Curve Point module extension.
*
* If mbedtls_internal_ecp_grp_capable returns true for a
* group, this function has to be able to initialise the
* module for it.
*
* This module can be a driver to a crypto hardware
* accelerator, for which this could be an initialise function.
*
* \param grp The pointer to the group the module needs to be
* initialised for.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
/**
* \brief Frees and deallocates the Elliptic Curve Point module
* extension.
*
* \param grp The pointer to the group the module was initialised for.
*/
void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
/**
* \brief Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
*
* \param grp Pointer to the group representing the curve.
*
* \param pt The point on the curve to be randomised, given with Jacobian
* coordinates.
*
* \param f_rng A function pointer to the random number generator.
*
* \param p_rng A pointer to the random number generator state.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
#endif
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
/**
* \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
*
* The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized.
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Special cases: (1) P or Q is zero, (2) R is zero,
* (3) P == Q.
* None of these cases can happen as intermediate step in
* ecp_mul_comb():
* - at each step, P, Q and R are multiples of the base
* point, the factor being less than its order, so none of
* them is zero;
* - Q is an odd multiple of the base point, P an even
* multiple, due to the choice of precomputed points in the
* modified comb method.
* So branches for these cases do not leak secret information.
*
* We accept Q->Z being unset (saving memory in tables) as
* meaning 1.
*
* Cost in field operations if done by [5] 3.22:
* 1A := 8M + 3S
*
* \param grp Pointer to the group representing the curve.
*
* \param R Pointer to a point structure to hold the result.
*
* \param P Pointer to the first summand, given with Jacobian
* coordinates
*
* \param Q Pointer to the second summand, given with affine
* coordinates.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R,
const mbedtls_ecp_point *P,
const mbedtls_ecp_point *Q );
2021-06-15 18:39:36 +00:00
#endif
/**
* \brief Point doubling R = 2 P, Jacobian coordinates.
*
* Cost: 1D := 3M + 4S (A == 0)
* 4M + 4S (A == -3)
* 3M + 6S + 1a otherwise
* when the implementation is based on the "dbl-1998-cmo-2"
* doubling formulas in [8] and standard optimizations are
* applied when curve parameter A is one of { 0, -3 }.
*
* \param grp Pointer to the group representing the curve.
*
* \param R Pointer to a point structure to hold the result.
*
* \param P Pointer to the point that has to be doubled, given with
* Jacobian coordinates.
*
* \return 0 if successful.
*/
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
#endif
/**
* \brief Normalize jacobian coordinates of an array of (pointers to)
* points.
*
* Using Montgomery's trick to perform only one inversion mod P
* the cost is:
* 1N(t) := 1I + (6t - 3)M + 1S
* (See for example Algorithm 10.3.4. in [9])
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Warning: fails (returning an error) if one of the points is
* zero!
* This should never happen, see choice of w in ecp_mul_comb().
*
* \param grp Pointer to the group representing the curve.
*
* \param T Array of pointers to the points to normalise.
*
* \param t_len Number of elements in the array.
*
* \return 0 if successful,
* an error if one of the points is zero.
*/
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *T[], size_t t_len );
#endif
/**
* \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
*
* Cost in field operations if done by [5] 3.2.1:
* 1N := 1I + 3M + 1S
*
* \param grp Pointer to the group representing the curve.
*
* \param pt pointer to the point to be normalised. This is an
* input/output parameter.
*
* \return 0 if successful.
*/
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt );
2021-06-15 18:39:36 +00:00
#endif
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
#endif
/**
* \brief Randomize projective x/z coordinates:
* (X, Z) -> (l X, l Z) for random l
*
* \param grp pointer to the group representing the curve
*
* \param P the point on the curve to be randomised given with
* projective coordinates. This is an input/output parameter.
*
* \param f_rng a function pointer to the random number generator
*
* \param p_rng a pointer to the random number generator state
*
* \return 0 if successful
*/
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
2021-06-15 18:39:36 +00:00
#endif
/**
* \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
*
* \param grp pointer to the group representing the curve
*
* \param P pointer to the point to be normalised. This is an
* input/output parameter.
*
* \return 0 if successful
*/
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *P );
2021-06-15 18:39:36 +00:00
#endif
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
void secp256r1( uint64_t[8] );
void secp384r1( uint64_t[12] );
int mbedtls_p256_double_jac( const mbedtls_ecp_group *,
const mbedtls_ecp_point *,
mbedtls_ecp_point * );
int mbedtls_p256_add_mixed( const mbedtls_ecp_group *,
const mbedtls_ecp_point *,
const mbedtls_ecp_point *,
mbedtls_ecp_point * );
int mbedtls_p256_normalize_jac( const mbedtls_ecp_group *,
mbedtls_ecp_point * );
int mbedtls_p256_normalize_jac_many( const mbedtls_ecp_group *,
mbedtls_ecp_point *[], size_t );
int mbedtls_p384_double_jac( const mbedtls_ecp_group *,
const mbedtls_ecp_point *,
mbedtls_ecp_point * );
int mbedtls_p384_add_mixed( const mbedtls_ecp_group *,
const mbedtls_ecp_point *,
const mbedtls_ecp_point *,
mbedtls_ecp_point * );
int mbedtls_p384_normalize_jac( const mbedtls_ecp_group *,
mbedtls_ecp_point * );
int mbedtls_p384_normalize_jac_many( const mbedtls_ecp_group *,
mbedtls_ecp_point *[], size_t );
2021-06-15 18:39:36 +00:00
void mbedtls_p384_mod( uint64_t X[12] );
#endif /* COSMOPOLITAN_THIRD_PARTY_MBEDTLS_ECP_INTERNAL_H_ */