cosmopolitan/third_party/python/Modules/_posixsubprocess.c

723 lines
25 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi
Python 3
https://docs.python.org/3/license.html │
*/
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
#include "libc/calls/calls.h"
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
#include "libc/calls/internal.h"
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
#include "libc/calls/weirdtypes.h"
#include "libc/dce.h"
#include "libc/errno.h"
#include "libc/runtime/sysconf.h"
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
#include "libc/sysv/consts/o.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/fileutils.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/intrcheck.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pylifecycle.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/tupleobject.h"
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
#include "third_party/python/pyconfig.h"
/* clang-format off */
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
/* Authors: Gregory P. Smith & Jeffrey Yasskin */
# define FD_DIR (IsBsd() ? "/dev/fd" : "/proc/self/fd")
#define POSIX_CALL(call) do { if ((call) == -1) goto error; } while (0)
/* If gc was disabled, call gc.enable(). Return 0 on success. */
static int
_enable_gc(int need_to_reenable_gc, PyObject *gc_module)
{
PyObject *result;
_Py_IDENTIFIER(enable);
PyObject *exctype, *val, *tb;
if (need_to_reenable_gc) {
PyErr_Fetch(&exctype, &val, &tb);
result = _PyObject_CallMethodId(gc_module, &PyId_enable, NULL);
if (exctype != NULL) {
PyErr_Restore(exctype, val, tb);
}
if (result == NULL) {
return 1;
}
Py_DECREF(result);
}
return 0;
}
/* Convert ASCII to a positive int, no libc call. no overflow. -1 on error. */
static int
_pos_int_from_ascii(const char *name)
{
int num = 0;
while (*name >= '0' && *name <= '9') {
num = num * 10 + (*name - '0');
++name;
}
if (*name)
return -1; /* Non digit found, not a number. */
return num;
}
/* When /dev/fd isn't mounted it is often a static directory populated
* with 0 1 2 or entries for 0 .. 63 on FreeBSD, NetBSD and OpenBSD.
* NetBSD and OpenBSD have a /proc fs available (though not necessarily
* mounted) and do not have fdescfs for /dev/fd. MacOS X has a devfs
* that properly supports /dev/fd.
*/
static int
_is_fdescfs_mounted_on_dev_fd(void)
{
struct stat dev_stat;
struct stat dev_fd_stat;
if (stat("/dev", &dev_stat) != 0)
return 0;
if (stat(FD_DIR, &dev_fd_stat) != 0)
return 0;
if (dev_stat.st_dev == dev_fd_stat.st_dev)
return 0; /* / == /dev == /dev/fd means it is static. #fail */
return 1;
}
/* Returns 1 if there is a problem with fd_sequence, 0 otherwise. */
static int
_sanity_check_python_fd_sequence(PyObject *fd_sequence)
{
Py_ssize_t seq_idx;
long prev_fd = -1;
for (seq_idx = 0; seq_idx < PyTuple_GET_SIZE(fd_sequence); ++seq_idx) {
PyObject* py_fd = PyTuple_GET_ITEM(fd_sequence, seq_idx);
long iter_fd;
if (!PyLong_Check(py_fd)) {
return 1;
}
iter_fd = PyLong_AsLong(py_fd);
if (iter_fd < 0 || iter_fd <= prev_fd || iter_fd > INT_MAX) {
/* Negative, overflow, unsorted, too big for a fd. */
return 1;
}
prev_fd = iter_fd;
}
return 0;
}
/* Is fd found in the sorted Python Sequence? */
static int
_is_fd_in_sorted_fd_sequence(int fd, PyObject *fd_sequence)
{
/* Binary search. */
Py_ssize_t search_min = 0;
Py_ssize_t search_max = PyTuple_GET_SIZE(fd_sequence) - 1;
if (search_max < 0)
return 0;
do {
long middle = (search_min + search_max) / 2;
long middle_fd = PyLong_AsLong(PyTuple_GET_ITEM(fd_sequence, middle));
if (fd == middle_fd)
return 1;
if (fd > middle_fd)
search_min = middle + 1;
else
search_max = middle - 1;
} while (search_min <= search_max);
return 0;
}
static int
make_inheritable(PyObject *py_fds_to_keep, int errpipe_write)
{
Py_ssize_t i, len;
len = PyTuple_GET_SIZE(py_fds_to_keep);
for (i = 0; i < len; ++i) {
PyObject* fdobj = PyTuple_GET_ITEM(py_fds_to_keep, i);
long fd = PyLong_AsLong(fdobj);
assert(!PyErr_Occurred());
assert(0 <= fd && fd <= INT_MAX);
if (fd == errpipe_write) {
/* errpipe_write is part of py_fds_to_keep. It must be closed at
exec(), but kept open in the child process until exec() is
called. */
continue;
}
if (_Py_set_inheritable_async_safe((int)fd, 1, NULL) < 0)
return -1;
}
return 0;
}
/* Get the maximum file descriptor that could be opened by this process.
* This function is async signal safe for use between fork() and exec().
*/
static long
safe_get_max_fd(void)
{
long local_max_fd;
local_max_fd = sysconf(_SC_OPEN_MAX);
if (local_max_fd == -1)
local_max_fd = 256; /* Matches legacy Lib/subprocess.py behavior. */
return local_max_fd;
}
/* Close all file descriptors in the range from start_fd and higher
* except for those in py_fds_to_keep. If the range defined by
* [start_fd, safe_get_max_fd()) is large this will take a long
* time as it calls close() on EVERY possible fd.
*
* It isn't possible to know for sure what the max fd to go up to
* is for processes with the capability of raising their maximum.
*/
static void
_close_fds_by_brute_force(long start_fd, PyObject *py_fds_to_keep)
{
long end_fd = safe_get_max_fd();
Py_ssize_t num_fds_to_keep = PyTuple_GET_SIZE(py_fds_to_keep);
Py_ssize_t keep_seq_idx;
int fd_num;
/* As py_fds_to_keep is sorted we can loop through the list closing
* fds inbetween any in the keep list falling within our range. */
for (keep_seq_idx = 0; keep_seq_idx < num_fds_to_keep; ++keep_seq_idx) {
PyObject* py_keep_fd = PyTuple_GET_ITEM(py_fds_to_keep, keep_seq_idx);
int keep_fd = PyLong_AsLong(py_keep_fd);
if (keep_fd < start_fd)
continue;
for (fd_num = start_fd; fd_num < keep_fd; ++fd_num) {
close(fd_num);
}
start_fd = keep_fd + 1;
}
if (start_fd <= end_fd) {
for (fd_num = start_fd; fd_num < end_fd; ++fd_num) {
close(fd_num);
}
}
}
/* Close all open file descriptors in the range from start_fd and higher
* Do not close any in the sorted py_fds_to_keep list.
*
* This version is async signal safe as it does not make any unsafe C library
* calls, malloc calls or handle any locks. It is _unfortunate_ to be forced
* to resort to making a kernel system call directly but this is the ONLY api
* available that does no harm. opendir/readdir/closedir perform memory
* allocation and locking so while they usually work they are not guaranteed
* to (especially if you have replaced your malloc implementation). A version
* of this function that uses those can be found in the _maybe_unsafe variant.
*
* This is Linux specific because that is all I am ready to test it on. It
* should be easy to add OS specific dirent or dirent64 structures and modify
* it with some cpp #define magic to work on other OSes as well if you want.
*/
static void
_close_open_fds_safe(int start_fd, PyObject* py_fds_to_keep)
{
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
char buffer[512];
struct dirent *entry;
int fd, dir, bytes, offset;
if ((dir = _Py_open_noraise(FD_DIR, O_RDONLY|O_DIRECTORY)) != -1) {
while ((bytes = getdents(dir, buffer, sizeof(buffer), 0)) > 0) {
for (offset = 0; offset < bytes; offset += entry->d_reclen) {
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
entry = (struct dirent *)(buffer + offset);
if ((fd = _pos_int_from_ascii(entry->d_name)) < 0)
continue; /* Not a number. */
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
if (fd != dir && fd >= start_fd &&
!_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) {
close(fd);
}
}
}
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
close(dir);
} else {
_close_fds_by_brute_force(start_fd, py_fds_to_keep);
}
}
/* Close all open file descriptors from start_fd and higher.
* Do not close any in the sorted py_fds_to_keep tuple.
*
* This function violates the strict use of async signal safe functions. :(
* It calls opendir(), readdir() and closedir(). Of these, the one most
* likely to ever cause a problem is opendir() as it performs an internal
* malloc(). Practically this should not be a problem. The Java VM makes the
* same calls between fork and exec in its own UNIXProcess_md.c implementation.
*
* readdir_r() is not used because it provides no benefit. It is typically
* implemented as readdir() followed by memcpy(). See also:
* http://womble.decadent.org.uk/readdir_r-advisory.html
*/
static void
_close_open_fds_maybe_unsafe(long start_fd, PyObject* py_fds_to_keep)
{
DIR *proc_fd_dir;
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
if (IsFreebsd() && !_is_fdescfs_mounted_on_dev_fd())
proc_fd_dir = NULL;
else
proc_fd_dir = opendir(FD_DIR);
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
if (proc_fd_dir) {
struct dirent *dir_entry;
int fd_used_by_opendir = dirfd(proc_fd_dir);
errno = 0;
while ((dir_entry = readdir(proc_fd_dir))) {
int fd;
if ((fd = _pos_int_from_ascii(dir_entry->d_name)) < 0)
continue; /* Not a number. */
if (fd != fd_used_by_opendir && fd >= start_fd &&
!_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) {
close(fd);
}
errno = 0;
}
if (errno) {
/* readdir error, revert behavior. Highly Unlikely. */
_close_fds_by_brute_force(start_fd, py_fds_to_keep);
}
closedir(proc_fd_dir);
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
} else {
_close_fds_by_brute_force(start_fd, py_fds_to_keep);
}
}
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
static void
_close_open_fds(long start_fd, PyObject* py_fds_to_keep)
{
if (!IsWindows()) {
if (IsLinux()) {
_close_open_fds_safe(start_fd, py_fds_to_keep);
} else {
_close_open_fds_maybe_unsafe(start_fd, py_fds_to_keep);
}
} else {
_close_fds_by_brute_force(start_fd, py_fds_to_keep);
}
}
/*
* This function is code executed in the child process immediately after fork
* to set things up and call exec().
*
* All of the code in this function must only use async-signal-safe functions,
* listed at `man 7 signal` or
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.
*
* This restriction is documented at
* http://www.opengroup.org/onlinepubs/009695399/functions/fork.html.
*/
static void
child_exec(char *const exec_array[],
char *const argv[],
char *const envp[],
const char *cwd,
int p2cread, int p2cwrite,
int c2pread, int c2pwrite,
int errread, int errwrite,
int errpipe_read, int errpipe_write,
int close_fds, int restore_signals,
int call_setsid,
PyObject *py_fds_to_keep,
PyObject *preexec_fn,
PyObject *preexec_fn_args_tuple)
{
int i, saved_errno, reached_preexec = 0;
PyObject *result;
const char* err_msg = "";
/* Buffer large enough to hold a hex integer. We can't malloc. */
char hex_errno[sizeof(saved_errno)*2+1];
if (make_inheritable(py_fds_to_keep, errpipe_write) < 0)
goto error;
/* Close parent's pipe ends. */
if (p2cwrite != -1)
POSIX_CALL(close(p2cwrite));
if (c2pread != -1)
POSIX_CALL(close(c2pread));
if (errread != -1)
POSIX_CALL(close(errread));
POSIX_CALL(close(errpipe_read));
/* When duping fds, if there arises a situation where one of the fds is
either 0, 1 or 2, it is possible that it is overwritten (#12607). */
if (c2pwrite == 0) {
POSIX_CALL(c2pwrite = dup(c2pwrite));
/* issue32270 */
if (_Py_set_inheritable_async_safe(c2pwrite, 0, NULL) < 0) {
goto error;
}
}
while (errwrite == 0 || errwrite == 1) {
POSIX_CALL(errwrite = dup(errwrite));
/* issue32270 */
if (_Py_set_inheritable_async_safe(errwrite, 0, NULL) < 0) {
goto error;
}
}
/* Dup fds for child.
dup2() removes the CLOEXEC flag but we must do it ourselves if dup2()
would be a no-op (issue #10806). */
if (p2cread == 0) {
if (_Py_set_inheritable_async_safe(p2cread, 1, NULL) < 0)
goto error;
}
else if (p2cread != -1)
POSIX_CALL(dup2(p2cread, 0)); /* stdin */
if (c2pwrite == 1) {
if (_Py_set_inheritable_async_safe(c2pwrite, 1, NULL) < 0)
goto error;
}
else if (c2pwrite != -1)
POSIX_CALL(dup2(c2pwrite, 1)); /* stdout */
if (errwrite == 2) {
if (_Py_set_inheritable_async_safe(errwrite, 1, NULL) < 0)
goto error;
}
else if (errwrite != -1)
POSIX_CALL(dup2(errwrite, 2)); /* stderr */
/* We no longer manually close p2cread, c2pwrite, and errwrite here as
* _close_open_fds takes care when it is not already non-inheritable. */
if (cwd)
POSIX_CALL(chdir(cwd));
if (restore_signals)
_Py_RestoreSignals();
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
if (call_setsid && !IsWindows())
POSIX_CALL(setsid());
reached_preexec = 1;
if (preexec_fn != Py_None && preexec_fn_args_tuple) {
/* This is where the user has asked us to deadlock their program. */
result = PyObject_Call(preexec_fn, preexec_fn_args_tuple, NULL);
if (result == NULL) {
/* Stringifying the exception or traceback would involve
* memory allocation and thus potential for deadlock.
* We've already faced potential deadlock by calling back
* into Python in the first place, so it probably doesn't
* matter but we avoid it to minimize the possibility. */
err_msg = "Exception occurred in preexec_fn.";
errno = 0; /* We don't want to report an OSError. */
goto error;
}
/* Py_DECREF(result); - We're about to exec so why bother? */
}
/* close FDs after executing preexec_fn, which might open FDs */
if (close_fds) {
/* TODO HP-UX could use pstat_getproc() if anyone cares about it. */
_close_open_fds(3, py_fds_to_keep);
}
/* This loop matches the Lib/os.py _execvpe()'s PATH search when */
/* given the executable_list generated by Lib/subprocess.py. */
saved_errno = 0;
for (i = 0; exec_array[i] != NULL; ++i) {
const char *executable = exec_array[i];
if (envp) {
execve(executable, argv, envp);
} else {
execv(executable, argv);
}
if (errno != ENOENT && errno != ENOTDIR && saved_errno == 0) {
saved_errno = errno;
}
}
/* Report the first exec error, not the last. */
if (saved_errno)
errno = saved_errno;
error:
saved_errno = errno;
/* Report the posix error to our parent process. */
/* We ignore all write() return values as the total size of our writes is
less than PIPEBUF and we cannot do anything about an error anyways.
Use _Py_write_noraise() to retry write() if it is interrupted by a
signal (fails with EINTR). */
if (saved_errno) {
char *cur;
_Py_write_noraise(errpipe_write, "OSError:", 8);
cur = hex_errno + sizeof(hex_errno);
while (saved_errno != 0 && cur != hex_errno) {
*--cur = Py_hexdigits[saved_errno % 16];
saved_errno /= 16;
}
_Py_write_noraise(errpipe_write, cur, hex_errno + sizeof(hex_errno) - cur);
_Py_write_noraise(errpipe_write, ":", 1);
if (!reached_preexec) {
/* Indicate to the parent that the error happened before exec(). */
_Py_write_noraise(errpipe_write, "noexec", 6);
}
/* We can't call strerror(saved_errno). It is not async signal safe.
* The parent process will look the error message up. */
} else {
_Py_write_noraise(errpipe_write, "SubprocessError:0:", 18);
_Py_write_noraise(errpipe_write, err_msg, strlen(err_msg));
}
}
static PyObject *
subprocess_fork_exec(PyObject* self, PyObject *args)
{
PyObject *gc_module = NULL;
PyObject *executable_list, *py_fds_to_keep;
PyObject *env_list, *preexec_fn;
PyObject *process_args, *converted_args = NULL, *fast_args = NULL;
PyObject *preexec_fn_args_tuple = NULL;
int p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite;
int errpipe_read, errpipe_write, close_fds, restore_signals;
int call_setsid;
PyObject *cwd_obj, *cwd_obj2;
const char *cwd;
pid_t pid;
int need_to_reenable_gc = 0;
char *const *exec_array, *const *argv = NULL, *const *envp = NULL;
Py_ssize_t arg_num;
#ifdef WITH_THREAD
int import_lock_held = 0;
#endif
if (!PyArg_ParseTuple(
args, "OOpO!OOiiiiiiiiiiO:fork_exec",
&process_args, &executable_list,
&close_fds, &PyTuple_Type, &py_fds_to_keep,
&cwd_obj, &env_list,
&p2cread, &p2cwrite, &c2pread, &c2pwrite,
&errread, &errwrite, &errpipe_read, &errpipe_write,
&restore_signals, &call_setsid, &preexec_fn))
return NULL;
if (close_fds && errpipe_write < 3) { /* precondition */
PyErr_SetString(PyExc_ValueError, "errpipe_write must be >= 3");
return NULL;
}
if (_sanity_check_python_fd_sequence(py_fds_to_keep)) {
PyErr_SetString(PyExc_ValueError, "bad value(s) in fds_to_keep");
return NULL;
}
/* We need to call gc.disable() when we'll be calling preexec_fn */
if (preexec_fn != Py_None) {
PyObject *result;
_Py_IDENTIFIER(isenabled);
_Py_IDENTIFIER(disable);
gc_module = PyImport_ImportModule("gc");
if (gc_module == NULL)
return NULL;
result = _PyObject_CallMethodId(gc_module, &PyId_isenabled, NULL);
if (result == NULL) {
Py_DECREF(gc_module);
return NULL;
}
need_to_reenable_gc = PyObject_IsTrue(result);
Py_DECREF(result);
if (need_to_reenable_gc == -1) {
Py_DECREF(gc_module);
return NULL;
}
result = _PyObject_CallMethodId(gc_module, &PyId_disable, NULL);
if (result == NULL) {
Py_DECREF(gc_module);
return NULL;
}
Py_DECREF(result);
}
exec_array = _PySequence_BytesToCharpArray(executable_list);
if (!exec_array)
goto cleanup;
/* Convert args and env into appropriate arguments for exec() */
/* These conversions are done in the parent process to avoid allocating
or freeing memory in the child process. */
if (process_args != Py_None) {
Py_ssize_t num_args;
/* Equivalent to: */
/* tuple(PyUnicode_FSConverter(arg) for arg in process_args) */
fast_args = PySequence_Fast(process_args, "argv must be a tuple");
if (fast_args == NULL)
goto cleanup;
num_args = PySequence_Fast_GET_SIZE(fast_args);
converted_args = PyTuple_New(num_args);
if (converted_args == NULL)
goto cleanup;
for (arg_num = 0; arg_num < num_args; ++arg_num) {
PyObject *borrowed_arg, *converted_arg;
if (PySequence_Fast_GET_SIZE(fast_args) != num_args) {
PyErr_SetString(PyExc_RuntimeError, "args changed during iteration");
goto cleanup;
}
borrowed_arg = PySequence_Fast_GET_ITEM(fast_args, arg_num);
if (PyUnicode_FSConverter(borrowed_arg, &converted_arg) == 0)
goto cleanup;
PyTuple_SET_ITEM(converted_args, arg_num, converted_arg);
}
argv = _PySequence_BytesToCharpArray(converted_args);
Py_CLEAR(converted_args);
Py_CLEAR(fast_args);
if (!argv)
goto cleanup;
}
if (env_list != Py_None) {
envp = _PySequence_BytesToCharpArray(env_list);
if (!envp)
goto cleanup;
}
if (preexec_fn != Py_None) {
preexec_fn_args_tuple = PyTuple_New(0);
if (!preexec_fn_args_tuple)
goto cleanup;
#ifdef WITH_THREAD
_PyImport_AcquireLock();
import_lock_held = 1;
#endif
}
if (cwd_obj != Py_None) {
if (PyUnicode_FSConverter(cwd_obj, &cwd_obj2) == 0)
goto cleanup;
cwd = PyBytes_AsString(cwd_obj2);
} else {
cwd = NULL;
cwd_obj2 = NULL;
}
pid = fork();
if (pid == 0) {
/* Child process */
/*
* Code from here to _exit() must only use async-signal-safe functions,
* listed at `man 7 signal` or
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.
*/
if (preexec_fn != Py_None) {
/* We'll be calling back into Python later so we need to do this.
* This call may not be async-signal-safe but neither is calling
* back into Python. The user asked us to use hope as a strategy
* to avoid deadlock... */
PyOS_AfterFork();
}
child_exec(exec_array, argv, envp, cwd,
p2cread, p2cwrite, c2pread, c2pwrite,
errread, errwrite, errpipe_read, errpipe_write,
close_fds, restore_signals, call_setsid,
py_fds_to_keep, preexec_fn, preexec_fn_args_tuple);
_exit(255);
return NULL; /* Dead code to avoid a potential compiler warning. */
}
Py_XDECREF(cwd_obj2);
if (pid == -1) {
/* Capture the errno exception before errno can be clobbered. */
PyErr_SetFromErrno(PyExc_OSError);
}
#ifdef WITH_THREAD
if (preexec_fn != Py_None
&& _PyImport_ReleaseLock() < 0 && !PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError,
"not holding the import lock");
pid = -1;
}
import_lock_held = 0;
#endif
/* Parent process */
if (envp)
_Py_FreeCharPArray(envp);
if (argv)
_Py_FreeCharPArray(argv);
_Py_FreeCharPArray(exec_array);
/* Reenable gc in the parent process (or if fork failed). */
if (_enable_gc(need_to_reenable_gc, gc_module)) {
pid = -1;
}
Py_XDECREF(preexec_fn_args_tuple);
Py_XDECREF(gc_module);
if (pid == -1)
return NULL; /* fork() failed. Exception set earlier. */
return PyLong_FromPid(pid);
cleanup:
#ifdef WITH_THREAD
if (import_lock_held)
_PyImport_ReleaseLock();
#endif
if (envp)
_Py_FreeCharPArray(envp);
if (argv)
_Py_FreeCharPArray(argv);
if (exec_array)
_Py_FreeCharPArray(exec_array);
Py_XDECREF(converted_args);
Py_XDECREF(fast_args);
Py_XDECREF(preexec_fn_args_tuple);
_enable_gc(need_to_reenable_gc, gc_module);
Py_XDECREF(gc_module);
return NULL;
}
PyDoc_STRVAR(subprocess_fork_exec_doc,
"fork_exec(args, executable_list, close_fds, cwd, env,\n\
p2cread, p2cwrite, c2pread, c2pwrite,\n\
errread, errwrite, errpipe_read, errpipe_write,\n\
restore_signals, call_setsid, preexec_fn)\n\
\n\
Forks a child process, closes parent file descriptors as appropriate in the\n\
child and dups the few that are needed before calling exec() in the child\n\
process.\n\
\n\
The preexec_fn, if supplied, will be called immediately before exec.\n\
WARNING: preexec_fn is NOT SAFE if your application uses threads.\n\
It may trigger infrequent, difficult to debug deadlocks.\n\
\n\
If an error occurs in the child process before the exec, it is\n\
serialized and written to the errpipe_write fd per subprocess.py.\n\
\n\
Returns: the child process's PID.\n\
\n\
Raises: Only on an error in the parent process.\n\
");
/* module level code ********************************************************/
PyDoc_STRVAR(module_doc,
"A POSIX helper for the subprocess module.");
static PyMethodDef module_methods[] = {
{"fork_exec", subprocess_fork_exec, METH_VARARGS, subprocess_fork_exec_doc},
{NULL, NULL} /* sentinel */
};
static struct PyModuleDef _posixsubprocessmodule = {
PyModuleDef_HEAD_INIT,
"_posixsubprocess",
module_doc,
-1, /* No memory is needed. */
module_methods,
};
PyMODINIT_FUNC
PyInit__posixsubprocess(void)
{
return PyModule_Create(&_posixsubprocessmodule);
}