2021-05-14 09:07:09 +00:00
|
|
|
/*
|
|
|
|
** 2001 September 15
|
|
|
|
**
|
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
|
|
|
**
|
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** The code in this file implements the function that runs the
|
|
|
|
** bytecode of a prepared statement.
|
|
|
|
**
|
|
|
|
** Various scripts scan this source file in order to generate HTML
|
|
|
|
** documentation, headers files, or other derived files. The formatting
|
|
|
|
** of the code in this file is, therefore, important. See other comments
|
|
|
|
** in this file for details. If in doubt, do not deviate from existing
|
|
|
|
** commenting and indentation practices when changing or adding code.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
#include "third_party/sqlite3/sqliteInt.h"
|
2021-05-14 17:18:28 +00:00
|
|
|
#include "third_party/sqlite3/vdbeInt.inc"
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
** Invoke this macro on memory cells just prior to changing the
|
|
|
|
** value of the cell. This macro verifies that shallow copies are
|
|
|
|
** not misused. A shallow copy of a string or blob just copies a
|
|
|
|
** pointer to the string or blob, not the content. If the original
|
|
|
|
** is changed while the copy is still in use, the string or blob might
|
|
|
|
** be changed out from under the copy. This macro verifies that nothing
|
|
|
|
** like that ever happens.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
|
|
|
|
#else
|
|
|
|
# define memAboutToChange(P,M)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The following global variable is incremented every time a cursor
|
|
|
|
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
|
|
|
|
** procedures use this information to make sure that indices are
|
|
|
|
** working correctly. This variable has no function other than to
|
|
|
|
** help verify the correct operation of the library.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
int sqlite3_search_count = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** When this global variable is positive, it gets decremented once before
|
|
|
|
** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
|
|
|
|
** field of the sqlite3 structure is set in order to simulate an interrupt.
|
|
|
|
**
|
|
|
|
** This facility is used for testing purposes only. It does not function
|
|
|
|
** in an ordinary build.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
int sqlite3_interrupt_count = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The next global variable is incremented each type the OP_Sort opcode
|
|
|
|
** is executed. The test procedures use this information to make sure that
|
|
|
|
** sorting is occurring or not occurring at appropriate times. This variable
|
|
|
|
** has no function other than to help verify the correct operation of the
|
|
|
|
** library.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
int sqlite3_sort_count = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The next global variable records the size of the largest MEM_Blob
|
|
|
|
** or MEM_Str that has been used by a VDBE opcode. The test procedures
|
|
|
|
** use this information to make sure that the zero-blob functionality
|
|
|
|
** is working correctly. This variable has no function other than to
|
|
|
|
** help verify the correct operation of the library.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
int sqlite3_max_blobsize = 0;
|
|
|
|
static void updateMaxBlobsize(Mem *p){
|
|
|
|
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
|
|
|
|
sqlite3_max_blobsize = p->n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This macro evaluates to true if either the update hook or the preupdate
|
|
|
|
** hook are enabled for database connect DB.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
|
|
# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
|
|
|
|
#else
|
|
|
|
# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The next global variable is incremented each time the OP_Found opcode
|
|
|
|
** is executed. This is used to test whether or not the foreign key
|
|
|
|
** operation implemented using OP_FkIsZero is working. This variable
|
|
|
|
** has no function other than to help verify the correct operation of the
|
|
|
|
** library.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
int sqlite3_found_count = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Test a register to see if it exceeds the current maximum blob size.
|
|
|
|
** If it does, record the new maximum blob size.
|
|
|
|
*/
|
|
|
|
#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
|
|
|
|
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
|
|
|
|
#else
|
|
|
|
# define UPDATE_MAX_BLOBSIZE(P)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* This routine provides a convenient place to set a breakpoint during
|
|
|
|
** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
|
|
|
|
** each opcode is printed. Variables "pc" (program counter) and pOp are
|
|
|
|
** available to add conditionals to the breakpoint. GDB example:
|
|
|
|
**
|
|
|
|
** break test_trace_breakpoint if pc=22
|
|
|
|
**
|
|
|
|
** Other useful labels for breakpoints include:
|
|
|
|
** test_addop_breakpoint(pc,pOp)
|
|
|
|
** sqlite3CorruptError(lineno)
|
|
|
|
** sqlite3MisuseError(lineno)
|
|
|
|
** sqlite3CantopenError(lineno)
|
|
|
|
*/
|
|
|
|
static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
|
|
|
|
static int n = 0;
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Invoke the VDBE coverage callback, if that callback is defined. This
|
|
|
|
** feature is used for test suite validation only and does not appear an
|
|
|
|
** production builds.
|
|
|
|
**
|
|
|
|
** M is the type of branch. I is the direction taken for this instance of
|
|
|
|
** the branch.
|
|
|
|
**
|
|
|
|
** M: 2 - two-way branch (I=0: fall-thru 1: jump )
|
|
|
|
** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
|
|
|
|
** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
|
|
|
|
**
|
|
|
|
** In other words, if M is 2, then I is either 0 (for fall-through) or
|
|
|
|
** 1 (for when the branch is taken). If M is 3, the I is 0 for an
|
2022-07-22 04:46:07 +00:00
|
|
|
** ordinary fall-through, I is 1 if the branch was taken, and I is 2
|
2021-05-14 09:07:09 +00:00
|
|
|
** if the result of comparison is NULL. For M=3, I=2 the jump may or
|
|
|
|
** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
|
|
|
|
** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
|
|
|
|
** depending on if the operands are less than, equal, or greater than.
|
|
|
|
**
|
|
|
|
** iSrcLine is the source code line (from the __LINE__ macro) that
|
|
|
|
** generated the VDBE instruction combined with flag bits. The source
|
|
|
|
** code line number is in the lower 24 bits of iSrcLine and the upper
|
|
|
|
** 8 bytes are flags. The lower three bits of the flags indicate
|
|
|
|
** values for I that should never occur. For example, if the branch is
|
|
|
|
** always taken, the flags should be 0x05 since the fall-through and
|
|
|
|
** alternate branch are never taken. If a branch is never taken then
|
|
|
|
** flags should be 0x06 since only the fall-through approach is allowed.
|
|
|
|
**
|
|
|
|
** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
|
|
|
|
** interested in equal or not-equal. In other words, I==0 and I==2
|
|
|
|
** should be treated as equivalent
|
|
|
|
**
|
|
|
|
** Since only a line number is retained, not the filename, this macro
|
|
|
|
** only works for amalgamation builds. But that is ok, since these macros
|
|
|
|
** should be no-ops except for special builds used to measure test coverage.
|
|
|
|
*/
|
|
|
|
#if !defined(SQLITE_VDBE_COVERAGE)
|
|
|
|
# define VdbeBranchTaken(I,M)
|
|
|
|
#else
|
|
|
|
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
|
|
|
|
static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
|
|
|
|
u8 mNever;
|
|
|
|
assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
|
|
|
|
assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
|
|
|
|
assert( I<M ); /* I can only be 2 if M is 3 or 4 */
|
|
|
|
/* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
|
|
|
|
I = 1<<I;
|
|
|
|
/* The upper 8 bits of iSrcLine are flags. The lower three bits of
|
|
|
|
** the flags indicate directions that the branch can never go. If
|
|
|
|
** a branch really does go in one of those directions, assert right
|
|
|
|
** away. */
|
|
|
|
mNever = iSrcLine >> 24;
|
|
|
|
assert( (I & mNever)==0 );
|
|
|
|
if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
|
|
|
|
/* Invoke the branch coverage callback with three arguments:
|
|
|
|
** iSrcLine - the line number of the VdbeCoverage() macro, with
|
|
|
|
** flags removed.
|
|
|
|
** I - Mask of bits 0x07 indicating which cases are are
|
|
|
|
** fulfilled by this instance of the jump. 0x01 means
|
|
|
|
** fall-thru, 0x02 means taken, 0x04 means NULL. Any
|
|
|
|
** impossible cases (ex: if the comparison is never NULL)
|
|
|
|
** are filled in automatically so that the coverage
|
|
|
|
** measurement logic does not flag those impossible cases
|
|
|
|
** as missed coverage.
|
|
|
|
** M - Type of jump. Same as M argument above
|
|
|
|
*/
|
|
|
|
I |= mNever;
|
|
|
|
if( M==2 ) I |= 0x04;
|
|
|
|
if( M==4 ){
|
|
|
|
I |= 0x08;
|
|
|
|
if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
|
|
|
|
}
|
|
|
|
sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
|
|
|
|
iSrcLine&0xffffff, I, M);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
|
|
** a pointer to a dynamically allocated string where some other entity
|
|
|
|
** is responsible for deallocating that string. Because the register
|
|
|
|
** does not control the string, it might be deleted without the register
|
|
|
|
** knowing it.
|
|
|
|
**
|
|
|
|
** This routine converts an ephemeral string into a dynamically allocated
|
|
|
|
** string that the register itself controls. In other words, it
|
|
|
|
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
|
|
|
|
*/
|
|
|
|
#define Deephemeralize(P) \
|
|
|
|
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
|
|
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
|
|
|
|
|
|
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
|
|
|
|
#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
|
|
|
|
** if we run out of memory.
|
|
|
|
*/
|
|
|
|
static VdbeCursor *allocateCursor(
|
|
|
|
Vdbe *p, /* The virtual machine */
|
|
|
|
int iCur, /* Index of the new VdbeCursor */
|
|
|
|
int nField, /* Number of fields in the table or index */
|
|
|
|
u8 eCurType /* Type of the new cursor */
|
|
|
|
){
|
|
|
|
/* Find the memory cell that will be used to store the blob of memory
|
2022-07-22 04:46:07 +00:00
|
|
|
** required for this VdbeCursor structure. It is convenient to use a
|
2021-05-14 09:07:09 +00:00
|
|
|
** vdbe memory cell to manage the memory allocation required for a
|
|
|
|
** VdbeCursor structure for the following reasons:
|
|
|
|
**
|
|
|
|
** * Sometimes cursor numbers are used for a couple of different
|
|
|
|
** purposes in a vdbe program. The different uses might require
|
|
|
|
** different sized allocations. Memory cells provide growable
|
|
|
|
** allocations.
|
|
|
|
**
|
|
|
|
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
|
|
|
|
** be freed lazily via the sqlite3_release_memory() API. This
|
|
|
|
** minimizes the number of malloc calls made by the system.
|
|
|
|
**
|
|
|
|
** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
|
|
|
|
** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
|
|
|
|
** Cursor 2 is at Mem[p->nMem-2]. And so forth.
|
|
|
|
*/
|
|
|
|
Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
|
|
|
|
|
|
|
|
int nByte;
|
|
|
|
VdbeCursor *pCx = 0;
|
2022-07-22 04:46:07 +00:00
|
|
|
nByte =
|
2022-11-28 20:54:48 +00:00
|
|
|
ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
|
2021-05-14 09:07:09 +00:00
|
|
|
(eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
|
|
|
|
|
|
|
|
assert( iCur>=0 && iCur<p->nCursor );
|
|
|
|
if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
|
2021-05-14 09:07:09 +00:00
|
|
|
p->apCsr[iCur] = 0;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
|
|
|
|
** the pMem used to hold space for the cursor has enough storage available
|
|
|
|
** in pMem->zMalloc. But for the special case of the aMem[] entries used
|
|
|
|
** to hold cursors, it is faster to in-line the logic. */
|
|
|
|
assert( pMem->flags==MEM_Undefined );
|
|
|
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
|
|
|
assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
|
|
|
|
if( pMem->szMalloc<nByte ){
|
|
|
|
if( pMem->szMalloc>0 ){
|
|
|
|
sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
|
|
|
|
}
|
|
|
|
pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
|
|
|
|
if( pMem->zMalloc==0 ){
|
|
|
|
pMem->szMalloc = 0;
|
|
|
|
return 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
pMem->szMalloc = nByte;
|
|
|
|
}
|
|
|
|
|
|
|
|
p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
|
|
|
|
memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
|
|
|
|
pCx->eCurType = eCurType;
|
|
|
|
pCx->nField = nField;
|
|
|
|
pCx->aOffset = &pCx->aType[nField];
|
|
|
|
if( eCurType==CURTYPE_BTREE ){
|
|
|
|
pCx->uc.pCursor = (BtCursor*)
|
|
|
|
&pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
|
|
|
|
sqlite3BtreeCursorZero(pCx->uc.pCursor);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
return pCx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The string in pRec is known to look like an integer and to have a
|
|
|
|
** floating point value of rValue. Return true and set *piValue to the
|
|
|
|
** integer value if the string is in range to be an integer. Otherwise,
|
|
|
|
** return false.
|
|
|
|
*/
|
|
|
|
static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
|
2022-11-28 20:54:48 +00:00
|
|
|
i64 iValue;
|
|
|
|
iValue = sqlite3RealToI64(rValue);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( sqlite3RealSameAsInt(rValue,iValue) ){
|
|
|
|
*piValue = iValue;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to convert a value into a numeric representation if we can
|
|
|
|
** do so without loss of information. In other words, if the string
|
|
|
|
** looks like a number, convert it into a number. If it does not
|
|
|
|
** look like a number, leave it alone.
|
|
|
|
**
|
|
|
|
** If the bTryForInt flag is true, then extra effort is made to give
|
|
|
|
** an integer representation. Strings that look like floating point
|
|
|
|
** values but which have no fractional component (example: '48.00')
|
|
|
|
** will have a MEM_Int representation when bTryForInt is true.
|
|
|
|
**
|
|
|
|
** If bTryForInt is false, then if the input string contains a decimal
|
|
|
|
** point or exponential notation, the result is only MEM_Real, even
|
|
|
|
** if there is an exact integer representation of the quantity.
|
|
|
|
*/
|
|
|
|
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
|
|
|
|
double rValue;
|
|
|
|
u8 enc = pRec->enc;
|
|
|
|
int rc;
|
|
|
|
assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
|
|
|
|
rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
|
|
|
|
if( rc<=0 ) return;
|
|
|
|
if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
|
|
|
|
pRec->flags |= MEM_Int;
|
|
|
|
}else{
|
|
|
|
pRec->u.r = rValue;
|
|
|
|
pRec->flags |= MEM_Real;
|
|
|
|
if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
|
|
|
|
}
|
|
|
|
/* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
|
|
|
|
** string representation after computing a numeric equivalent, because the
|
|
|
|
** string representation might not be the canonical representation for the
|
|
|
|
** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
|
|
|
|
pRec->flags &= ~MEM_Str;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Processing is determine by the affinity parameter:
|
|
|
|
**
|
|
|
|
** SQLITE_AFF_INTEGER:
|
|
|
|
** SQLITE_AFF_REAL:
|
|
|
|
** SQLITE_AFF_NUMERIC:
|
2022-07-22 04:46:07 +00:00
|
|
|
** Try to convert pRec to an integer representation or a
|
2021-05-14 09:07:09 +00:00
|
|
|
** floating-point representation if an integer representation
|
|
|
|
** is not possible. Note that the integer representation is
|
|
|
|
** always preferred, even if the affinity is REAL, because
|
|
|
|
** an integer representation is more space efficient on disk.
|
|
|
|
**
|
|
|
|
** SQLITE_AFF_TEXT:
|
|
|
|
** Convert pRec to a text representation.
|
|
|
|
**
|
|
|
|
** SQLITE_AFF_BLOB:
|
|
|
|
** SQLITE_AFF_NONE:
|
|
|
|
** No-op. pRec is unchanged.
|
|
|
|
*/
|
|
|
|
static void applyAffinity(
|
|
|
|
Mem *pRec, /* The value to apply affinity to */
|
|
|
|
char affinity, /* The affinity to be applied */
|
|
|
|
u8 enc /* Use this text encoding */
|
|
|
|
){
|
|
|
|
if( affinity>=SQLITE_AFF_NUMERIC ){
|
|
|
|
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
|
|
|
|| affinity==SQLITE_AFF_NUMERIC );
|
|
|
|
if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
|
|
|
|
if( (pRec->flags & MEM_Real)==0 ){
|
|
|
|
if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeIntegerAffinity(pRec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else if( affinity==SQLITE_AFF_TEXT ){
|
|
|
|
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
|
|
** representation (blob and NULL do not get converted) but no string
|
2022-07-22 04:46:07 +00:00
|
|
|
** representation. It would be harmless to repeat the conversion if
|
2021-05-14 09:07:09 +00:00
|
|
|
** there is already a string rep, but it is pointless to waste those
|
|
|
|
** CPU cycles. */
|
|
|
|
if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
|
|
|
|
if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
|
|
|
|
testcase( pRec->flags & MEM_Int );
|
|
|
|
testcase( pRec->flags & MEM_Real );
|
|
|
|
testcase( pRec->flags & MEM_IntReal );
|
|
|
|
sqlite3VdbeMemStringify(pRec, enc, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to convert the type of a function argument or a result column
|
|
|
|
** into a numeric representation. Use either INTEGER or REAL whichever
|
|
|
|
** is appropriate. But only do the conversion if it is possible without
|
|
|
|
** loss of information and return the revised type of the argument.
|
|
|
|
*/
|
|
|
|
int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
|
|
|
int eType = sqlite3_value_type(pVal);
|
|
|
|
if( eType==SQLITE_TEXT ){
|
|
|
|
Mem *pMem = (Mem*)pVal;
|
|
|
|
applyNumericAffinity(pMem, 0);
|
|
|
|
eType = sqlite3_value_type(pVal);
|
|
|
|
}
|
|
|
|
return eType;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
2021-05-14 09:07:09 +00:00
|
|
|
** not the internal Mem* type.
|
|
|
|
*/
|
|
|
|
void sqlite3ValueApplyAffinity(
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3_value *pVal,
|
|
|
|
u8 affinity,
|
2021-05-14 09:07:09 +00:00
|
|
|
u8 enc
|
|
|
|
){
|
|
|
|
applyAffinity((Mem *)pVal, affinity, enc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** pMem currently only holds a string type (or maybe a BLOB that we can
|
|
|
|
** interpret as a string if we want to). Compute its corresponding
|
|
|
|
** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
|
|
|
|
** accordingly.
|
|
|
|
*/
|
|
|
|
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
|
|
|
|
int rc;
|
|
|
|
sqlite3_int64 ix;
|
|
|
|
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
|
|
|
|
assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
if( ExpandBlob(pMem) ){
|
|
|
|
pMem->u.i = 0;
|
|
|
|
return MEM_Int;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
|
|
|
|
if( rc<=0 ){
|
|
|
|
if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
|
|
|
|
pMem->u.i = ix;
|
|
|
|
return MEM_Int;
|
|
|
|
}else{
|
|
|
|
return MEM_Real;
|
|
|
|
}
|
|
|
|
}else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
|
|
|
|
pMem->u.i = ix;
|
|
|
|
return MEM_Int;
|
|
|
|
}
|
|
|
|
return MEM_Real;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
|
2022-07-22 04:46:07 +00:00
|
|
|
** none.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
|
|
|
|
** But it does set pMem->u.r and pMem->u.i appropriately.
|
|
|
|
*/
|
|
|
|
static u16 numericType(Mem *pMem){
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( (pMem->flags & MEM_Null)==0
|
|
|
|
|| pMem->db==0 || pMem->db->mallocFailed );
|
|
|
|
if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
testcase( pMem->flags & MEM_Int );
|
|
|
|
testcase( pMem->flags & MEM_Real );
|
|
|
|
testcase( pMem->flags & MEM_IntReal );
|
2022-11-28 20:54:48 +00:00
|
|
|
return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
|
|
|
testcase( pMem->flags & MEM_Str );
|
|
|
|
testcase( pMem->flags & MEM_Blob );
|
|
|
|
return computeNumericType(pMem);
|
2021-05-14 09:07:09 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/*
|
|
|
|
** Write a nice string representation of the contents of cell pMem
|
|
|
|
** into buffer zBuf, length nBuf.
|
|
|
|
*/
|
|
|
|
void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
|
|
|
|
int f = pMem->flags;
|
|
|
|
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
|
|
if( f&MEM_Blob ){
|
|
|
|
int i;
|
|
|
|
char c;
|
|
|
|
if( f & MEM_Dyn ){
|
|
|
|
c = 'z';
|
|
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
|
|
}else if( f & MEM_Static ){
|
|
|
|
c = 't';
|
|
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
|
|
}else if( f & MEM_Ephem ){
|
|
|
|
c = 'e';
|
|
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
|
|
}else{
|
|
|
|
c = 's';
|
|
|
|
}
|
|
|
|
sqlite3_str_appendf(pStr, "%cx[", c);
|
|
|
|
for(i=0; i<25 && i<pMem->n; i++){
|
|
|
|
sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
|
|
|
|
}
|
|
|
|
sqlite3_str_appendf(pStr, "|");
|
|
|
|
for(i=0; i<25 && i<pMem->n; i++){
|
|
|
|
char z = pMem->z[i];
|
|
|
|
sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
|
|
|
|
}
|
|
|
|
sqlite3_str_appendf(pStr,"]");
|
|
|
|
if( f & MEM_Zero ){
|
|
|
|
sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
|
|
|
|
}
|
|
|
|
}else if( f & MEM_Str ){
|
|
|
|
int j;
|
|
|
|
u8 c;
|
|
|
|
if( f & MEM_Dyn ){
|
|
|
|
c = 'z';
|
|
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
|
|
}else if( f & MEM_Static ){
|
|
|
|
c = 't';
|
|
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
|
|
}else if( f & MEM_Ephem ){
|
|
|
|
c = 'e';
|
|
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
|
|
}else{
|
|
|
|
c = 's';
|
|
|
|
}
|
|
|
|
sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
|
|
|
|
for(j=0; j<25 && j<pMem->n; j++){
|
|
|
|
c = pMem->z[j];
|
|
|
|
sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
|
|
|
|
}
|
|
|
|
sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/*
|
|
|
|
** Print the value of a register for tracing purposes:
|
|
|
|
*/
|
|
|
|
static void memTracePrint(Mem *p){
|
|
|
|
if( p->flags & MEM_Undefined ){
|
|
|
|
printf(" undefined");
|
|
|
|
}else if( p->flags & MEM_Null ){
|
|
|
|
printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
|
|
|
|
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
|
|
printf(" si:%lld", p->u.i);
|
|
|
|
}else if( (p->flags & (MEM_IntReal))!=0 ){
|
|
|
|
printf(" ir:%lld", p->u.i);
|
|
|
|
}else if( p->flags & MEM_Int ){
|
|
|
|
printf(" i:%lld", p->u.i);
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
|
|
}else if( p->flags & MEM_Real ){
|
|
|
|
printf(" r:%.17g", p->u.r);
|
|
|
|
#endif
|
|
|
|
}else if( sqlite3VdbeMemIsRowSet(p) ){
|
|
|
|
printf(" (rowset)");
|
|
|
|
}else{
|
|
|
|
StrAccum acc;
|
|
|
|
char zBuf[1000];
|
|
|
|
sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
|
|
|
|
sqlite3VdbeMemPrettyPrint(p, &acc);
|
|
|
|
printf(" %s", sqlite3StrAccumFinish(&acc));
|
|
|
|
}
|
|
|
|
if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
|
|
|
|
}
|
|
|
|
static void registerTrace(int iReg, Mem *p){
|
|
|
|
printf("R[%d] = ", iReg);
|
|
|
|
memTracePrint(p);
|
|
|
|
if( p->pScopyFrom ){
|
|
|
|
printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
sqlite3VdbeCheckMemInvariants(p);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
/**/ void sqlite3PrintMem(Mem *pMem){
|
|
|
|
memTracePrint(pMem);
|
|
|
|
printf("\n");
|
|
|
|
fflush(stdout);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/*
|
|
|
|
** Show the values of all registers in the virtual machine. Used for
|
|
|
|
** interactive debugging.
|
|
|
|
*/
|
|
|
|
void sqlite3VdbeRegisterDump(Vdbe *v){
|
|
|
|
int i;
|
|
|
|
for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
|
|
|
|
#else
|
|
|
|
# define REGISTER_TRACE(R,M)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/*
|
|
|
|
** hwtime.h contains inline assembler code for implementing
|
2021-05-14 09:07:09 +00:00
|
|
|
** high-performance timing routines.
|
|
|
|
*/
|
2021-05-14 17:18:28 +00:00
|
|
|
#include "third_party/sqlite3/hwtime.inc"
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
/*
|
|
|
|
** This function is only called from within an assert() expression. It
|
|
|
|
** checks that the sqlite3.nTransaction variable is correctly set to
|
2022-07-22 04:46:07 +00:00
|
|
|
** the number of non-transaction savepoints currently in the
|
2021-05-14 09:07:09 +00:00
|
|
|
** linked list starting at sqlite3.pSavepoint.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Usage:
|
|
|
|
**
|
|
|
|
** assert( checkSavepointCount(db) );
|
|
|
|
*/
|
|
|
|
static int checkSavepointCount(sqlite3 *db){
|
|
|
|
int n = 0;
|
|
|
|
Savepoint *p;
|
|
|
|
for(p=db->pSavepoint; p; p=p->pNext) n++;
|
|
|
|
assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the register of pOp->p2 after first preparing it to be
|
|
|
|
** overwritten with an integer value.
|
|
|
|
*/
|
|
|
|
static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
pOut->flags = MEM_Int;
|
|
|
|
return pOut;
|
|
|
|
}
|
|
|
|
static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
|
|
|
|
Mem *pOut;
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pOut = &p->aMem[pOp->p2];
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
|
|
|
|
return out2PrereleaseWithClear(pOut);
|
|
|
|
}else{
|
|
|
|
pOut->flags = MEM_Int;
|
|
|
|
return pOut;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/*
|
|
|
|
** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
|
|
|
|
** with pOp->p3. Return the hash.
|
|
|
|
*/
|
|
|
|
static u64 filterHash(const Mem *aMem, const Op *pOp){
|
|
|
|
int i, mx;
|
|
|
|
u64 h = 0;
|
|
|
|
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
|
|
|
|
const Mem *p = &aMem[i];
|
|
|
|
if( p->flags & (MEM_Int|MEM_IntReal) ){
|
|
|
|
h += p->u.i;
|
|
|
|
}else if( p->flags & MEM_Real ){
|
|
|
|
h += sqlite3VdbeIntValue(p);
|
|
|
|
}else if( p->flags & (MEM_Str|MEM_Blob) ){
|
|
|
|
h += p->n;
|
|
|
|
if( p->flags & MEM_Zero ) h += p->u.nZero;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the symbolic name for the data type of a pMem
|
|
|
|
*/
|
|
|
|
static const char *vdbeMemTypeName(Mem *pMem){
|
|
|
|
static const char *azTypes[] = {
|
|
|
|
/* SQLITE_INTEGER */ "INT",
|
|
|
|
/* SQLITE_FLOAT */ "REAL",
|
|
|
|
/* SQLITE_TEXT */ "TEXT",
|
|
|
|
/* SQLITE_BLOB */ "BLOB",
|
|
|
|
/* SQLITE_NULL */ "NULL"
|
|
|
|
};
|
|
|
|
return azTypes[sqlite3_value_type(pMem)-1];
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
** Execute as much of a VDBE program as we can.
|
2022-07-22 04:46:07 +00:00
|
|
|
** This is the core of sqlite3_step().
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
int sqlite3VdbeExec(
|
|
|
|
Vdbe *p /* The VDBE */
|
|
|
|
){
|
|
|
|
Op *aOp = p->aOp; /* Copy of p->aOp */
|
|
|
|
Op *pOp = aOp; /* Current operation */
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
|
|
|
Op *pOrigOp; /* Value of pOp at the top of the loop */
|
|
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
|
|
|
|
#endif
|
|
|
|
int rc = SQLITE_OK; /* Value to return */
|
|
|
|
sqlite3 *db = p->db; /* The database */
|
|
|
|
u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
|
|
|
|
u8 encoding = ENC(db); /* The database encoding */
|
|
|
|
int iCompare = 0; /* Result of last comparison */
|
|
|
|
u64 nVmStep = 0; /* Number of virtual machine steps */
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
|
|
u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
|
|
|
|
#endif
|
|
|
|
Mem *aMem = p->aMem; /* Copy of p->aMem */
|
|
|
|
Mem *pIn1 = 0; /* 1st input operand */
|
|
|
|
Mem *pIn2 = 0; /* 2nd input operand */
|
|
|
|
Mem *pIn3 = 0; /* 3rd input operand */
|
|
|
|
Mem *pOut = 0; /* Output operand */
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
u64 start; /* CPU clock count at start of opcode */
|
|
|
|
#endif
|
|
|
|
/*** INSERT STACK UNION HERE ***/
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeEnter(p);
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
|
|
if( db->xProgress ){
|
|
|
|
u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
|
|
|
|
assert( 0 < db->nProgressOps );
|
|
|
|
nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
|
|
|
|
}else{
|
|
|
|
nProgressLimit = LARGEST_UINT64;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( p->rc==SQLITE_NOMEM ){
|
|
|
|
/* This happens if a malloc() inside a call to sqlite3_column_text() or
|
|
|
|
** sqlite3_column_text16() failed. */
|
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
|
|
|
|
testcase( p->rc!=SQLITE_OK );
|
|
|
|
p->rc = SQLITE_OK;
|
|
|
|
assert( p->bIsReader || p->readOnly!=0 );
|
|
|
|
p->iCurrentTime = 0;
|
|
|
|
assert( p->explain==0 );
|
|
|
|
p->pResultSet = 0;
|
|
|
|
db->busyHandler.nBusy = 0;
|
|
|
|
if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
|
|
|
|
sqlite3VdbeIOTraceSql(p);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
sqlite3BeginBenignMalloc();
|
|
|
|
if( p->pc==0
|
|
|
|
&& (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
|
|
|
|
){
|
|
|
|
int i;
|
|
|
|
int once = 1;
|
|
|
|
sqlite3VdbePrintSql(p);
|
|
|
|
if( p->db->flags & SQLITE_VdbeListing ){
|
|
|
|
printf("VDBE Program Listing:\n");
|
|
|
|
for(i=0; i<p->nOp; i++){
|
|
|
|
sqlite3VdbePrintOp(stdout, i, &aOp[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( p->db->flags & SQLITE_VdbeEQP ){
|
|
|
|
for(i=0; i<p->nOp; i++){
|
|
|
|
if( aOp[i].opcode==OP_Explain ){
|
|
|
|
if( once ) printf("VDBE Query Plan:\n");
|
|
|
|
printf("%s\n", aOp[i].p4.z);
|
|
|
|
once = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
|
|
|
|
}
|
|
|
|
sqlite3EndBenignMalloc();
|
|
|
|
#endif
|
|
|
|
for(pOp=&aOp[p->pc]; 1; pOp++){
|
|
|
|
/* Errors are detected by individual opcodes, with an immediate
|
|
|
|
** jumps to abort_due_to_error. */
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
|
|
|
|
assert( pOp>=aOp && pOp<&aOp[p->nOp]);
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
|
|
|
|
#endif
|
|
|
|
nVmStep++;
|
|
|
|
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
|
|
|
|
if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Only allow tracing if SQLITE_DEBUG is defined.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags & SQLITE_VdbeTrace ){
|
|
|
|
sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
|
|
|
|
test_trace_breakpoint((int)(pOp - aOp),pOp,p);
|
|
|
|
}
|
|
|
|
#endif
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens
|
|
|
|
** if we have a special test build.
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
if( sqlite3_interrupt_count>0 ){
|
|
|
|
sqlite3_interrupt_count--;
|
|
|
|
if( sqlite3_interrupt_count==0 ){
|
|
|
|
sqlite3_interrupt(db);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Sanity checking on other operands */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
{
|
|
|
|
u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
|
|
|
|
if( (opProperty & OPFLG_IN1)!=0 ){
|
|
|
|
assert( pOp->p1>0 );
|
|
|
|
assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( memIsValid(&aMem[pOp->p1]) );
|
|
|
|
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
|
|
|
|
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
|
|
|
|
}
|
|
|
|
if( (opProperty & OPFLG_IN2)!=0 ){
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( memIsValid(&aMem[pOp->p2]) );
|
|
|
|
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
|
|
|
|
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
|
|
|
|
}
|
|
|
|
if( (opProperty & OPFLG_IN3)!=0 ){
|
|
|
|
assert( pOp->p3>0 );
|
|
|
|
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( memIsValid(&aMem[pOp->p3]) );
|
|
|
|
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
|
|
|
|
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
|
|
|
|
}
|
|
|
|
if( (opProperty & OPFLG_OUT2)!=0 ){
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
|
|
|
|
memAboutToChange(p, &aMem[pOp->p2]);
|
|
|
|
}
|
|
|
|
if( (opProperty & OPFLG_OUT3)!=0 ){
|
|
|
|
assert( pOp->p3>0 );
|
|
|
|
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
memAboutToChange(p, &aMem[pOp->p3]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
|
|
|
pOrigOp = pOp;
|
|
|
|
#endif
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
switch( pOp->opcode ){
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
** What follows is a massive switch statement where each case implements a
|
|
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
|
|
** we transition back to normal indentation.
|
|
|
|
**
|
|
|
|
** The formatting of each case is important. The makefile for SQLite
|
|
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
|
|
** will be filled with #defines that give unique integer values to each
|
|
|
|
** opcode and the opcodes.c file is filled with an array of strings where
|
|
|
|
** each string is the symbolic name for the corresponding opcode. If the
|
|
|
|
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
|
|
** that comment is used to determine the particular value of the opcode.
|
|
|
|
**
|
|
|
|
** Other keywords in the comment that follows each case are used to
|
|
|
|
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
|
|
|
|
** Keywords include: in1, in2, in3, out2, out3. See
|
|
|
|
** the mkopcodeh.awk script for additional information.
|
|
|
|
**
|
|
|
|
** Documentation about VDBE opcodes is generated by scanning this file
|
|
|
|
** for lines of that contain "Opcode:". That line and all subsequent
|
|
|
|
** comment lines are used in the generation of the opcode.html documentation
|
|
|
|
** file.
|
|
|
|
**
|
|
|
|
** SUMMARY:
|
|
|
|
**
|
|
|
|
** Formatting is important to scripts that scan this file.
|
|
|
|
** Do not deviate from the formatting style currently in use.
|
|
|
|
**
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/* Opcode: Goto * P2 * * *
|
|
|
|
**
|
|
|
|
** An unconditional jump to address P2.
|
2022-07-22 04:46:07 +00:00
|
|
|
** The next instruction executed will be
|
2021-05-14 09:07:09 +00:00
|
|
|
** the one at index P2 from the beginning of
|
|
|
|
** the program.
|
|
|
|
**
|
|
|
|
** The P1 parameter is not actually used by this opcode. However, it
|
|
|
|
** is sometimes set to 1 instead of 0 as a hint to the command-line shell
|
|
|
|
** that this Goto is the bottom of a loop and that the lines from P2 down
|
|
|
|
** to the current line should be indented for EXPLAIN output.
|
|
|
|
*/
|
|
|
|
case OP_Goto: { /* jump */
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* In debuggging mode, when the p5 flags is set on an OP_Goto, that
|
|
|
|
** means we should really jump back to the preceeding OP_ReleaseReg
|
|
|
|
** instruction. */
|
|
|
|
if( pOp->p5 ){
|
|
|
|
assert( pOp->p2 < (int)(pOp - aOp) );
|
|
|
|
assert( pOp->p2 > 1 );
|
|
|
|
pOp = &aOp[pOp->p2 - 2];
|
|
|
|
assert( pOp[1].opcode==OP_ReleaseReg );
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
jump_to_p2_and_check_for_interrupt:
|
|
|
|
pOp = &aOp[pOp->p2 - 1];
|
|
|
|
|
|
|
|
/* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
|
|
|
|
** OP_VNext, or OP_SorterNext) all jump here upon
|
|
|
|
** completion. Check to see if sqlite3_interrupt() has been called
|
2022-07-22 04:46:07 +00:00
|
|
|
** or if the progress callback needs to be invoked.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** This code uses unstructured "goto" statements and does not look clean.
|
|
|
|
** But that is not due to sloppy coding habits. The code is written this
|
|
|
|
** way for performance, to avoid having to run the interrupt and progress
|
|
|
|
** checks on every opcode. This helps sqlite3_step() to run about 1.5%
|
|
|
|
** faster according to "valgrind --tool=cachegrind" */
|
|
|
|
check_for_interrupt:
|
|
|
|
if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
|
|
/* Call the progress callback if it is configured and the required number
|
|
|
|
** of VDBE ops have been executed (either since this invocation of
|
|
|
|
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
|
|
** If the progress callback returns non-zero, exit the virtual machine with
|
|
|
|
** a return code SQLITE_ABORT.
|
|
|
|
*/
|
|
|
|
while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
|
|
|
|
assert( db->nProgressOps!=0 );
|
|
|
|
nProgressLimit += db->nProgressOps;
|
|
|
|
if( db->xProgress(db->pProgressArg) ){
|
|
|
|
nProgressLimit = LARGEST_UINT64;
|
|
|
|
rc = SQLITE_INTERRUPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Gosub P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Write the current address onto register P1
|
|
|
|
** and then jump to address P2.
|
|
|
|
*/
|
|
|
|
case OP_Gosub: { /* jump */
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( VdbeMemDynamic(pIn1)==0 );
|
|
|
|
memAboutToChange(p, pIn1);
|
|
|
|
pIn1->flags = MEM_Int;
|
|
|
|
pIn1->u.i = (int)(pOp-aOp);
|
|
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
2022-11-28 20:54:48 +00:00
|
|
|
goto jump_to_p2_and_check_for_interrupt;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: Return P1 P2 P3 * *
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** Jump to the address stored in register P1. If P1 is a return address
|
|
|
|
** register, then this accomplishes a return from a subroutine.
|
|
|
|
**
|
|
|
|
** If P3 is 1, then the jump is only taken if register P1 holds an integer
|
|
|
|
** values, otherwise execution falls through to the next opcode, and the
|
|
|
|
** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
|
|
|
|
** integer or else an assert() is raised. P3 should be set to 1 when
|
|
|
|
** this opcode is used in combination with OP_BeginSubrtn, and set to 0
|
|
|
|
** otherwise.
|
|
|
|
**
|
|
|
|
** The value in register P1 is unchanged by this opcode.
|
|
|
|
**
|
|
|
|
** P2 is not used by the byte-code engine. However, if P2 is positive
|
|
|
|
** and also less than the current address, then the "EXPLAIN" output
|
|
|
|
** formatter in the CLI will indent all opcodes from the P2 opcode up
|
|
|
|
** to be not including the current Return. P2 should be the first opcode
|
|
|
|
** in the subroutine from which this opcode is returning. Thus the P2
|
|
|
|
** value is a byte-code indentation hint. See tag-20220407a in
|
|
|
|
** wherecode.c and shell.c.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Return: { /* in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pIn1->flags & MEM_Int ){
|
|
|
|
if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
|
|
|
|
pOp = &aOp[pIn1->u.i];
|
|
|
|
}else if( ALWAYS(pOp->p3) ){
|
|
|
|
VdbeBranchTaken(0, 2);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: InitCoroutine P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Set up register P1 so that it will Yield to the coroutine
|
|
|
|
** located at address P3.
|
|
|
|
**
|
|
|
|
** If P2!=0 then the coroutine implementation immediately follows
|
|
|
|
** this opcode. So jump over the coroutine implementation to
|
|
|
|
** address P2.
|
|
|
|
**
|
|
|
|
** See also: EndCoroutine
|
|
|
|
*/
|
|
|
|
case OP_InitCoroutine: { /* jump */
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( pOp->p2>=0 && pOp->p2<p->nOp );
|
|
|
|
assert( pOp->p3>=0 && pOp->p3<p->nOp );
|
|
|
|
pOut = &aMem[pOp->p1];
|
|
|
|
assert( !VdbeMemDynamic(pOut) );
|
|
|
|
pOut->u.i = pOp->p3 - 1;
|
|
|
|
pOut->flags = MEM_Int;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pOp->p2==0 ) break;
|
|
|
|
|
|
|
|
/* Most jump operations do a goto to this spot in order to update
|
|
|
|
** the pOp pointer. */
|
|
|
|
jump_to_p2:
|
|
|
|
assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
|
|
|
|
assert( pOp->p2<p->nOp ); /* Jumps must be in range */
|
|
|
|
pOp = &aOp[pOp->p2 - 1];
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: EndCoroutine P1 * * * *
|
|
|
|
**
|
|
|
|
** The instruction at the address in register P1 is a Yield.
|
|
|
|
** Jump to the P2 parameter of that Yield.
|
|
|
|
** After the jump, register P1 becomes undefined.
|
|
|
|
**
|
|
|
|
** See also: InitCoroutine
|
|
|
|
*/
|
|
|
|
case OP_EndCoroutine: { /* in1 */
|
|
|
|
VdbeOp *pCaller;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pIn1->flags==MEM_Int );
|
|
|
|
assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
|
|
|
|
pCaller = &aOp[pIn1->u.i];
|
|
|
|
assert( pCaller->opcode==OP_Yield );
|
|
|
|
assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
|
|
|
|
pOp = &aOp[pCaller->p2 - 1];
|
|
|
|
pIn1->flags = MEM_Undefined;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Yield P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Swap the program counter with the value in register P1. This
|
|
|
|
** has the effect of yielding to a coroutine.
|
|
|
|
**
|
|
|
|
** If the coroutine that is launched by this instruction ends with
|
|
|
|
** Yield or Return then continue to the next instruction. But if
|
|
|
|
** the coroutine launched by this instruction ends with
|
|
|
|
** EndCoroutine, then jump to P2 rather than continuing with the
|
|
|
|
** next instruction.
|
|
|
|
**
|
|
|
|
** See also: InitCoroutine
|
|
|
|
*/
|
|
|
|
case OP_Yield: { /* in1, jump */
|
|
|
|
int pcDest;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( VdbeMemDynamic(pIn1)==0 );
|
|
|
|
pIn1->flags = MEM_Int;
|
|
|
|
pcDest = (int)pIn1->u.i;
|
|
|
|
pIn1->u.i = (int)(pOp - aOp);
|
|
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
|
|
pOp = &aOp[pcDest];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: HaltIfNull P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: if r[P3]=null halt
|
|
|
|
**
|
|
|
|
** Check the value in register P3. If it is NULL then Halt using
|
|
|
|
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
|
|
|
|
** value in register P3 is not NULL, then this routine is a no-op.
|
|
|
|
** The P5 parameter should be 1.
|
|
|
|
*/
|
|
|
|
case OP_HaltIfNull: { /* in3 */
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
|
|
|
|
#endif
|
|
|
|
if( (pIn3->flags & MEM_Null)==0 ) break;
|
|
|
|
/* Fall through into OP_Halt */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Halt P1 P2 * P4 P5
|
|
|
|
**
|
|
|
|
** Exit immediately. All open cursors, etc are closed
|
|
|
|
** automatically.
|
|
|
|
**
|
|
|
|
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
|
|
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
|
|
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
|
|
** whether or not to rollback the current transaction. Do not rollback
|
|
|
|
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
|
|
** then back out all changes that have occurred during this execution of the
|
2022-07-22 04:46:07 +00:00
|
|
|
** VDBE, but do not rollback the transaction.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** If P4 is not null then it is an error message string.
|
|
|
|
**
|
|
|
|
** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
|
|
|
|
**
|
|
|
|
** 0: (no change)
|
|
|
|
** 1: NOT NULL contraint failed: P4
|
|
|
|
** 2: UNIQUE constraint failed: P4
|
|
|
|
** 3: CHECK constraint failed: P4
|
|
|
|
** 4: FOREIGN KEY constraint failed: P4
|
|
|
|
**
|
|
|
|
** If P5 is not zero and P4 is NULL, then everything after the ":" is
|
|
|
|
** omitted.
|
|
|
|
**
|
|
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
|
|
** every program. So a jump past the last instruction of the program
|
|
|
|
** is the same as executing Halt.
|
|
|
|
*/
|
|
|
|
case OP_Halt: {
|
|
|
|
VdbeFrame *pFrame;
|
|
|
|
int pcx;
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
|
|
|
|
#endif
|
2022-11-28 20:54:48 +00:00
|
|
|
if( p->pFrame && pOp->p1==SQLITE_OK ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Halt the sub-program. Return control to the parent frame. */
|
|
|
|
pFrame = p->pFrame;
|
|
|
|
p->pFrame = pFrame->pParent;
|
|
|
|
p->nFrame--;
|
|
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
|
|
pcx = sqlite3VdbeFrameRestore(pFrame);
|
|
|
|
if( pOp->p2==OE_Ignore ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* Instruction pcx is the OP_Program that invoked the sub-program
|
2021-05-14 09:07:09 +00:00
|
|
|
** currently being halted. If the p2 instruction of this OP_Halt
|
|
|
|
** instruction is set to OE_Ignore, then the sub-program is throwing
|
|
|
|
** an IGNORE exception. In this case jump to the address specified
|
|
|
|
** as the p2 of the calling OP_Program. */
|
|
|
|
pcx = p->aOp[pcx].p2-1;
|
|
|
|
}
|
|
|
|
aOp = p->aOp;
|
|
|
|
aMem = p->aMem;
|
|
|
|
pOp = &aOp[pcx];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
p->rc = pOp->p1;
|
|
|
|
p->errorAction = (u8)pOp->p2;
|
|
|
|
assert( pOp->p5<=4 );
|
|
|
|
if( p->rc ){
|
|
|
|
if( pOp->p5 ){
|
|
|
|
static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
|
|
|
|
"FOREIGN KEY" };
|
|
|
|
testcase( pOp->p5==1 );
|
|
|
|
testcase( pOp->p5==2 );
|
|
|
|
testcase( pOp->p5==3 );
|
|
|
|
testcase( pOp->p5==4 );
|
|
|
|
sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
|
|
|
|
if( pOp->p4.z ){
|
|
|
|
p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeError(p, "%s", pOp->p4.z);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
pcx = (int)(pOp - aOp);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
|
|
|
|
}
|
|
|
|
rc = sqlite3VdbeHalt(p);
|
|
|
|
assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
|
|
|
|
if( rc==SQLITE_BUSY ){
|
|
|
|
p->rc = SQLITE_BUSY;
|
|
|
|
}else{
|
|
|
|
assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
|
|
|
|
assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
|
|
|
|
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
|
|
}
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Integer P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]=P1
|
|
|
|
**
|
|
|
|
** The 32-bit integer value P1 is written into register P2.
|
|
|
|
*/
|
|
|
|
case OP_Integer: { /* out2 */
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = pOp->p1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Int64 * P2 * P4 *
|
|
|
|
** Synopsis: r[P2]=P4
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a 64-bit integer value.
|
|
|
|
** Write that value into register P2.
|
|
|
|
*/
|
|
|
|
case OP_Int64: { /* out2 */
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
assert( pOp->p4.pI64!=0 );
|
|
|
|
pOut->u.i = *pOp->p4.pI64;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
|
|
/* Opcode: Real * P2 * P4 *
|
|
|
|
** Synopsis: r[P2]=P4
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a 64-bit floating point value.
|
|
|
|
** Write that value into register P2.
|
|
|
|
*/
|
|
|
|
case OP_Real: { /* same as TK_FLOAT, out2 */
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->flags = MEM_Real;
|
|
|
|
assert( !sqlite3IsNaN(*pOp->p4.pReal) );
|
|
|
|
pOut->u.r = *pOp->p4.pReal;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Opcode: String8 * P2 * P4 *
|
|
|
|
** Synopsis: r[P2]='P4'
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
|
2021-05-14 09:07:09 +00:00
|
|
|
** into a String opcode before it is executed for the first time. During
|
|
|
|
** this transformation, the length of string P4 is computed and stored
|
|
|
|
** as the P1 parameter.
|
|
|
|
*/
|
|
|
|
case OP_String8: { /* same as TK_STRING, out2 */
|
|
|
|
assert( pOp->p4.z!=0 );
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOp->p1 = sqlite3Strlen30(pOp->p4.z);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
|
|
if( encoding!=SQLITE_UTF8 ){
|
|
|
|
rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
|
|
assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
|
|
|
|
if( rc ) goto too_big;
|
|
|
|
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
|
|
|
|
assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
|
|
|
|
assert( VdbeMemDynamic(pOut)==0 );
|
|
|
|
pOut->szMalloc = 0;
|
|
|
|
pOut->flags |= MEM_Static;
|
|
|
|
if( pOp->p4type==P4_DYNAMIC ){
|
|
|
|
sqlite3DbFree(db, pOp->p4.z);
|
|
|
|
}
|
|
|
|
pOp->p4type = P4_DYNAMIC;
|
|
|
|
pOp->p4.z = pOut->z;
|
|
|
|
pOp->p1 = pOut->n;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
|
|
goto too_big;
|
|
|
|
}
|
|
|
|
pOp->opcode = OP_String;
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
/* Fall through to the next case, OP_String */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Opcode: String P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: r[P2]='P4' (len=P1)
|
|
|
|
**
|
|
|
|
** The string value P4 of length P1 (bytes) is stored in register P2.
|
|
|
|
**
|
|
|
|
** If P3 is not zero and the content of register P3 is equal to P5, then
|
|
|
|
** the datatype of the register P2 is converted to BLOB. The content is
|
|
|
|
** the same sequence of bytes, it is merely interpreted as a BLOB instead
|
|
|
|
** of a string, as if it had been CAST. In other words:
|
|
|
|
**
|
|
|
|
** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
|
|
|
|
*/
|
|
|
|
case OP_String: { /* out2 */
|
|
|
|
assert( pOp->p4.z!=0 );
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
|
|
pOut->z = pOp->p4.z;
|
|
|
|
pOut->n = pOp->p1;
|
|
|
|
pOut->enc = encoding;
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
|
|
|
|
if( pOp->p3>0 ){
|
|
|
|
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
assert( pIn3->flags & MEM_Int );
|
|
|
|
if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: BeginSubrtn * P2 * * *
|
|
|
|
** Synopsis: r[P2]=NULL
|
|
|
|
**
|
|
|
|
** Mark the beginning of a subroutine that can be entered in-line
|
|
|
|
** or that can be called using OP_Gosub. The subroutine should
|
|
|
|
** be terminated by an OP_Return instruction that has a P1 operand that
|
|
|
|
** is the same as the P2 operand to this opcode and that has P3 set to 1.
|
|
|
|
** If the subroutine is entered in-line, then the OP_Return will simply
|
|
|
|
** fall through. But if the subroutine is entered using OP_Gosub, then
|
|
|
|
** the OP_Return will jump back to the first instruction after the OP_Gosub.
|
|
|
|
**
|
|
|
|
** This routine works by loading a NULL into the P2 register. When the
|
|
|
|
** return address register contains a NULL, the OP_Return instruction is
|
|
|
|
** a no-op that simply falls through to the next instruction (assuming that
|
|
|
|
** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
|
|
|
|
** entered in-line, then the OP_Return will cause in-line execution to
|
|
|
|
** continue. But if the subroutine is entered via OP_Gosub, then the
|
|
|
|
** OP_Return will cause a return to the address following the OP_Gosub.
|
|
|
|
**
|
|
|
|
** This opcode is identical to OP_Null. It has a different name
|
|
|
|
** only to make the byte code easier to read and verify.
|
|
|
|
*/
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Opcode: Null P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2..P3]=NULL
|
|
|
|
**
|
|
|
|
** Write a NULL into registers P2. If P3 greater than P2, then also write
|
|
|
|
** NULL into register P3 and every register in between P2 and P3. If P3
|
|
|
|
** is less than P2 (typically P3 is zero) then only register P2 is
|
|
|
|
** set to NULL.
|
|
|
|
**
|
|
|
|
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
|
|
|
|
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
|
|
|
|
** OP_Ne or OP_Eq.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
case OP_BeginSubrtn:
|
2021-05-14 09:07:09 +00:00
|
|
|
case OP_Null: { /* out2 */
|
|
|
|
int cnt;
|
|
|
|
u16 nullFlag;
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
cnt = pOp->p3-pOp->p2;
|
|
|
|
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
|
|
|
|
pOut->n = 0;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pOut->uTemp = 0;
|
|
|
|
#endif
|
|
|
|
while( cnt>0 ){
|
|
|
|
pOut++;
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
pOut->flags = nullFlag;
|
|
|
|
pOut->n = 0;
|
|
|
|
cnt--;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SoftNull P1 * * * *
|
|
|
|
** Synopsis: r[P1]=NULL
|
|
|
|
**
|
|
|
|
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
|
|
|
|
** instruction, but do not free any string or blob memory associated with
|
|
|
|
** the register, so that if the value was a string or blob that was
|
|
|
|
** previously copied using OP_SCopy, the copies will continue to be valid.
|
|
|
|
*/
|
|
|
|
case OP_SoftNull: {
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pOut = &aMem[pOp->p1];
|
|
|
|
pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Blob P1 P2 * P4 *
|
|
|
|
** Synopsis: r[P2]=P4 (len=P1)
|
|
|
|
**
|
|
|
|
** P4 points to a blob of data P1 bytes long. Store this
|
2022-11-28 20:54:48 +00:00
|
|
|
** blob in register P2. If P4 is a NULL pointer, then construct
|
|
|
|
** a zero-filled blob that is P1 bytes long in P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Blob: { /* out2 */
|
|
|
|
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pOp->p4.z==0 ){
|
|
|
|
sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
|
|
|
|
if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
pOut->enc = encoding;
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Variable P1 P2 * P4 *
|
|
|
|
** Synopsis: r[P2]=parameter(P1,P4)
|
|
|
|
**
|
|
|
|
** Transfer the values of bound parameter P1 into register P2
|
|
|
|
**
|
|
|
|
** If the parameter is named, then its name appears in P4.
|
|
|
|
** The P4 value is used by sqlite3_bind_parameter_name().
|
|
|
|
*/
|
|
|
|
case OP_Variable: { /* out2 */
|
|
|
|
Mem *pVar; /* Value being transferred */
|
|
|
|
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
|
|
|
assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
|
|
|
|
pVar = &p->aVar[pOp->p1 - 1];
|
|
|
|
if( sqlite3VdbeMemTooBig(pVar) ){
|
|
|
|
goto too_big;
|
|
|
|
}
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
|
|
|
|
memcpy(pOut, pVar, MEMCELLSIZE);
|
|
|
|
pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
|
|
|
|
pOut->flags |= MEM_Static|MEM_FromBind;
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Move P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2@P3]=r[P1@P3]
|
|
|
|
**
|
|
|
|
** Move the P3 values in register P1..P1+P3-1 over into
|
|
|
|
** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
|
|
|
|
** left holding a NULL. It is an error for register ranges
|
|
|
|
** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
|
|
|
|
** for P3 to be less than 1.
|
|
|
|
*/
|
|
|
|
case OP_Move: {
|
|
|
|
int n; /* Number of registers left to copy */
|
|
|
|
int p1; /* Register to copy from */
|
|
|
|
int p2; /* Register to copy to */
|
|
|
|
|
|
|
|
n = pOp->p3;
|
|
|
|
p1 = pOp->p1;
|
|
|
|
p2 = pOp->p2;
|
|
|
|
assert( n>0 && p1>0 && p2>0 );
|
|
|
|
assert( p1+n<=p2 || p2+n<=p1 );
|
|
|
|
|
|
|
|
pIn1 = &aMem[p1];
|
|
|
|
pOut = &aMem[p2];
|
|
|
|
do{
|
|
|
|
assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
|
|
|
|
assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
|
|
|
|
assert( memIsValid(pIn1) );
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
sqlite3VdbeMemMove(pOut, pIn1);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pIn1->pScopyFrom = 0;
|
|
|
|
{ int i;
|
|
|
|
for(i=1; i<p->nMem; i++){
|
|
|
|
if( aMem[i].pScopyFrom==pIn1 ){
|
|
|
|
aMem[i].pScopyFrom = pOut;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
Deephemeralize(pOut);
|
|
|
|
REGISTER_TRACE(p2++, pOut);
|
|
|
|
pIn1++;
|
|
|
|
pOut++;
|
|
|
|
}while( --n );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: Copy P1 P2 P3 * P5
|
2021-05-14 09:07:09 +00:00
|
|
|
** Synopsis: r[P2@P3+1]=r[P1@P3+1]
|
|
|
|
**
|
|
|
|
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
|
|
|
|
** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
|
|
|
|
** be merged. The 0x0001 bit is used by the query planner and does not
|
|
|
|
** come into play during query execution.
|
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** This instruction makes a deep copy of the value. A duplicate
|
|
|
|
** is made of any string or blob constant. See also OP_SCopy.
|
|
|
|
*/
|
|
|
|
case OP_Copy: {
|
|
|
|
int n;
|
|
|
|
|
|
|
|
n = pOp->p3;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
assert( pOut!=pIn1 );
|
|
|
|
while( 1 ){
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
|
|
Deephemeralize(pOut);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
|
|
|
|
pOut->flags &= ~MEM_Subtype;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pOut->pScopyFrom = 0;
|
|
|
|
#endif
|
|
|
|
REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
|
|
|
|
if( (n--)==0 ) break;
|
|
|
|
pOut++;
|
|
|
|
pIn1++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SCopy P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]=r[P1]
|
|
|
|
**
|
|
|
|
** Make a shallow copy of register P1 into register P2.
|
|
|
|
**
|
|
|
|
** This instruction makes a shallow copy of the value. If the value
|
|
|
|
** is a string or blob, then the copy is only a pointer to the
|
|
|
|
** original and hence if the original changes so will the copy.
|
|
|
|
** Worse, if the original is deallocated, the copy becomes invalid.
|
|
|
|
** Thus the program must guarantee that the original will not change
|
|
|
|
** during the lifetime of the copy. Use OP_Copy to make a complete
|
|
|
|
** copy.
|
|
|
|
*/
|
|
|
|
case OP_SCopy: { /* out2 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
assert( pOut!=pIn1 );
|
|
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pOut->pScopyFrom = pIn1;
|
|
|
|
pOut->mScopyFlags = pIn1->flags;
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IntCopy P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]=r[P1]
|
|
|
|
**
|
|
|
|
** Transfer the integer value held in register P1 into register P2.
|
|
|
|
**
|
|
|
|
** This is an optimized version of SCopy that works only for integer
|
|
|
|
** values.
|
|
|
|
*/
|
|
|
|
case OP_IntCopy: { /* out2 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( (pIn1->flags & MEM_Int)!=0 );
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: FkCheck * * * * *
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
|
|
|
|
** foreign key constraint violations. If there are no foreign key
|
|
|
|
** constraint violations, this is a no-op.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** FK constraint violations are also checked when the prepared statement
|
|
|
|
** exits. This opcode is used to raise foreign key constraint errors prior
|
|
|
|
** to returning results such as a row change count or the result of a
|
|
|
|
** RETURNING clause.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
case OP_FkCheck: {
|
2021-05-14 09:07:09 +00:00
|
|
|
if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
break;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: ResultRow P1 P2 * * *
|
|
|
|
** Synopsis: output=r[P1@P2]
|
|
|
|
**
|
|
|
|
** The registers P1 through P1+P2-1 contain a single row of
|
|
|
|
** results. This opcode causes the sqlite3_step() call to terminate
|
|
|
|
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
|
|
|
** structure to provide access to the r(P1)..r(P1+P2-1) values as
|
|
|
|
** the result row.
|
|
|
|
*/
|
|
|
|
case OP_ResultRow: {
|
|
|
|
assert( p->nResColumn==pOp->p2 );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pOp->p1>0 || CORRUPT_DB );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
|
|
|
|
p->cacheCtr = (p->cacheCtr + 2)|1;
|
2022-11-28 20:54:48 +00:00
|
|
|
p->pResultSet = &aMem[pOp->p1];
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
2022-11-28 20:54:48 +00:00
|
|
|
{
|
|
|
|
Mem *pMem = p->pResultSet;
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pOp->p2; i++){
|
|
|
|
assert( memIsValid(&pMem[i]) );
|
|
|
|
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
|
|
|
|
/* The registers in the result will not be used again when the
|
|
|
|
** prepared statement restarts. This is because sqlite3_column()
|
|
|
|
** APIs might have caused type conversions of made other changes to
|
|
|
|
** the register values. Therefore, we can go ahead and break any
|
|
|
|
** OP_SCopy dependencies. */
|
|
|
|
pMem[i].pScopyFrom = 0;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
if( db->mallocFailed ) goto no_mem;
|
|
|
|
if( db->mTrace & SQLITE_TRACE_ROW ){
|
|
|
|
db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
|
|
|
|
}
|
|
|
|
p->pc = (int)(pOp - aOp) + 1;
|
|
|
|
rc = SQLITE_ROW;
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Concat P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]+r[P1]
|
|
|
|
**
|
|
|
|
** Add the text in register P1 onto the end of the text in
|
|
|
|
** register P2 and store the result in register P3.
|
|
|
|
** If either the P1 or P2 text are NULL then store NULL in P3.
|
|
|
|
**
|
|
|
|
** P3 = P2 || P1
|
|
|
|
**
|
|
|
|
** It is illegal for P1 and P3 to be the same register. Sometimes,
|
|
|
|
** if P3 is the same register as P2, the implementation is able
|
|
|
|
** to avoid a memcpy().
|
|
|
|
*/
|
|
|
|
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
|
|
|
|
i64 nByte; /* Total size of the output string or blob */
|
|
|
|
u16 flags1; /* Initial flags for P1 */
|
|
|
|
u16 flags2; /* Initial flags for P2 */
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
testcase( pOut==pIn2 );
|
|
|
|
assert( pIn1!=pOut );
|
|
|
|
flags1 = pIn1->flags;
|
|
|
|
testcase( flags1 & MEM_Null );
|
|
|
|
testcase( pIn2->flags & MEM_Null );
|
|
|
|
if( (flags1 | pIn2->flags) & MEM_Null ){
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
|
|
|
|
if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
|
|
|
|
flags1 = pIn1->flags & ~MEM_Str;
|
|
|
|
}else if( (flags1 & MEM_Zero)!=0 ){
|
|
|
|
if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
|
|
|
|
flags1 = pIn1->flags & ~MEM_Str;
|
|
|
|
}
|
|
|
|
flags2 = pIn2->flags;
|
|
|
|
if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
|
|
|
|
if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
|
|
|
|
flags2 = pIn2->flags & ~MEM_Str;
|
|
|
|
}else if( (flags2 & MEM_Zero)!=0 ){
|
|
|
|
if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
|
|
|
|
flags2 = pIn2->flags & ~MEM_Str;
|
|
|
|
}
|
|
|
|
nByte = pIn1->n + pIn2->n;
|
|
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
|
|
goto too_big;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
MemSetTypeFlag(pOut, MEM_Str);
|
|
|
|
if( pOut!=pIn2 ){
|
|
|
|
memcpy(pOut->z, pIn2->z, pIn2->n);
|
|
|
|
assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
|
|
|
|
pIn2->flags = flags2;
|
|
|
|
}
|
|
|
|
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
|
|
|
|
assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
|
|
|
|
pIn1->flags = flags1;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( encoding>SQLITE_UTF8 ) nByte &= ~1;
|
2021-05-14 09:07:09 +00:00
|
|
|
pOut->z[nByte]=0;
|
|
|
|
pOut->z[nByte+1] = 0;
|
|
|
|
pOut->flags |= MEM_Term;
|
|
|
|
pOut->n = (int)nByte;
|
|
|
|
pOut->enc = encoding;
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Add P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P1]+r[P2]
|
|
|
|
**
|
|
|
|
** Add the value in register P1 to the value in register P2
|
|
|
|
** and store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: Multiply P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P1]*r[P2]
|
|
|
|
**
|
|
|
|
**
|
|
|
|
** Multiply the value in register P1 by the value in register P2
|
|
|
|
** and store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: Subtract P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]-r[P1]
|
|
|
|
**
|
|
|
|
** Subtract the value in register P1 from the value in register P2
|
|
|
|
** and store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: Divide P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]/r[P1]
|
|
|
|
**
|
|
|
|
** Divide the value in register P1 by the value in register P2
|
2022-07-22 04:46:07 +00:00
|
|
|
** and store the result in register P3 (P3=P2/P1). If the value in
|
|
|
|
** register P1 is zero, then the result is NULL. If either input is
|
2021-05-14 09:07:09 +00:00
|
|
|
** NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: Remainder P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]%r[P1]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Compute the remainder after integer register P2 is divided by
|
|
|
|
** register P1 and store the result in register P3.
|
2021-05-14 09:07:09 +00:00
|
|
|
** If the value in register P1 is zero the result is NULL.
|
|
|
|
** If either operand is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
|
|
|
|
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
|
|
|
|
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
|
|
|
|
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
|
|
|
|
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
|
|
|
|
u16 type1; /* Numeric type of left operand */
|
|
|
|
u16 type2; /* Numeric type of right operand */
|
|
|
|
i64 iA; /* Integer value of left operand */
|
|
|
|
i64 iB; /* Integer value of right operand */
|
|
|
|
double rA; /* Real value of left operand */
|
|
|
|
double rB; /* Real value of right operand */
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
type1 = pIn1->flags;
|
2021-05-14 09:07:09 +00:00
|
|
|
pIn2 = &aMem[pOp->p2];
|
2022-11-28 20:54:48 +00:00
|
|
|
type2 = pIn2->flags;
|
2021-05-14 09:07:09 +00:00
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
if( (type1 & type2 & MEM_Int)!=0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
int_math:
|
2021-05-14 09:07:09 +00:00
|
|
|
iA = pIn1->u.i;
|
|
|
|
iB = pIn2->u.i;
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
|
|
|
|
case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
|
|
|
|
case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
|
|
|
|
case OP_Divide: {
|
|
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
|
|
if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
|
|
|
|
iB /= iA;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
|
|
if( iA==-1 ) iA = 1;
|
|
|
|
iB %= iA;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pOut->u.i = iB;
|
|
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
2022-11-28 20:54:48 +00:00
|
|
|
}else if( ((type1 | type2) & MEM_Null)!=0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
goto arithmetic_result_is_null;
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
type1 = numericType(pIn1);
|
|
|
|
type2 = numericType(pIn2);
|
|
|
|
if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
|
2021-05-14 09:07:09 +00:00
|
|
|
fp_math:
|
|
|
|
rA = sqlite3VdbeRealValue(pIn1);
|
|
|
|
rB = sqlite3VdbeRealValue(pIn2);
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
case OP_Add: rB += rA; break;
|
|
|
|
case OP_Subtract: rB -= rA; break;
|
|
|
|
case OP_Multiply: rB *= rA; break;
|
|
|
|
case OP_Divide: {
|
|
|
|
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
|
|
|
if( rA==(double)0 ) goto arithmetic_result_is_null;
|
|
|
|
rB /= rA;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
iA = sqlite3VdbeIntValue(pIn1);
|
|
|
|
iB = sqlite3VdbeIntValue(pIn2);
|
|
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
|
|
if( iA==-1 ) iA = 1;
|
|
|
|
rB = (double)(iB % iA);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
|
|
pOut->u.i = rB;
|
|
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
|
|
#else
|
|
|
|
if( sqlite3IsNaN(rB) ){
|
|
|
|
goto arithmetic_result_is_null;
|
|
|
|
}
|
|
|
|
pOut->u.r = rB;
|
|
|
|
MemSetTypeFlag(pOut, MEM_Real);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
arithmetic_result_is_null:
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: CollSeq P1 * * P4
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a CollSeq object. If the next call to a user function
|
|
|
|
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
|
|
** be returned. This is used by the built-in min(), max() and nullif()
|
|
|
|
** functions.
|
|
|
|
**
|
|
|
|
** If P1 is not zero, then it is a register that a subsequent min() or
|
|
|
|
** max() aggregate will set to 1 if the current row is not the minimum or
|
|
|
|
** maximum. The P1 register is initialized to 0 by this instruction.
|
|
|
|
**
|
|
|
|
** The interface used by the implementation of the aforementioned functions
|
|
|
|
** to retrieve the collation sequence set by this opcode is not available
|
|
|
|
** publicly. Only built-in functions have access to this feature.
|
|
|
|
*/
|
|
|
|
case OP_CollSeq: {
|
|
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
|
|
if( pOp->p1 ){
|
|
|
|
sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: BitAnd P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P1]&r[P2]
|
|
|
|
**
|
|
|
|
** Take the bit-wise AND of the values in register P1 and P2 and
|
|
|
|
** store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: BitOr P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P1]|r[P2]
|
|
|
|
**
|
|
|
|
** Take the bit-wise OR of the values in register P1 and P2 and
|
|
|
|
** store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: ShiftLeft P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]<<r[P1]
|
|
|
|
**
|
|
|
|
** Shift the integer value in register P2 to the left by the
|
|
|
|
** number of bits specified by the integer in register P1.
|
|
|
|
** Store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
/* Opcode: ShiftRight P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=r[P2]>>r[P1]
|
|
|
|
**
|
|
|
|
** Shift the integer value in register P2 to the right by the
|
|
|
|
** number of bits specified by the integer in register P1.
|
|
|
|
** Store the result in register P3.
|
|
|
|
** If either input is NULL, the result is NULL.
|
|
|
|
*/
|
|
|
|
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
|
|
|
|
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
|
|
|
|
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
|
|
|
|
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
|
|
|
|
i64 iA;
|
|
|
|
u64 uA;
|
|
|
|
i64 iB;
|
|
|
|
u8 op;
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
iA = sqlite3VdbeIntValue(pIn2);
|
|
|
|
iB = sqlite3VdbeIntValue(pIn1);
|
|
|
|
op = pOp->opcode;
|
|
|
|
if( op==OP_BitAnd ){
|
|
|
|
iA &= iB;
|
|
|
|
}else if( op==OP_BitOr ){
|
|
|
|
iA |= iB;
|
|
|
|
}else if( iB!=0 ){
|
|
|
|
assert( op==OP_ShiftRight || op==OP_ShiftLeft );
|
|
|
|
|
|
|
|
/* If shifting by a negative amount, shift in the other direction */
|
|
|
|
if( iB<0 ){
|
|
|
|
assert( OP_ShiftRight==OP_ShiftLeft+1 );
|
|
|
|
op = 2*OP_ShiftLeft + 1 - op;
|
|
|
|
iB = iB>(-64) ? -iB : 64;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( iB>=64 ){
|
|
|
|
iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
|
|
|
|
}else{
|
|
|
|
memcpy(&uA, &iA, sizeof(uA));
|
|
|
|
if( op==OP_ShiftLeft ){
|
|
|
|
uA <<= iB;
|
|
|
|
}else{
|
|
|
|
uA >>= iB;
|
|
|
|
/* Sign-extend on a right shift of a negative number */
|
|
|
|
if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
|
|
|
|
}
|
|
|
|
memcpy(&iA, &uA, sizeof(iA));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pOut->u.i = iA;
|
|
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: AddImm P1 P2 * * *
|
|
|
|
** Synopsis: r[P1]=r[P1]+P2
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Add the constant P2 to the value in register P1.
|
|
|
|
** The result is always an integer.
|
|
|
|
**
|
|
|
|
** To force any register to be an integer, just add 0.
|
|
|
|
*/
|
|
|
|
case OP_AddImm: { /* in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
memAboutToChange(p, pIn1);
|
|
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
|
|
pIn1->u.i += pOp->p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: MustBeInt P1 P2 * * *
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Force the value in register P1 to be an integer. If the value
|
|
|
|
** in P1 is not an integer and cannot be converted into an integer
|
|
|
|
** without data loss, then jump immediately to P2, or if P2==0
|
|
|
|
** raise an SQLITE_MISMATCH exception.
|
|
|
|
*/
|
|
|
|
case OP_MustBeInt: { /* jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
if( (pIn1->flags & MEM_Int)==0 ){
|
|
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
|
|
if( (pIn1->flags & MEM_Int)==0 ){
|
|
|
|
VdbeBranchTaken(1, 2);
|
|
|
|
if( pOp->p2==0 ){
|
|
|
|
rc = SQLITE_MISMATCH;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}else{
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(0, 2);
|
|
|
|
MemSetTypeFlag(pIn1, MEM_Int);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
|
|
/* Opcode: RealAffinity P1 * * * *
|
|
|
|
**
|
|
|
|
** If register P1 holds an integer convert it to a real value.
|
|
|
|
**
|
|
|
|
** This opcode is used when extracting information from a column that
|
|
|
|
** has REAL affinity. Such column values may still be stored as
|
|
|
|
** integers, for space efficiency, but after extraction we want them
|
|
|
|
** to have only a real value.
|
|
|
|
*/
|
|
|
|
case OP_RealAffinity: { /* in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
|
|
|
|
testcase( pIn1->flags & MEM_Int );
|
|
|
|
testcase( pIn1->flags & MEM_IntReal );
|
|
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
|
|
/* Opcode: Cast P1 P2 * * *
|
|
|
|
** Synopsis: affinity(r[P1])
|
|
|
|
**
|
|
|
|
** Force the value in register P1 to be the type defined by P2.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** <ul>
|
|
|
|
** <li> P2=='A' → BLOB
|
|
|
|
** <li> P2=='B' → TEXT
|
|
|
|
** <li> P2=='C' → NUMERIC
|
|
|
|
** <li> P2=='D' → INTEGER
|
|
|
|
** <li> P2=='E' → REAL
|
|
|
|
** </ul>
|
|
|
|
**
|
|
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
|
|
*/
|
|
|
|
case OP_Cast: { /* in1 */
|
|
|
|
assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
|
|
|
|
testcase( pOp->p2==SQLITE_AFF_TEXT );
|
|
|
|
testcase( pOp->p2==SQLITE_AFF_BLOB );
|
|
|
|
testcase( pOp->p2==SQLITE_AFF_NUMERIC );
|
|
|
|
testcase( pOp->p2==SQLITE_AFF_INTEGER );
|
|
|
|
testcase( pOp->p2==SQLITE_AFF_REAL );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
memAboutToChange(p, pIn1);
|
|
|
|
rc = ExpandBlob(pIn1);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
|
|
|
|
/* Opcode: Eq P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]==r[P1]
|
|
|
|
**
|
|
|
|
** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
|
2022-11-28 20:54:48 +00:00
|
|
|
** jump to address P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
2022-07-22 04:46:07 +00:00
|
|
|
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
2021-05-14 09:07:09 +00:00
|
|
|
** to coerce both inputs according to this affinity before the
|
|
|
|
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
|
|
|
** affinity is used. Note that the affinity conversions are stored
|
|
|
|
** back into the input registers P1 and P3. So this opcode can cause
|
|
|
|
** persistent changes to registers P1 and P3.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Once any conversions have taken place, and neither value is NULL,
|
2021-05-14 09:07:09 +00:00
|
|
|
** the values are compared. If both values are blobs then memcmp() is
|
|
|
|
** used to determine the results of the comparison. If both values
|
|
|
|
** are text, then the appropriate collating function specified in
|
|
|
|
** P4 is used to do the comparison. If P4 is not specified then
|
|
|
|
** memcmp() is used to compare text string. If both values are
|
|
|
|
** numeric, then a numeric comparison is used. If the two values
|
|
|
|
** are of different types, then numbers are considered less than
|
|
|
|
** strings and strings are considered less than blobs.
|
|
|
|
**
|
|
|
|
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
|
|
|
|
** true or false and is never NULL. If both operands are NULL then the result
|
|
|
|
** of comparison is true. If either operand is NULL then the result is false.
|
|
|
|
** If neither operand is NULL the result is the same as it would be if
|
|
|
|
** the SQLITE_NULLEQ flag were omitted from P5.
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** This opcode saves the result of comparison for use by the new
|
|
|
|
** OP_Jump opcode.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
/* Opcode: Ne P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]!=r[P1]
|
|
|
|
**
|
|
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
|
|
** the operands in registers P1 and P3 are not equal. See the Eq opcode for
|
|
|
|
** additional information.
|
|
|
|
*/
|
|
|
|
/* Opcode: Lt P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]<r[P1]
|
|
|
|
**
|
|
|
|
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
|
2022-11-28 20:54:48 +00:00
|
|
|
** jump to address P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
|
2022-07-22 04:46:07 +00:00
|
|
|
** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
|
2021-05-14 09:07:09 +00:00
|
|
|
** bit is clear then fall through if either operand is NULL.
|
|
|
|
**
|
|
|
|
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
2022-07-22 04:46:07 +00:00
|
|
|
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
2021-05-14 09:07:09 +00:00
|
|
|
** to coerce both inputs according to this affinity before the
|
|
|
|
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
|
|
|
** affinity is used. Note that the affinity conversions are stored
|
|
|
|
** back into the input registers P1 and P3. So this opcode can cause
|
|
|
|
** persistent changes to registers P1 and P3.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Once any conversions have taken place, and neither value is NULL,
|
2021-05-14 09:07:09 +00:00
|
|
|
** the values are compared. If both values are blobs then memcmp() is
|
|
|
|
** used to determine the results of the comparison. If both values
|
|
|
|
** are text, then the appropriate collating function specified in
|
|
|
|
** P4 is used to do the comparison. If P4 is not specified then
|
|
|
|
** memcmp() is used to compare text string. If both values are
|
|
|
|
** numeric, then a numeric comparison is used. If the two values
|
|
|
|
** are of different types, then numbers are considered less than
|
|
|
|
** strings and strings are considered less than blobs.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** This opcode saves the result of comparison for use by the new
|
|
|
|
** OP_Jump opcode.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
/* Opcode: Le P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]<=r[P1]
|
|
|
|
**
|
|
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
|
|
** the content of register P3 is less than or equal to the content of
|
|
|
|
** register P1. See the Lt opcode for additional information.
|
|
|
|
*/
|
|
|
|
/* Opcode: Gt P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]>r[P1]
|
|
|
|
**
|
|
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
|
|
** the content of register P3 is greater than the content of
|
|
|
|
** register P1. See the Lt opcode for additional information.
|
|
|
|
*/
|
|
|
|
/* Opcode: Ge P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: IF r[P3]>=r[P1]
|
|
|
|
**
|
|
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
|
|
** the content of register P3 is greater than or equal to the content of
|
|
|
|
** register P1. See the Lt opcode for additional information.
|
|
|
|
*/
|
|
|
|
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
|
|
|
|
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
|
|
|
|
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
|
|
|
|
case OP_Le: /* same as TK_LE, jump, in1, in3 */
|
|
|
|
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
|
|
|
|
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
|
|
|
|
int res, res2; /* Result of the comparison of pIn1 against pIn3 */
|
|
|
|
char affinity; /* Affinity to use for comparison */
|
|
|
|
u16 flags1; /* Copy of initial value of pIn1->flags */
|
|
|
|
u16 flags3; /* Copy of initial value of pIn3->flags */
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
flags1 = pIn1->flags;
|
|
|
|
flags3 = pIn3->flags;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (flags1 & flags3 & MEM_Int)!=0 ){
|
|
|
|
assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
|
|
|
|
/* Common case of comparison of two integers */
|
|
|
|
if( pIn3->u.i > pIn1->u.i ){
|
|
|
|
if( sqlite3aGTb[pOp->opcode] ){
|
|
|
|
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
iCompare = +1;
|
|
|
|
}else if( pIn3->u.i < pIn1->u.i ){
|
|
|
|
if( sqlite3aLTb[pOp->opcode] ){
|
|
|
|
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
iCompare = -1;
|
|
|
|
}else{
|
|
|
|
if( sqlite3aEQb[pOp->opcode] ){
|
|
|
|
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
iCompare = 0;
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
|
|
|
break;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
if( (flags1 | flags3)&MEM_Null ){
|
|
|
|
/* One or both operands are NULL */
|
|
|
|
if( pOp->p5 & SQLITE_NULLEQ ){
|
|
|
|
/* If SQLITE_NULLEQ is set (which will only happen if the operator is
|
|
|
|
** OP_Eq or OP_Ne) then take the jump or not depending on whether
|
|
|
|
** or not both operands are null.
|
|
|
|
*/
|
|
|
|
assert( (flags1 & MEM_Cleared)==0 );
|
|
|
|
assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
|
|
|
|
testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
|
|
|
|
if( (flags1&flags3&MEM_Null)!=0
|
|
|
|
&& (flags3&MEM_Cleared)==0
|
|
|
|
){
|
|
|
|
res = 0; /* Operands are equal */
|
|
|
|
}else{
|
|
|
|
res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* SQLITE_NULLEQ is clear and at least one operand is NULL,
|
|
|
|
** then the result is always NULL.
|
|
|
|
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
VdbeBranchTaken(2,3);
|
|
|
|
if( pOp->p5 & SQLITE_JUMPIFNULL ){
|
|
|
|
goto jump_to_p2;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
iCompare = 1; /* Operands are not equal */
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Neither operand is NULL and we couldn't do the special high-speed
|
|
|
|
** integer comparison case. So do a general-case comparison. */
|
2021-05-14 09:07:09 +00:00
|
|
|
affinity = pOp->p5 & SQLITE_AFF_MASK;
|
|
|
|
if( affinity>=SQLITE_AFF_NUMERIC ){
|
|
|
|
if( (flags1 | flags3)&MEM_Str ){
|
|
|
|
if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
|
|
|
|
applyNumericAffinity(pIn1,0);
|
|
|
|
testcase( flags3==pIn3->flags );
|
|
|
|
flags3 = pIn3->flags;
|
|
|
|
}
|
|
|
|
if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
|
|
|
|
applyNumericAffinity(pIn3,0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else if( affinity==SQLITE_AFF_TEXT ){
|
|
|
|
if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
|
|
|
|
testcase( pIn1->flags & MEM_Int );
|
|
|
|
testcase( pIn1->flags & MEM_Real );
|
|
|
|
testcase( pIn1->flags & MEM_IntReal );
|
|
|
|
sqlite3VdbeMemStringify(pIn1, encoding, 1);
|
|
|
|
testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
|
|
|
|
flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
|
|
|
|
testcase( pIn3->flags & MEM_Int );
|
|
|
|
testcase( pIn3->flags & MEM_Real );
|
|
|
|
testcase( pIn3->flags & MEM_IntReal );
|
|
|
|
sqlite3VdbeMemStringify(pIn3, encoding, 1);
|
|
|
|
testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
|
|
|
|
flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
|
|
|
|
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* At this point, res is negative, zero, or positive if reg[P1] is
|
|
|
|
** less than, equal to, or greater than reg[P3], respectively. Compute
|
|
|
|
** the answer to this operator in res2, depending on what the comparison
|
|
|
|
** operator actually is. The next block of code depends on the fact
|
|
|
|
** that the 6 comparison operators are consecutive integers in this
|
|
|
|
** order: NE, EQ, GT, LE, LT, GE */
|
|
|
|
assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
|
|
|
|
assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
|
2022-11-28 20:54:48 +00:00
|
|
|
if( res<0 ){
|
|
|
|
res2 = sqlite3aLTb[pOp->opcode];
|
2021-05-14 09:07:09 +00:00
|
|
|
}else if( res==0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
res2 = sqlite3aEQb[pOp->opcode];
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
res2 = sqlite3aGTb[pOp->opcode];
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
iCompare = res;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* Undo any changes made by applyAffinity() to the input registers. */
|
|
|
|
assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
|
|
|
|
pIn3->flags = flags3;
|
|
|
|
assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
|
|
|
|
pIn1->flags = flags1;
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
|
|
|
if( res2 ){
|
|
|
|
goto jump_to_p2;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: ElseEq * P2 * * *
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
|
|
|
|
** can be zero or more OP_ReleaseReg opcodes intervening, but no other
|
|
|
|
** opcodes are allowed to occur between this instruction and the previous
|
2022-11-28 20:54:48 +00:00
|
|
|
** OP_Lt or OP_Gt.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** If result of an OP_Eq comparison on the same two operands as the
|
2022-11-28 20:54:48 +00:00
|
|
|
** prior OP_Lt or OP_Gt would have been true, then jump to P2.
|
|
|
|
** If the result of an OP_Eq comparison on the two previous
|
|
|
|
** operands would have been false or NULL, then fall through.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
case OP_ElseEq: { /* same as TK_ESCAPE, jump */
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Verify the preconditions of this opcode - that it follows an OP_Lt or
|
2022-11-28 20:54:48 +00:00
|
|
|
** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
|
2021-05-14 09:07:09 +00:00
|
|
|
int iAddr;
|
|
|
|
for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
|
|
|
|
if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
|
|
|
|
assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_DEBUG */
|
2022-11-28 20:54:48 +00:00
|
|
|
VdbeBranchTaken(iCompare==0, 2);
|
|
|
|
if( iCompare==0 ) goto jump_to_p2;
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: Permutation * * * P4 *
|
|
|
|
**
|
|
|
|
** Set the permutation used by the OP_Compare operator in the next
|
|
|
|
** instruction. The permutation is stored in the P4 operand.
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** The permutation is only valid for the next opcode which must be
|
|
|
|
** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** The first integer in the P4 integer array is the length of the array
|
|
|
|
** and does not become part of the permutation.
|
|
|
|
*/
|
|
|
|
case OP_Permutation: {
|
|
|
|
assert( pOp->p4type==P4_INTARRAY );
|
|
|
|
assert( pOp->p4.ai );
|
|
|
|
assert( pOp[1].opcode==OP_Compare );
|
|
|
|
assert( pOp[1].p5 & OPFLAG_PERMUTE );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Compare P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: r[P1@P3] <-> r[P2@P3]
|
|
|
|
**
|
|
|
|
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
|
|
|
|
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
|
|
|
|
** the comparison for use by the next OP_Jump instruct.
|
|
|
|
**
|
|
|
|
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
|
|
|
|
** determined by the most recent OP_Permutation operator. If the
|
|
|
|
** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
|
|
|
|
** order.
|
|
|
|
**
|
|
|
|
** P4 is a KeyInfo structure that defines collating sequences and sort
|
|
|
|
** orders for the comparison. The permutation applies to registers
|
|
|
|
** only. The KeyInfo elements are used sequentially.
|
|
|
|
**
|
|
|
|
** The comparison is a sort comparison, so NULLs compare equal,
|
|
|
|
** NULLs are less than numbers, numbers are less than strings,
|
|
|
|
** and strings are less than blobs.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** This opcode must be immediately followed by an OP_Jump opcode.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Compare: {
|
|
|
|
int n;
|
|
|
|
int i;
|
|
|
|
int p1;
|
|
|
|
int p2;
|
|
|
|
const KeyInfo *pKeyInfo;
|
|
|
|
u32 idx;
|
|
|
|
CollSeq *pColl; /* Collating sequence to use on this term */
|
|
|
|
int bRev; /* True for DESCENDING sort order */
|
|
|
|
u32 *aPermute; /* The permutation */
|
|
|
|
|
|
|
|
if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
|
|
|
|
aPermute = 0;
|
|
|
|
}else{
|
|
|
|
assert( pOp>aOp );
|
|
|
|
assert( pOp[-1].opcode==OP_Permutation );
|
|
|
|
assert( pOp[-1].p4type==P4_INTARRAY );
|
|
|
|
aPermute = pOp[-1].p4.ai + 1;
|
|
|
|
assert( aPermute!=0 );
|
|
|
|
}
|
|
|
|
n = pOp->p3;
|
|
|
|
pKeyInfo = pOp->p4.pKeyInfo;
|
|
|
|
assert( n>0 );
|
|
|
|
assert( pKeyInfo!=0 );
|
|
|
|
p1 = pOp->p1;
|
|
|
|
p2 = pOp->p2;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( aPermute ){
|
|
|
|
int k, mx = 0;
|
|
|
|
for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
|
|
|
|
assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
}else{
|
|
|
|
assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
for(i=0; i<n; i++){
|
|
|
|
idx = aPermute ? aPermute[i] : (u32)i;
|
|
|
|
assert( memIsValid(&aMem[p1+idx]) );
|
|
|
|
assert( memIsValid(&aMem[p2+idx]) );
|
|
|
|
REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
|
|
|
|
REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
|
|
|
|
assert( i<pKeyInfo->nKeyField );
|
|
|
|
pColl = pKeyInfo->aColl[i];
|
|
|
|
bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
|
|
|
|
iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
|
|
|
|
if( iCompare ){
|
2022-07-22 04:46:07 +00:00
|
|
|
if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
|
2021-05-14 09:07:09 +00:00
|
|
|
&& ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
|
|
|
|
){
|
|
|
|
iCompare = -iCompare;
|
|
|
|
}
|
|
|
|
if( bRev ) iCompare = -iCompare;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pOp[1].opcode==OP_Jump );
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Jump P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Jump to the instruction at address P1, P2, or P3 depending on whether
|
|
|
|
** in the most recent OP_Compare instruction the P1 vector was less than
|
|
|
|
** equal to, or greater than the P2 vector, respectively.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** This opcode must immediately follow an OP_Compare opcode.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Jump: { /* jump */
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( iCompare<0 ){
|
|
|
|
VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
|
|
|
|
}else if( iCompare==0 ){
|
|
|
|
VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
|
|
|
|
}else{
|
|
|
|
VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: And P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=(r[P1] && r[P2])
|
|
|
|
**
|
|
|
|
** Take the logical AND of the values in registers P1 and P2 and
|
|
|
|
** write the result into register P3.
|
|
|
|
**
|
|
|
|
** If either P1 or P2 is 0 (false) then the result is 0 even if
|
|
|
|
** the other input is NULL. A NULL and true or two NULLs give
|
|
|
|
** a NULL output.
|
|
|
|
*/
|
|
|
|
/* Opcode: Or P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=(r[P1] || r[P2])
|
|
|
|
**
|
|
|
|
** Take the logical OR of the values in register P1 and P2 and
|
|
|
|
** store the answer in register P3.
|
|
|
|
**
|
|
|
|
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
|
|
|
|
** even if the other input is NULL. A NULL and false or two NULLs
|
|
|
|
** give a NULL output.
|
|
|
|
*/
|
|
|
|
case OP_And: /* same as TK_AND, in1, in2, out3 */
|
|
|
|
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
|
|
|
|
int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
|
|
int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
|
|
|
|
|
|
v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
|
|
|
|
v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
|
|
|
|
if( pOp->opcode==OP_And ){
|
|
|
|
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
|
|
v1 = and_logic[v1*3+v2];
|
|
|
|
}else{
|
|
|
|
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
|
|
v1 = or_logic[v1*3+v2];
|
|
|
|
}
|
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
if( v1==2 ){
|
|
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
|
|
}else{
|
|
|
|
pOut->u.i = v1;
|
|
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IsTrue P1 P2 P3 P4 *
|
|
|
|
** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
|
|
|
|
**
|
|
|
|
** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
|
|
|
|
** IS NOT FALSE operators.
|
|
|
|
**
|
|
|
|
** Interpret the value in register P1 as a boolean value. Store that
|
2022-07-22 04:46:07 +00:00
|
|
|
** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
|
2021-05-14 09:07:09 +00:00
|
|
|
** NULL, then the P3 is stored in register P2. Invert the answer if P4
|
|
|
|
** is 1.
|
|
|
|
**
|
|
|
|
** The logic is summarized like this:
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** <ul>
|
2021-05-14 09:07:09 +00:00
|
|
|
** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
|
|
|
|
** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
|
|
|
|
** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
|
|
|
|
** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
|
|
|
|
** </ul>
|
|
|
|
*/
|
|
|
|
case OP_IsTrue: { /* in1, out2 */
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
assert( pOp->p4.i==0 || pOp->p4.i==1 );
|
|
|
|
assert( pOp->p3==0 || pOp->p3==1 );
|
|
|
|
sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
|
|
|
|
sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Not P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]= !r[P1]
|
|
|
|
**
|
|
|
|
** Interpret the value in register P1 as a boolean value. Store the
|
2022-07-22 04:46:07 +00:00
|
|
|
** boolean complement in register P2. If the value in register P1 is
|
2021-05-14 09:07:09 +00:00
|
|
|
** NULL, then a NULL is stored in P2.
|
|
|
|
*/
|
|
|
|
case OP_Not: { /* same as TK_NOT, in1, out2 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
|
|
sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: BitNot P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]= ~r[P1]
|
|
|
|
**
|
|
|
|
** Interpret the content of register P1 as an integer. Store the
|
|
|
|
** ones-complement of the P1 value into register P2. If P1 holds
|
|
|
|
** a NULL then store a NULL in P2.
|
|
|
|
*/
|
|
|
|
case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
|
|
pOut->flags = MEM_Int;
|
|
|
|
pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Once P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Fall through to the next instruction the first time this opcode is
|
|
|
|
** encountered on each invocation of the byte-code program. Jump to P2
|
|
|
|
** on the second and all subsequent encounters during the same invocation.
|
|
|
|
**
|
|
|
|
** Top-level programs determine first invocation by comparing the P1
|
|
|
|
** operand against the P1 operand on the OP_Init opcode at the beginning
|
|
|
|
** of the program. If the P1 values differ, then fall through and make
|
|
|
|
** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
|
|
|
|
** the same then take the jump.
|
|
|
|
**
|
|
|
|
** For subprograms, there is a bitmask in the VdbeFrame that determines
|
|
|
|
** whether or not the jump should be taken. The bitmask is necessary
|
|
|
|
** because the self-altering code trick does not work for recursive
|
|
|
|
** triggers.
|
|
|
|
*/
|
|
|
|
case OP_Once: { /* jump */
|
|
|
|
u32 iAddr; /* Address of this instruction */
|
|
|
|
assert( p->aOp[0].opcode==OP_Init );
|
|
|
|
if( p->pFrame ){
|
|
|
|
iAddr = (int)(pOp - p->aOp);
|
|
|
|
if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
|
|
|
|
VdbeBranchTaken(1, 2);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
|
|
|
|
}else{
|
|
|
|
if( p->aOp[0].p1==pOp->p1 ){
|
|
|
|
VdbeBranchTaken(1, 2);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(0, 2);
|
|
|
|
pOp->p1 = p->aOp[0].p1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: If P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Jump to P2 if the value in register P1 is true. The value
|
|
|
|
** is considered true if it is numeric and non-zero. If the value
|
|
|
|
** in P1 is NULL then take the jump if and only if P3 is non-zero.
|
|
|
|
*/
|
|
|
|
case OP_If: { /* jump, in1 */
|
|
|
|
int c;
|
|
|
|
c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
|
|
|
|
VdbeBranchTaken(c!=0, 2);
|
|
|
|
if( c ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IfNot P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Jump to P2 if the value in register P1 is False. The value
|
|
|
|
** is considered false if it has a numeric value of zero. If the value
|
|
|
|
** in P1 is NULL then take the jump if and only if P3 is non-zero.
|
|
|
|
*/
|
|
|
|
case OP_IfNot: { /* jump, in1 */
|
|
|
|
int c;
|
|
|
|
c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
|
|
|
|
VdbeBranchTaken(c!=0, 2);
|
|
|
|
if( c ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IsNull P1 P2 * * *
|
|
|
|
** Synopsis: if r[P1]==NULL goto P2
|
|
|
|
**
|
|
|
|
** Jump to P2 if the value in register P1 is NULL.
|
|
|
|
*/
|
|
|
|
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
|
|
|
|
if( (pIn1->flags & MEM_Null)!=0 ){
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: IsType P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: if typeof(P1.P3) in P5 goto P2
|
|
|
|
**
|
|
|
|
** Jump to P2 if the type of a column in a btree is one of the types specified
|
|
|
|
** by the P5 bitmask.
|
|
|
|
**
|
|
|
|
** P1 is normally a cursor on a btree for which the row decode cache is
|
|
|
|
** valid through at least column P3. In other words, there should have been
|
|
|
|
** a prior OP_Column for column P3 or greater. If the cursor is not valid,
|
|
|
|
** then this opcode might give spurious results.
|
|
|
|
** The the btree row has fewer than P3 columns, then use P4 as the
|
|
|
|
** datatype.
|
|
|
|
**
|
|
|
|
** If P1 is -1, then P3 is a register number and the datatype is taken
|
|
|
|
** from the value in that register.
|
|
|
|
**
|
|
|
|
** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
|
|
|
|
** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
|
|
|
|
** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
|
|
|
|
**
|
|
|
|
** Take the jump to address P2 if and only if the datatype of the
|
|
|
|
** value determined by P1 and P3 corresponds to one of the bits in the
|
|
|
|
** P5 bitmask.
|
|
|
|
**
|
|
|
|
*/
|
|
|
|
case OP_IsType: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
u16 typeMask;
|
|
|
|
u32 serialType;
|
|
|
|
|
|
|
|
assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
|
|
|
|
if( pOp->p1>=0 ){
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pOp->p3>=0 );
|
|
|
|
if( pOp->p3<pC->nHdrParsed ){
|
|
|
|
serialType = pC->aType[pOp->p3];
|
|
|
|
if( serialType>=12 ){
|
|
|
|
if( serialType&1 ){
|
|
|
|
typeMask = 0x04; /* SQLITE_TEXT */
|
|
|
|
}else{
|
|
|
|
typeMask = 0x08; /* SQLITE_BLOB */
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
static const unsigned char aMask[] = {
|
|
|
|
0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
|
|
|
|
0x01, 0x01, 0x10, 0x10
|
|
|
|
};
|
|
|
|
testcase( serialType==0 );
|
|
|
|
testcase( serialType==1 );
|
|
|
|
testcase( serialType==2 );
|
|
|
|
testcase( serialType==3 );
|
|
|
|
testcase( serialType==4 );
|
|
|
|
testcase( serialType==5 );
|
|
|
|
testcase( serialType==6 );
|
|
|
|
testcase( serialType==7 );
|
|
|
|
testcase( serialType==8 );
|
|
|
|
testcase( serialType==9 );
|
|
|
|
testcase( serialType==10 );
|
|
|
|
testcase( serialType==11 );
|
|
|
|
typeMask = aMask[serialType];
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
typeMask = 1 << (pOp->p4.i - 1);
|
|
|
|
testcase( typeMask==0x01 );
|
|
|
|
testcase( typeMask==0x02 );
|
|
|
|
testcase( typeMask==0x04 );
|
|
|
|
testcase( typeMask==0x08 );
|
|
|
|
testcase( typeMask==0x10 );
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( memIsValid(&aMem[pOp->p3]) );
|
|
|
|
typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
|
|
|
|
testcase( typeMask==0x01 );
|
|
|
|
testcase( typeMask==0x02 );
|
|
|
|
testcase( typeMask==0x04 );
|
|
|
|
testcase( typeMask==0x08 );
|
|
|
|
testcase( typeMask==0x10 );
|
|
|
|
}
|
|
|
|
VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
|
|
|
|
if( typeMask & pOp->p5 ){
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: ZeroOrNull P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2] = 0 OR NULL
|
|
|
|
**
|
|
|
|
** If all both registers P1 and P3 are NOT NULL, then store a zero in
|
|
|
|
** register P2. If either registers P1 or P3 are NULL then put
|
|
|
|
** a NULL in register P2.
|
|
|
|
*/
|
|
|
|
case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
|
|
|
|
if( (aMem[pOp->p1].flags & MEM_Null)!=0
|
|
|
|
|| (aMem[pOp->p3].flags & MEM_Null)!=0
|
|
|
|
){
|
|
|
|
sqlite3VdbeMemSetNull(aMem + pOp->p2);
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Opcode: NotNull P1 P2 * * *
|
|
|
|
** Synopsis: if r[P1]!=NULL goto P2
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Jump to P2 if the value in register P1 is not NULL.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
|
|
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IfNullRow P1 P2 P3 * *
|
|
|
|
** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
|
|
|
|
**
|
|
|
|
** Check the cursor P1 to see if it is currently pointing at a NULL row.
|
|
|
|
** If it is, then set register P3 to NULL and jump immediately to P2.
|
|
|
|
** If P1 is not on a NULL row, then fall through without making any
|
|
|
|
** changes.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** If P1 is not an open cursor, then this opcode is a no-op.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_IfNullRow: { /* jump */
|
2022-11-28 20:54:48 +00:00
|
|
|
VdbeCursor *pC;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
2022-11-28 20:54:48 +00:00
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
if( ALWAYS(pC) && pC->nullRow ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeMemSetNull(aMem + pOp->p3);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
|
|
|
|
/* Opcode: Offset P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3] = sqlite_offset(P1)
|
|
|
|
**
|
|
|
|
** Store in register r[P3] the byte offset into the database file that is the
|
|
|
|
** start of the payload for the record at which that cursor P1 is currently
|
|
|
|
** pointing.
|
|
|
|
**
|
|
|
|
** P2 is the column number for the argument to the sqlite_offset() function.
|
|
|
|
** This opcode does not use P2 itself, but the P2 value is used by the
|
|
|
|
** code generator. The P1, P2, and P3 operands to this opcode are the
|
|
|
|
** same as for OP_Column.
|
|
|
|
**
|
|
|
|
** This opcode is only available if SQLite is compiled with the
|
|
|
|
** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
|
|
|
|
*/
|
|
|
|
case OP_Offset: { /* out3 */
|
|
|
|
VdbeCursor *pC; /* The VDBE cursor */
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
pOut = &p->aMem[pOp->p3];
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pC->deferredMoveto ){
|
|
|
|
rc = sqlite3VdbeFinishMoveto(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
if( sqlite3BtreeEof(pC->uc.pCursor) ){
|
|
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
|
|
|
|
|
|
|
|
/* Opcode: Column P1 P2 P3 P4 P5
|
2022-11-28 20:54:48 +00:00
|
|
|
** Synopsis: r[P3]=PX cursor P1 column P2
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Interpret the data that cursor P1 points to as a structure built using
|
|
|
|
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
|
|
** information about the format of the data.) Extract the P2-th column
|
2022-11-28 20:54:48 +00:00
|
|
|
** from this record. If there are less than (P2+1)
|
2021-05-14 09:07:09 +00:00
|
|
|
** values in the record, extract a NULL.
|
|
|
|
**
|
|
|
|
** The value extracted is stored in register P3.
|
|
|
|
**
|
|
|
|
** If the record contains fewer than P2 fields, then extract a NULL. Or,
|
|
|
|
** if the P4 argument is a P4_MEM use the value of the P4 argument as
|
|
|
|
** the result.
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
|
|
|
|
** to only be used by the length() function or the equivalent. The content
|
|
|
|
** of large blobs is not loaded, thus saving CPU cycles. If the
|
|
|
|
** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
|
|
|
|
** typeof() function or the IS NULL or IS NOT NULL operators or the
|
|
|
|
** equivalent. In this case, all content loading can be omitted.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Column: {
|
|
|
|
u32 p2; /* column number to retrieve */
|
|
|
|
VdbeCursor *pC; /* The VDBE cursor */
|
2022-11-28 20:54:48 +00:00
|
|
|
BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
|
2021-05-14 09:07:09 +00:00
|
|
|
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
|
|
int len; /* The length of the serialized data for the column */
|
|
|
|
int i; /* Loop counter */
|
|
|
|
Mem *pDest; /* Where to write the extracted value */
|
|
|
|
Mem sMem; /* For storing the record being decoded */
|
|
|
|
const u8 *zData; /* Part of the record being decoded */
|
|
|
|
const u8 *zHdr; /* Next unparsed byte of the header */
|
|
|
|
const u8 *zEndHdr; /* Pointer to first byte after the header */
|
|
|
|
u64 offset64; /* 64-bit offset */
|
|
|
|
u32 t; /* A type code from the record header */
|
|
|
|
Mem *pReg; /* PseudoTable input register */
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
|
2021-05-14 09:07:09 +00:00
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
p2 = (u32)pOp->p2;
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
op_column_restart:
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( p2<(u32)pC->nField
|
|
|
|
|| (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
|
2021-05-14 09:07:09 +00:00
|
|
|
aOffset = pC->aOffset;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( aOffset==pC->aType+pC->nField );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC->eCurType!=CURTYPE_VTAB );
|
|
|
|
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
|
|
|
|
assert( pC->eCurType!=CURTYPE_SORTER );
|
|
|
|
|
|
|
|
if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
|
|
|
|
if( pC->nullRow ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* For the special case of as pseudo-cursor, the seekResult field
|
|
|
|
** identifies the register that holds the record */
|
|
|
|
pReg = &aMem[pC->seekResult];
|
|
|
|
assert( pReg->flags & MEM_Blob );
|
|
|
|
assert( memIsValid(pReg) );
|
|
|
|
pC->payloadSize = pC->szRow = pReg->n;
|
|
|
|
pC->aRow = (u8*)pReg->z;
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
pDest = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pDest);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
goto op_column_out;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
pCrsr = pC->uc.pCursor;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pC->deferredMoveto ){
|
|
|
|
u32 iMap;
|
|
|
|
assert( !pC->isEphemeral );
|
|
|
|
if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
|
|
|
|
pC = pC->pAltCursor;
|
|
|
|
p2 = iMap - 1;
|
|
|
|
goto op_column_restart;
|
|
|
|
}
|
|
|
|
rc = sqlite3VdbeFinishMoveto(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
|
|
|
|
rc = sqlite3VdbeHandleMovedCursor(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
goto op_column_restart;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pCrsr );
|
|
|
|
assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
|
|
|
pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
|
|
|
|
pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
|
|
|
|
assert( pC->szRow<=pC->payloadSize );
|
|
|
|
assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
|
|
|
|
}
|
|
|
|
pC->cacheStatus = p->cacheCtr;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (aOffset[0] = pC->aRow[0])<0x80 ){
|
|
|
|
pC->iHdrOffset = 1;
|
|
|
|
}else{
|
|
|
|
pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->nHdrParsed = 0;
|
|
|
|
|
|
|
|
if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
|
|
|
|
/* pC->aRow does not have to hold the entire row, but it does at least
|
|
|
|
** need to cover the header of the record. If pC->aRow does not contain
|
|
|
|
** the complete header, then set it to zero, forcing the header to be
|
|
|
|
** dynamically allocated. */
|
|
|
|
pC->aRow = 0;
|
|
|
|
pC->szRow = 0;
|
|
|
|
|
|
|
|
/* Make sure a corrupt database has not given us an oversize header.
|
|
|
|
** Do this now to avoid an oversize memory allocation.
|
|
|
|
**
|
|
|
|
** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
|
|
|
|
** types use so much data space that there can only be 4096 and 32 of
|
|
|
|
** them, respectively. So the maximum header length results from a
|
|
|
|
** 3-byte type for each of the maximum of 32768 columns plus three
|
|
|
|
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
|
|
|
|
*/
|
|
|
|
if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
|
|
|
|
goto op_column_corrupt;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* This is an optimization. By skipping over the first few tests
|
|
|
|
** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
|
|
|
|
** measurable performance gain.
|
|
|
|
**
|
|
|
|
** This branch is taken even if aOffset[0]==0. Such a record is never
|
|
|
|
** generated by SQLite, and could be considered corruption, but we
|
|
|
|
** accept it for historical reasons. When aOffset[0]==0, the code this
|
|
|
|
** branch jumps to reads past the end of the record, but never more
|
|
|
|
** than a few bytes. Even if the record occurs at the end of the page
|
|
|
|
** content area, the "page header" comes after the page content and so
|
|
|
|
** this overread is harmless. Similar overreads can occur for a corrupt
|
|
|
|
** database file.
|
|
|
|
*/
|
|
|
|
zData = pC->aRow;
|
|
|
|
assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
|
|
|
|
testcase( aOffset[0]==0 );
|
|
|
|
goto op_column_read_header;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
}else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
|
|
|
|
rc = sqlite3VdbeHandleMovedCursor(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
goto op_column_restart;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Make sure at least the first p2+1 entries of the header have been
|
|
|
|
** parsed and valid information is in aOffset[] and pC->aType[].
|
|
|
|
*/
|
|
|
|
if( pC->nHdrParsed<=p2 ){
|
|
|
|
/* If there is more header available for parsing in the record, try
|
2022-07-22 04:46:07 +00:00
|
|
|
** to extract additional fields up through the p2+1-th field
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
if( pC->iHdrOffset<aOffset[0] ){
|
|
|
|
/* Make sure zData points to enough of the record to cover the header. */
|
|
|
|
if( pC->aRow==0 ){
|
|
|
|
memset(&sMem, 0, sizeof(sMem));
|
|
|
|
rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
zData = (u8*)sMem.z;
|
|
|
|
}else{
|
|
|
|
zData = pC->aRow;
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
|
|
|
|
op_column_read_header:
|
|
|
|
i = pC->nHdrParsed;
|
|
|
|
offset64 = aOffset[i];
|
|
|
|
zHdr = zData + pC->iHdrOffset;
|
|
|
|
zEndHdr = zData + aOffset[0];
|
|
|
|
testcase( zHdr>=zEndHdr );
|
|
|
|
do{
|
|
|
|
if( (pC->aType[i] = t = zHdr[0])<0x80 ){
|
|
|
|
zHdr++;
|
|
|
|
offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
|
|
|
|
}else{
|
|
|
|
zHdr += sqlite3GetVarint32(zHdr, &t);
|
|
|
|
pC->aType[i] = t;
|
|
|
|
offset64 += sqlite3VdbeSerialTypeLen(t);
|
|
|
|
}
|
|
|
|
aOffset[++i] = (u32)(offset64 & 0xffffffff);
|
|
|
|
}while( (u32)i<=p2 && zHdr<zEndHdr );
|
|
|
|
|
|
|
|
/* The record is corrupt if any of the following are true:
|
|
|
|
** (1) the bytes of the header extend past the declared header size
|
|
|
|
** (2) the entire header was used but not all data was used
|
|
|
|
** (3) the end of the data extends beyond the end of the record.
|
|
|
|
*/
|
|
|
|
if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
|
|
|
|
|| (offset64 > pC->payloadSize)
|
|
|
|
){
|
|
|
|
if( aOffset[0]==0 ){
|
|
|
|
i = 0;
|
|
|
|
zHdr = zEndHdr;
|
|
|
|
}else{
|
|
|
|
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
|
|
|
|
goto op_column_corrupt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pC->nHdrParsed = i;
|
|
|
|
pC->iHdrOffset = (u32)(zHdr - zData);
|
|
|
|
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
|
|
|
|
}else{
|
|
|
|
t = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If after trying to extract new entries from the header, nHdrParsed is
|
|
|
|
** still not up to p2, that means that the record has fewer than p2
|
|
|
|
** columns. So the result will be either the default value or a NULL.
|
|
|
|
*/
|
|
|
|
if( pC->nHdrParsed<=p2 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
pDest = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pDest);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pOp->p4type==P4_MEM ){
|
|
|
|
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
}
|
|
|
|
goto op_column_out;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
t = pC->aType[p2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Extract the content for the p2+1-th column. Control can only
|
|
|
|
** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
|
|
|
|
** all valid.
|
|
|
|
*/
|
|
|
|
assert( p2<pC->nHdrParsed );
|
|
|
|
assert( rc==SQLITE_OK );
|
2022-11-28 20:54:48 +00:00
|
|
|
pDest = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pDest);
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( sqlite3VdbeCheckMemInvariants(pDest) );
|
|
|
|
if( VdbeMemDynamic(pDest) ){
|
|
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
}
|
|
|
|
assert( t==pC->aType[p2] );
|
|
|
|
if( pC->szRow>=aOffset[p2+1] ){
|
|
|
|
/* This is the common case where the desired content fits on the original
|
|
|
|
** page - where the content is not on an overflow page */
|
|
|
|
zData = pC->aRow + aOffset[p2];
|
|
|
|
if( t<12 ){
|
|
|
|
sqlite3VdbeSerialGet(zData, t, pDest);
|
|
|
|
}else{
|
|
|
|
/* If the column value is a string, we need a persistent value, not
|
|
|
|
** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
|
|
|
|
** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
|
|
|
|
*/
|
|
|
|
static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
|
|
|
|
pDest->n = len = (t-12)/2;
|
|
|
|
pDest->enc = encoding;
|
|
|
|
if( pDest->szMalloc < len+2 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
|
2021-05-14 09:07:09 +00:00
|
|
|
pDest->flags = MEM_Null;
|
|
|
|
if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
|
|
|
|
}else{
|
|
|
|
pDest->z = pDest->zMalloc;
|
|
|
|
}
|
|
|
|
memcpy(pDest->z, zData, len);
|
|
|
|
pDest->z[len] = 0;
|
|
|
|
pDest->z[len+1] = 0;
|
|
|
|
pDest->flags = aFlag[t&1];
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
pDest->enc = encoding;
|
|
|
|
/* This branch happens only when content is on overflow pages */
|
|
|
|
if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
|
|
|
|
&& ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
|
|
|
|
|| (len = sqlite3VdbeSerialTypeLen(t))==0
|
|
|
|
){
|
|
|
|
/* Content is irrelevant for
|
|
|
|
** 1. the typeof() function,
|
|
|
|
** 2. the length(X) function if X is a blob, and
|
|
|
|
** 3. if the content length is zero.
|
|
|
|
** So we might as well use bogus content rather than reading
|
2022-07-22 04:46:07 +00:00
|
|
|
** content from disk.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
|
|
|
|
** buffer passed to it, debugging function VdbeMemPrettyPrint() may
|
|
|
|
** read more. Use the global constant sqlite3CtypeMap[] as the array,
|
|
|
|
** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
|
|
|
|
** and it begins with a bunch of zeros.
|
|
|
|
*/
|
|
|
|
sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
|
|
|
|
pDest->flags &= ~MEM_Ephem;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
op_column_out:
|
|
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
|
|
break;
|
|
|
|
|
|
|
|
op_column_corrupt:
|
|
|
|
if( aOp[0].p3>0 ){
|
|
|
|
pOp = &aOp[aOp[0].p3-1];
|
|
|
|
break;
|
|
|
|
}else{
|
|
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: TypeCheck P1 P2 P3 P4 *
|
|
|
|
** Synopsis: typecheck(r[P1@P2])
|
|
|
|
**
|
|
|
|
** Apply affinities to the range of P2 registers beginning with P1.
|
|
|
|
** Take the affinities from the Table object in P4. If any value
|
|
|
|
** cannot be coerced into the correct type, then raise an error.
|
|
|
|
**
|
|
|
|
** This opcode is similar to OP_Affinity except that this opcode
|
|
|
|
** forces the register type to the Table column type. This is used
|
|
|
|
** to implement "strict affinity".
|
|
|
|
**
|
|
|
|
** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
|
|
|
|
** is zero. When P3 is non-zero, no type checking occurs for
|
|
|
|
** static generated columns. Virtual columns are computed at query time
|
|
|
|
** and so they are never checked.
|
|
|
|
**
|
|
|
|
** Preconditions:
|
|
|
|
**
|
|
|
|
** <ul>
|
|
|
|
** <li> P2 should be the number of non-virtual columns in the
|
|
|
|
** table of P4.
|
|
|
|
** <li> Table P4 should be a STRICT table.
|
|
|
|
** </ul>
|
|
|
|
**
|
|
|
|
** If any precondition is false, an assertion fault occurs.
|
|
|
|
*/
|
|
|
|
case OP_TypeCheck: {
|
|
|
|
Table *pTab;
|
|
|
|
Column *aCol;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
assert( pOp->p4type==P4_TABLE );
|
|
|
|
pTab = pOp->p4.pTab;
|
|
|
|
assert( pTab->tabFlags & TF_Strict );
|
|
|
|
assert( pTab->nNVCol==pOp->p2 );
|
|
|
|
aCol = pTab->aCol;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
|
|
if( aCol[i].colFlags & COLFLAG_GENERATED ){
|
|
|
|
if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
|
|
|
|
if( pOp->p3 ){ pIn1++; continue; }
|
|
|
|
}
|
|
|
|
assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
|
|
|
|
applyAffinity(pIn1, aCol[i].affinity, encoding);
|
|
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
|
|
switch( aCol[i].eCType ){
|
|
|
|
case COLTYPE_BLOB: {
|
|
|
|
if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case COLTYPE_INTEGER:
|
|
|
|
case COLTYPE_INT: {
|
|
|
|
if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case COLTYPE_TEXT: {
|
|
|
|
if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case COLTYPE_REAL: {
|
|
|
|
testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
|
|
|
|
testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
|
|
|
|
if( pIn1->flags & MEM_Int ){
|
|
|
|
/* When applying REAL affinity, if the result is still an MEM_Int
|
|
|
|
** that will fit in 6 bytes, then change the type to MEM_IntReal
|
|
|
|
** so that we keep the high-resolution integer value but know that
|
|
|
|
** the type really wants to be REAL. */
|
|
|
|
testcase( pIn1->u.i==140737488355328LL );
|
|
|
|
testcase( pIn1->u.i==140737488355327LL );
|
|
|
|
testcase( pIn1->u.i==-140737488355328LL );
|
|
|
|
testcase( pIn1->u.i==-140737488355329LL );
|
|
|
|
if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
|
|
|
|
pIn1->flags |= MEM_IntReal;
|
|
|
|
pIn1->flags &= ~MEM_Int;
|
|
|
|
}else{
|
|
|
|
pIn1->u.r = (double)pIn1->u.i;
|
|
|
|
pIn1->flags |= MEM_Real;
|
|
|
|
pIn1->flags &= ~MEM_Int;
|
|
|
|
}
|
|
|
|
}else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
|
|
|
|
goto vdbe_type_error;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
/* COLTYPE_ANY. Accept anything. */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
REGISTER_TRACE((int)(pIn1-aMem), pIn1);
|
|
|
|
pIn1++;
|
|
|
|
}
|
|
|
|
assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
|
|
|
|
break;
|
|
|
|
|
|
|
|
vdbe_type_error:
|
|
|
|
sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
|
|
|
|
vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
|
|
|
|
pTab->zName, aCol[i].zCnName);
|
|
|
|
rc = SQLITE_CONSTRAINT_DATATYPE;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Opcode: Affinity P1 P2 * P4 *
|
|
|
|
** Synopsis: affinity(r[P1@P2])
|
|
|
|
**
|
|
|
|
** Apply affinities to a range of P2 registers starting with P1.
|
|
|
|
**
|
|
|
|
** P4 is a string that is P2 characters long. The N-th character of the
|
|
|
|
** string indicates the column affinity that should be used for the N-th
|
|
|
|
** memory cell in the range.
|
|
|
|
*/
|
|
|
|
case OP_Affinity: {
|
|
|
|
const char *zAffinity; /* The affinity to be applied */
|
|
|
|
|
|
|
|
zAffinity = pOp->p4.z;
|
|
|
|
assert( zAffinity!=0 );
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
assert( zAffinity[pOp->p2]==0 );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
while( 1 /*exit-by-break*/ ){
|
|
|
|
assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
|
|
|
|
assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
|
|
|
|
applyAffinity(pIn1, zAffinity[0], encoding);
|
|
|
|
if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
|
|
|
|
/* When applying REAL affinity, if the result is still an MEM_Int
|
|
|
|
** that will fit in 6 bytes, then change the type to MEM_IntReal
|
|
|
|
** so that we keep the high-resolution integer value but know that
|
|
|
|
** the type really wants to be REAL. */
|
|
|
|
testcase( pIn1->u.i==140737488355328LL );
|
|
|
|
testcase( pIn1->u.i==140737488355327LL );
|
|
|
|
testcase( pIn1->u.i==-140737488355328LL );
|
|
|
|
testcase( pIn1->u.i==-140737488355329LL );
|
|
|
|
if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
|
|
|
|
pIn1->flags |= MEM_IntReal;
|
|
|
|
pIn1->flags &= ~MEM_Int;
|
|
|
|
}else{
|
|
|
|
pIn1->u.r = (double)pIn1->u.i;
|
|
|
|
pIn1->flags |= MEM_Real;
|
|
|
|
pIn1->flags &= ~MEM_Int;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
REGISTER_TRACE((int)(pIn1-aMem), pIn1);
|
|
|
|
zAffinity++;
|
|
|
|
if( zAffinity[0]==0 ) break;
|
|
|
|
pIn1++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: MakeRecord P1 P2 P3 P4 *
|
|
|
|
** Synopsis: r[P3]=mkrec(r[P1@P2])
|
|
|
|
**
|
|
|
|
** Convert P2 registers beginning with P1 into the [record format]
|
|
|
|
** use as a data record in a database table or as a key
|
|
|
|
** in an index. The OP_Column opcode can decode the record later.
|
|
|
|
**
|
|
|
|
** P4 may be a string that is P2 characters long. The N-th character of the
|
|
|
|
** string indicates the column affinity that should be used for the N-th
|
|
|
|
** field of the index key.
|
|
|
|
**
|
|
|
|
** The mapping from character to affinity is given by the SQLITE_AFF_
|
|
|
|
** macros defined in sqliteInt.h.
|
|
|
|
**
|
|
|
|
** If P4 is NULL then all index fields have the affinity BLOB.
|
|
|
|
**
|
|
|
|
** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
|
|
|
|
** compile-time option is enabled:
|
|
|
|
**
|
|
|
|
** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
|
|
|
|
** of the right-most table that can be null-trimmed.
|
|
|
|
**
|
|
|
|
** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
|
|
|
|
** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
|
|
|
|
** accept no-change records with serial_type 10. This value is
|
|
|
|
** only used inside an assert() and does not affect the end result.
|
|
|
|
*/
|
|
|
|
case OP_MakeRecord: {
|
|
|
|
Mem *pRec; /* The new record */
|
|
|
|
u64 nData; /* Number of bytes of data space */
|
|
|
|
int nHdr; /* Number of bytes of header space */
|
|
|
|
i64 nByte; /* Data space required for this record */
|
|
|
|
i64 nZero; /* Number of zero bytes at the end of the record */
|
|
|
|
int nVarint; /* Number of bytes in a varint */
|
|
|
|
u32 serial_type; /* Type field */
|
|
|
|
Mem *pData0; /* First field to be combined into the record */
|
|
|
|
Mem *pLast; /* Last field of the record */
|
|
|
|
int nField; /* Number of fields in the record */
|
|
|
|
char *zAffinity; /* The affinity string for the record */
|
|
|
|
u32 len; /* Length of a field */
|
|
|
|
u8 *zHdr; /* Where to write next byte of the header */
|
|
|
|
u8 *zPayload; /* Where to write next byte of the payload */
|
|
|
|
|
|
|
|
/* Assuming the record contains N fields, the record format looks
|
|
|
|
** like this:
|
|
|
|
**
|
|
|
|
** ------------------------------------------------------------------------
|
2022-07-22 04:46:07 +00:00
|
|
|
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
2021-05-14 09:07:09 +00:00
|
|
|
** ------------------------------------------------------------------------
|
|
|
|
**
|
|
|
|
** Data(0) is taken from register P1. Data(1) comes from register P1+1
|
|
|
|
** and so forth.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Each type field is a varint representing the serial type of the
|
2021-05-14 09:07:09 +00:00
|
|
|
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
|
|
** hdr-size field is also a varint which is the offset from the beginning
|
|
|
|
** of the record to data0.
|
|
|
|
*/
|
|
|
|
nData = 0; /* Number of bytes of data space */
|
|
|
|
nHdr = 0; /* Number of bytes of header space */
|
|
|
|
nZero = 0; /* Number of zero bytes at the end of the record */
|
|
|
|
nField = pOp->p1;
|
|
|
|
zAffinity = pOp->p4.z;
|
|
|
|
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
pData0 = &aMem[nField];
|
|
|
|
nField = pOp->p2;
|
|
|
|
pLast = &pData0[nField-1];
|
|
|
|
|
|
|
|
/* Identify the output register */
|
|
|
|
assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
|
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
|
|
|
|
/* Apply the requested affinity to all inputs
|
|
|
|
*/
|
|
|
|
assert( pData0<=pLast );
|
|
|
|
if( zAffinity ){
|
|
|
|
pRec = pData0;
|
|
|
|
do{
|
|
|
|
applyAffinity(pRec, zAffinity[0], encoding);
|
|
|
|
if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
|
|
|
|
pRec->flags |= MEM_IntReal;
|
|
|
|
pRec->flags &= ~(MEM_Int);
|
|
|
|
}
|
|
|
|
REGISTER_TRACE((int)(pRec-aMem), pRec);
|
|
|
|
zAffinity++;
|
|
|
|
pRec++;
|
|
|
|
assert( zAffinity[0]==0 || pRec<=pLast );
|
|
|
|
}while( zAffinity[0] );
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_NULL_TRIM
|
|
|
|
/* NULLs can be safely trimmed from the end of the record, as long as
|
|
|
|
** as the schema format is 2 or more and none of the omitted columns
|
|
|
|
** have a non-NULL default value. Also, the record must be left with
|
|
|
|
** at least one field. If P5>0 then it will be one more than the
|
|
|
|
** index of the right-most column with a non-NULL default value */
|
|
|
|
if( pOp->p5 ){
|
|
|
|
while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
|
|
|
|
pLast--;
|
|
|
|
nField--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Loop through the elements that will make up the record to figure
|
|
|
|
** out how much space is required for the new record. After this loop,
|
|
|
|
** the Mem.uTemp field of each term should hold the serial-type that will
|
|
|
|
** be used for that term in the generated record:
|
|
|
|
**
|
|
|
|
** Mem.uTemp value type
|
|
|
|
** --------------- ---------------
|
|
|
|
** 0 NULL
|
|
|
|
** 1 1-byte signed integer
|
|
|
|
** 2 2-byte signed integer
|
|
|
|
** 3 3-byte signed integer
|
|
|
|
** 4 4-byte signed integer
|
|
|
|
** 5 6-byte signed integer
|
|
|
|
** 6 8-byte signed integer
|
|
|
|
** 7 IEEE float
|
|
|
|
** 8 Integer constant 0
|
|
|
|
** 9 Integer constant 1
|
|
|
|
** 10,11 reserved for expansion
|
|
|
|
** N>=12 and even BLOB
|
|
|
|
** N>=13 and odd text
|
|
|
|
**
|
|
|
|
** The following additional values are computed:
|
|
|
|
** nHdr Number of bytes needed for the record header
|
|
|
|
** nData Number of bytes of data space needed for the record
|
|
|
|
** nZero Zero bytes at the end of the record
|
|
|
|
*/
|
|
|
|
pRec = pLast;
|
|
|
|
do{
|
|
|
|
assert( memIsValid(pRec) );
|
|
|
|
if( pRec->flags & MEM_Null ){
|
|
|
|
if( pRec->flags & MEM_Zero ){
|
|
|
|
/* Values with MEM_Null and MEM_Zero are created by xColumn virtual
|
|
|
|
** table methods that never invoke sqlite3_result_xxxxx() while
|
|
|
|
** computing an unchanging column value in an UPDATE statement.
|
|
|
|
** Give such values a special internal-use-only serial-type of 10
|
|
|
|
** so that they can be passed through to xUpdate and have
|
|
|
|
** a true sqlite3_value_nochange(). */
|
|
|
|
#ifndef SQLITE_ENABLE_NULL_TRIM
|
|
|
|
assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
|
|
|
|
#endif
|
|
|
|
pRec->uTemp = 10;
|
|
|
|
}else{
|
|
|
|
pRec->uTemp = 0;
|
|
|
|
}
|
|
|
|
nHdr++;
|
|
|
|
}else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
|
|
|
|
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
|
|
|
|
i64 i = pRec->u.i;
|
|
|
|
u64 uu;
|
|
|
|
testcase( pRec->flags & MEM_Int );
|
|
|
|
testcase( pRec->flags & MEM_IntReal );
|
|
|
|
if( i<0 ){
|
|
|
|
uu = ~i;
|
|
|
|
}else{
|
|
|
|
uu = i;
|
|
|
|
}
|
|
|
|
nHdr++;
|
|
|
|
testcase( uu==127 ); testcase( uu==128 );
|
|
|
|
testcase( uu==32767 ); testcase( uu==32768 );
|
|
|
|
testcase( uu==8388607 ); testcase( uu==8388608 );
|
2022-11-28 20:54:48 +00:00
|
|
|
testcase( uu==2147483647 ); testcase( uu==2147483648LL );
|
2021-05-14 09:07:09 +00:00
|
|
|
testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
|
|
|
|
if( uu<=127 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (i&1)==i && p->minWriteFileFormat>=4 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
pRec->uTemp = 8+(u32)uu;
|
|
|
|
}else{
|
|
|
|
nData++;
|
|
|
|
pRec->uTemp = 1;
|
|
|
|
}
|
|
|
|
}else if( uu<=32767 ){
|
|
|
|
nData += 2;
|
|
|
|
pRec->uTemp = 2;
|
|
|
|
}else if( uu<=8388607 ){
|
|
|
|
nData += 3;
|
|
|
|
pRec->uTemp = 3;
|
|
|
|
}else if( uu<=2147483647 ){
|
|
|
|
nData += 4;
|
|
|
|
pRec->uTemp = 4;
|
|
|
|
}else if( uu<=140737488355327LL ){
|
|
|
|
nData += 6;
|
|
|
|
pRec->uTemp = 5;
|
|
|
|
}else{
|
|
|
|
nData += 8;
|
|
|
|
if( pRec->flags & MEM_IntReal ){
|
|
|
|
/* If the value is IntReal and is going to take up 8 bytes to store
|
|
|
|
** as an integer, then we might as well make it an 8-byte floating
|
|
|
|
** point value */
|
|
|
|
pRec->u.r = (double)pRec->u.i;
|
|
|
|
pRec->flags &= ~MEM_IntReal;
|
|
|
|
pRec->flags |= MEM_Real;
|
|
|
|
pRec->uTemp = 7;
|
|
|
|
}else{
|
|
|
|
pRec->uTemp = 6;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else if( pRec->flags & MEM_Real ){
|
|
|
|
nHdr++;
|
|
|
|
nData += 8;
|
|
|
|
pRec->uTemp = 7;
|
|
|
|
}else{
|
|
|
|
assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
|
|
|
|
assert( pRec->n>=0 );
|
|
|
|
len = (u32)pRec->n;
|
|
|
|
serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
|
|
|
|
if( pRec->flags & MEM_Zero ){
|
|
|
|
serial_type += pRec->u.nZero*2;
|
|
|
|
if( nData ){
|
|
|
|
if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
|
|
|
|
len += pRec->u.nZero;
|
|
|
|
}else{
|
|
|
|
nZero += pRec->u.nZero;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nData += len;
|
|
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
|
|
pRec->uTemp = serial_type;
|
|
|
|
}
|
|
|
|
if( pRec==pData0 ) break;
|
|
|
|
pRec--;
|
|
|
|
}while(1);
|
|
|
|
|
|
|
|
/* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
|
|
|
|
** which determines the total number of bytes in the header. The varint
|
|
|
|
** value is the size of the header in bytes including the size varint
|
|
|
|
** itself. */
|
|
|
|
testcase( nHdr==126 );
|
|
|
|
testcase( nHdr==127 );
|
|
|
|
if( nHdr<=126 ){
|
|
|
|
/* The common case */
|
|
|
|
nHdr += 1;
|
|
|
|
}else{
|
|
|
|
/* Rare case of a really large header */
|
|
|
|
nVarint = sqlite3VarintLen(nHdr);
|
|
|
|
nHdr += nVarint;
|
|
|
|
if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
|
|
|
|
}
|
|
|
|
nByte = nHdr+nData;
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* Make sure the output register has a buffer large enough to store
|
2021-05-14 09:07:09 +00:00
|
|
|
** the new record. The output register (pOp->p3) is not allowed to
|
|
|
|
** be one of the input registers (because the following call to
|
|
|
|
** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
|
|
|
|
*/
|
|
|
|
if( nByte+nZero<=pOut->szMalloc ){
|
|
|
|
/* The output register is already large enough to hold the record.
|
|
|
|
** No error checks or buffer enlargement is required */
|
|
|
|
pOut->z = pOut->zMalloc;
|
|
|
|
}else{
|
|
|
|
/* Need to make sure that the output is not too big and then enlarge
|
|
|
|
** the output register to hold the full result */
|
|
|
|
if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
|
|
goto too_big;
|
|
|
|
}
|
|
|
|
if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
|
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pOut->n = (int)nByte;
|
|
|
|
pOut->flags = MEM_Blob;
|
|
|
|
if( nZero ){
|
|
|
|
pOut->u.nZero = nZero;
|
|
|
|
pOut->flags |= MEM_Zero;
|
|
|
|
}
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
zHdr = (u8 *)pOut->z;
|
|
|
|
zPayload = zHdr + nHdr;
|
|
|
|
|
|
|
|
/* Write the record */
|
2022-11-28 20:54:48 +00:00
|
|
|
if( nHdr<0x80 ){
|
|
|
|
*(zHdr++) = nHdr;
|
|
|
|
}else{
|
|
|
|
zHdr += sqlite3PutVarint(zHdr,nHdr);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pData0<=pLast );
|
|
|
|
pRec = pData0;
|
2022-11-28 20:54:48 +00:00
|
|
|
while( 1 /*exit-by-break*/ ){
|
2021-05-14 09:07:09 +00:00
|
|
|
serial_type = pRec->uTemp;
|
|
|
|
/* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
|
2022-11-28 20:54:48 +00:00
|
|
|
** additional varints, one per column.
|
|
|
|
** EVIDENCE-OF: R-64536-51728 The values for each column in the record
|
2021-05-14 09:07:09 +00:00
|
|
|
** immediately follow the header. */
|
2022-11-28 20:54:48 +00:00
|
|
|
if( serial_type<=7 ){
|
|
|
|
*(zHdr++) = serial_type;
|
|
|
|
if( serial_type==0 ){
|
|
|
|
/* NULL value. No change in zPayload */
|
|
|
|
}else{
|
|
|
|
u64 v;
|
|
|
|
u32 i;
|
|
|
|
if( serial_type==7 ){
|
|
|
|
assert( sizeof(v)==sizeof(pRec->u.r) );
|
|
|
|
memcpy(&v, &pRec->u.r, sizeof(v));
|
|
|
|
swapMixedEndianFloat(v);
|
|
|
|
}else{
|
|
|
|
v = pRec->u.i;
|
|
|
|
}
|
|
|
|
len = i = sqlite3SmallTypeSizes[serial_type];
|
|
|
|
assert( i>0 );
|
|
|
|
while( 1 /*exit-by-break*/ ){
|
|
|
|
zPayload[--i] = (u8)(v&0xFF);
|
|
|
|
if( i==0 ) break;
|
|
|
|
v >>= 8;
|
|
|
|
}
|
|
|
|
zPayload += len;
|
|
|
|
}
|
|
|
|
}else if( serial_type<0x80 ){
|
|
|
|
*(zHdr++) = serial_type;
|
|
|
|
if( serial_type>=14 && pRec->n>0 ){
|
|
|
|
assert( pRec->z!=0 );
|
|
|
|
memcpy(zPayload, pRec->z, pRec->n);
|
|
|
|
zPayload += pRec->n;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
zHdr += sqlite3PutVarint(zHdr, serial_type);
|
|
|
|
if( pRec->n ){
|
|
|
|
assert( pRec->z!=0 );
|
|
|
|
memcpy(zPayload, pRec->z, pRec->n);
|
|
|
|
zPayload += pRec->n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pRec==pLast ) break;
|
|
|
|
pRec++;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
|
|
|
|
assert( nByte==(int)(zPayload - (u8*)pOut->z) );
|
|
|
|
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: Count P1 P2 P3 * *
|
2021-05-14 09:07:09 +00:00
|
|
|
** Synopsis: r[P2]=count()
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Store the number of entries (an integer value) in the table or index
|
2021-05-14 09:07:09 +00:00
|
|
|
** opened by cursor P1 in register P2.
|
|
|
|
**
|
|
|
|
** If P3==0, then an exact count is obtained, which involves visiting
|
|
|
|
** every btree page of the table. But if P3 is non-zero, an estimate
|
2022-07-22 04:46:07 +00:00
|
|
|
** is returned based on the current cursor position.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Count: { /* out2 */
|
|
|
|
i64 nEntry;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
|
|
|
|
assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
|
|
|
|
pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
|
|
|
|
assert( pCrsr );
|
|
|
|
if( pOp->p3 ){
|
|
|
|
nEntry = sqlite3BtreeRowCountEst(pCrsr);
|
|
|
|
}else{
|
|
|
|
nEntry = 0; /* Not needed. Only used to silence a warning. */
|
|
|
|
rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = nEntry;
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Savepoint P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Open, release or rollback the savepoint named by parameter P4, depending
|
|
|
|
** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
|
|
|
|
** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
|
|
|
|
** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
|
|
|
|
*/
|
|
|
|
case OP_Savepoint: {
|
|
|
|
int p1; /* Value of P1 operand */
|
|
|
|
char *zName; /* Name of savepoint */
|
|
|
|
int nName;
|
|
|
|
Savepoint *pNew;
|
|
|
|
Savepoint *pSavepoint;
|
|
|
|
Savepoint *pTmp;
|
|
|
|
int iSavepoint;
|
|
|
|
int ii;
|
|
|
|
|
|
|
|
p1 = pOp->p1;
|
|
|
|
zName = pOp->p4.z;
|
|
|
|
|
|
|
|
/* Assert that the p1 parameter is valid. Also that if there is no open
|
2022-07-22 04:46:07 +00:00
|
|
|
** transaction, then there cannot be any savepoints.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
assert( db->pSavepoint==0 || db->autoCommit==0 );
|
|
|
|
assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
|
|
|
|
assert( db->pSavepoint || db->isTransactionSavepoint==0 );
|
|
|
|
assert( checkSavepointCount(db) );
|
|
|
|
assert( p->bIsReader );
|
|
|
|
|
|
|
|
if( p1==SAVEPOINT_BEGIN ){
|
|
|
|
if( db->nVdbeWrite>0 ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* A new savepoint cannot be created if there are active write
|
2021-05-14 09:07:09 +00:00
|
|
|
** statements (i.e. open read/write incremental blob handles).
|
|
|
|
*/
|
|
|
|
sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
|
|
|
|
rc = SQLITE_BUSY;
|
|
|
|
}else{
|
|
|
|
nName = sqlite3Strlen30(zName);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* This call is Ok even if this savepoint is actually a transaction
|
|
|
|
** savepoint (and therefore should not prompt xSavepoint()) callbacks.
|
|
|
|
** If this is a transaction savepoint being opened, it is guaranteed
|
|
|
|
** that the db->aVTrans[] array is empty. */
|
|
|
|
assert( db->autoCommit==0 || db->nVTrans==0 );
|
|
|
|
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
|
|
|
|
db->nStatement+db->nSavepoint);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Create a new savepoint structure. */
|
|
|
|
pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
|
|
|
|
if( pNew ){
|
|
|
|
pNew->zName = (char *)&pNew[1];
|
|
|
|
memcpy(pNew->zName, zName, nName+1);
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* If there is no open transaction, then mark this as a special
|
|
|
|
** "transaction savepoint". */
|
|
|
|
if( db->autoCommit ){
|
|
|
|
db->autoCommit = 0;
|
|
|
|
db->isTransactionSavepoint = 1;
|
|
|
|
}else{
|
|
|
|
db->nSavepoint++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Link the new savepoint into the database handle's list. */
|
|
|
|
pNew->pNext = db->pSavepoint;
|
|
|
|
db->pSavepoint = pNew;
|
|
|
|
pNew->nDeferredCons = db->nDeferredCons;
|
|
|
|
pNew->nDeferredImmCons = db->nDeferredImmCons;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
|
|
|
|
iSavepoint = 0;
|
|
|
|
|
|
|
|
/* Find the named savepoint. If there is no such savepoint, then an
|
|
|
|
** an error is returned to the user. */
|
|
|
|
for(
|
2022-07-22 04:46:07 +00:00
|
|
|
pSavepoint = db->pSavepoint;
|
2021-05-14 09:07:09 +00:00
|
|
|
pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
|
|
|
|
pSavepoint = pSavepoint->pNext
|
|
|
|
){
|
|
|
|
iSavepoint++;
|
|
|
|
}
|
|
|
|
if( !pSavepoint ){
|
|
|
|
sqlite3VdbeError(p, "no such savepoint: %s", zName);
|
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
}else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* It is not possible to release (commit) a savepoint if there are
|
2021-05-14 09:07:09 +00:00
|
|
|
** active write statements.
|
|
|
|
*/
|
|
|
|
sqlite3VdbeError(p, "cannot release savepoint - "
|
|
|
|
"SQL statements in progress");
|
|
|
|
rc = SQLITE_BUSY;
|
|
|
|
}else{
|
|
|
|
|
|
|
|
/* Determine whether or not this is a transaction savepoint. If so,
|
2022-07-22 04:46:07 +00:00
|
|
|
** and this is a RELEASE command, then the current transaction
|
|
|
|
** is committed.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
|
|
|
|
if( isTransaction && p1==SAVEPOINT_RELEASE ){
|
|
|
|
if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
db->autoCommit = 1;
|
|
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
|
|
p->pc = (int)(pOp - aOp);
|
|
|
|
db->autoCommit = 0;
|
|
|
|
p->rc = rc = SQLITE_BUSY;
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
rc = p->rc;
|
|
|
|
if( rc ){
|
|
|
|
db->autoCommit = 0;
|
|
|
|
}else{
|
|
|
|
db->isTransactionSavepoint = 0;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
int isSchemaChange;
|
|
|
|
iSavepoint = db->nSavepoint - iSavepoint - 1;
|
|
|
|
if( p1==SAVEPOINT_ROLLBACK ){
|
|
|
|
isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
|
|
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
|
|
rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
|
|
|
|
SQLITE_ABORT_ROLLBACK,
|
|
|
|
isSchemaChange==0);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( p1==SAVEPOINT_RELEASE );
|
|
|
|
isSchemaChange = 0;
|
|
|
|
}
|
|
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
|
|
rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( isSchemaChange ){
|
|
|
|
sqlite3ExpirePreparedStatements(db, 0);
|
|
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
2022-07-22 04:46:07 +00:00
|
|
|
|
|
|
|
/* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
|
2021-05-14 09:07:09 +00:00
|
|
|
** savepoints nested inside of the savepoint being operated on. */
|
|
|
|
while( db->pSavepoint!=pSavepoint ){
|
|
|
|
pTmp = db->pSavepoint;
|
|
|
|
db->pSavepoint = pTmp->pNext;
|
|
|
|
sqlite3DbFree(db, pTmp);
|
|
|
|
db->nSavepoint--;
|
|
|
|
}
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* If it is a RELEASE, then destroy the savepoint being operated on
|
|
|
|
** too. If it is a ROLLBACK TO, then set the number of deferred
|
2021-05-14 09:07:09 +00:00
|
|
|
** constraint violations present in the database to the value stored
|
|
|
|
** when the savepoint was created. */
|
|
|
|
if( p1==SAVEPOINT_RELEASE ){
|
|
|
|
assert( pSavepoint==db->pSavepoint );
|
|
|
|
db->pSavepoint = pSavepoint->pNext;
|
|
|
|
sqlite3DbFree(db, pSavepoint);
|
|
|
|
if( !isTransaction ){
|
|
|
|
db->nSavepoint--;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( p1==SAVEPOINT_ROLLBACK );
|
|
|
|
db->nDeferredCons = pSavepoint->nDeferredCons;
|
|
|
|
db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
|
|
|
|
rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( p->eVdbeState==VDBE_HALT_STATE ){
|
|
|
|
rc = SQLITE_DONE;
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: AutoCommit P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
|
|
** back any currently active btree transactions. If there are any active
|
|
|
|
** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
|
|
|
|
** there are active writing VMs or active VMs that use shared cache.
|
|
|
|
**
|
|
|
|
** This instruction causes the VM to halt.
|
|
|
|
*/
|
|
|
|
case OP_AutoCommit: {
|
|
|
|
int desiredAutoCommit;
|
|
|
|
int iRollback;
|
|
|
|
|
|
|
|
desiredAutoCommit = pOp->p1;
|
|
|
|
iRollback = pOp->p2;
|
|
|
|
assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
|
|
|
|
assert( desiredAutoCommit==1 || iRollback==0 );
|
|
|
|
assert( db->nVdbeActive>0 ); /* At least this one VM is active */
|
|
|
|
assert( p->bIsReader );
|
|
|
|
|
|
|
|
if( desiredAutoCommit!=db->autoCommit ){
|
|
|
|
if( iRollback ){
|
|
|
|
assert( desiredAutoCommit==1 );
|
|
|
|
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
|
|
|
db->autoCommit = 1;
|
|
|
|
}else if( desiredAutoCommit && db->nVdbeWrite>0 ){
|
|
|
|
/* If this instruction implements a COMMIT and other VMs are writing
|
2022-07-22 04:46:07 +00:00
|
|
|
** return an error indicating that the other VMs must complete first.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
sqlite3VdbeError(p, "cannot commit transaction - "
|
|
|
|
"SQL statements in progress");
|
|
|
|
rc = SQLITE_BUSY;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
|
|
|
goto vdbe_return;
|
|
|
|
}else{
|
|
|
|
db->autoCommit = (u8)desiredAutoCommit;
|
|
|
|
}
|
|
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
|
|
p->pc = (int)(pOp - aOp);
|
|
|
|
db->autoCommit = (u8)(1-desiredAutoCommit);
|
|
|
|
p->rc = rc = SQLITE_BUSY;
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
sqlite3CloseSavepoints(db);
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
|
|
rc = SQLITE_DONE;
|
|
|
|
}else{
|
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
}
|
|
|
|
goto vdbe_return;
|
|
|
|
}else{
|
|
|
|
sqlite3VdbeError(p,
|
|
|
|
(!desiredAutoCommit)?"cannot start a transaction within a transaction":(
|
|
|
|
(iRollback)?"cannot rollback - no transaction is active":
|
|
|
|
"cannot commit - no transaction is active"));
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
/*NOTREACHED*/ assert(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Transaction P1 P2 P3 P4 P5
|
|
|
|
**
|
|
|
|
** Begin a transaction on database P1 if a transaction is not already
|
|
|
|
** active.
|
2022-07-22 04:46:07 +00:00
|
|
|
** If P2 is non-zero, then a write-transaction is started, or if a
|
2021-05-14 09:07:09 +00:00
|
|
|
** read-transaction is already active, it is upgraded to a write-transaction.
|
|
|
|
** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
|
|
|
|
** then an exclusive transaction is started.
|
|
|
|
**
|
|
|
|
** P1 is the index of the database file on which the transaction is
|
|
|
|
** started. Index 0 is the main database file and index 1 is the
|
|
|
|
** file used for temporary tables. Indices of 2 or more are used for
|
|
|
|
** attached databases.
|
|
|
|
**
|
|
|
|
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
|
|
|
|
** true (this flag is set if the Vdbe may modify more than one row and may
|
|
|
|
** throw an ABORT exception), a statement transaction may also be opened.
|
|
|
|
** More specifically, a statement transaction is opened iff the database
|
|
|
|
** connection is currently not in autocommit mode, or if there are other
|
|
|
|
** active statements. A statement transaction allows the changes made by this
|
|
|
|
** VDBE to be rolled back after an error without having to roll back the
|
|
|
|
** entire transaction. If no error is encountered, the statement transaction
|
|
|
|
** will automatically commit when the VDBE halts.
|
|
|
|
**
|
|
|
|
** If P5!=0 then this opcode also checks the schema cookie against P3
|
|
|
|
** and the schema generation counter against P4.
|
|
|
|
** The cookie changes its value whenever the database schema changes.
|
|
|
|
** This operation is used to detect when that the cookie has changed
|
|
|
|
** and that the current process needs to reread the schema. If the schema
|
|
|
|
** cookie in P3 differs from the schema cookie in the database header or
|
|
|
|
** if the schema generation counter in P4 differs from the current
|
|
|
|
** generation counter, then an SQLITE_SCHEMA error is raised and execution
|
|
|
|
** halts. The sqlite3_step() wrapper function might then reprepare the
|
|
|
|
** statement and rerun it from the beginning.
|
|
|
|
*/
|
|
|
|
case OP_Transaction: {
|
|
|
|
Btree *pBt;
|
2022-11-28 20:54:48 +00:00
|
|
|
Db *pDb;
|
2021-05-14 09:07:09 +00:00
|
|
|
int iMeta = 0;
|
|
|
|
|
|
|
|
assert( p->bIsReader );
|
|
|
|
assert( p->readOnly==0 || pOp->p2==0 );
|
|
|
|
assert( pOp->p2>=0 && pOp->p2<=2 );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
|
|
|
|
if( db->flags & SQLITE_QueryOnly ){
|
|
|
|
/* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
|
|
|
|
rc = SQLITE_READONLY;
|
|
|
|
}else{
|
|
|
|
/* Writes prohibited due to a prior SQLITE_CORRUPT in the current
|
|
|
|
** transaction */
|
|
|
|
rc = SQLITE_CORRUPT;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
pDb = &db->aDb[pOp->p1];
|
|
|
|
pBt = pDb->pBt;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
if( pBt ){
|
|
|
|
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
|
|
|
|
testcase( rc==SQLITE_BUSY_SNAPSHOT );
|
|
|
|
testcase( rc==SQLITE_BUSY_RECOVERY );
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
if( (rc&0xff)==SQLITE_BUSY ){
|
|
|
|
p->pc = (int)(pOp - aOp);
|
|
|
|
p->rc = rc;
|
|
|
|
goto vdbe_return;
|
|
|
|
}
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( p->usesStmtJournal
|
|
|
|
&& pOp->p2
|
2022-07-22 04:46:07 +00:00
|
|
|
&& (db->autoCommit==0 || db->nVdbeRead>1)
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
|
|
|
assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
|
|
|
|
if( p->iStatement==0 ){
|
|
|
|
assert( db->nStatement>=0 && db->nSavepoint>=0 );
|
2022-07-22 04:46:07 +00:00
|
|
|
db->nStatement++;
|
2021-05-14 09:07:09 +00:00
|
|
|
p->iStatement = db->nSavepoint + db->nStatement;
|
|
|
|
}
|
|
|
|
|
|
|
|
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Store the current value of the database handles deferred constraint
|
|
|
|
** counter. If the statement transaction needs to be rolled back,
|
|
|
|
** the value of this counter needs to be restored too. */
|
|
|
|
p->nStmtDefCons = db->nDeferredCons;
|
|
|
|
p->nStmtDefImmCons = db->nDeferredImmCons;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
|
2022-11-28 20:54:48 +00:00
|
|
|
if( rc==SQLITE_OK
|
|
|
|
&& pOp->p5
|
|
|
|
&& (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
|
|
|
/*
|
|
|
|
** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
|
|
|
|
** version is checked to ensure that the schema has not changed since the
|
|
|
|
** SQL statement was prepared.
|
|
|
|
*/
|
|
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
|
|
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
2022-07-22 04:46:07 +00:00
|
|
|
/* If the schema-cookie from the database file matches the cookie
|
2021-05-14 09:07:09 +00:00
|
|
|
** stored with the in-memory representation of the schema, do
|
|
|
|
** not reload the schema from the database file.
|
|
|
|
**
|
|
|
|
** If virtual-tables are in use, this is not just an optimization.
|
|
|
|
** Often, v-tables store their data in other SQLite tables, which
|
|
|
|
** are queried from within xNext() and other v-table methods using
|
|
|
|
** prepared queries. If such a query is out-of-date, we do not want to
|
|
|
|
** discard the database schema, as the user code implementing the
|
|
|
|
** v-table would have to be ready for the sqlite3_vtab structure itself
|
2022-07-22 04:46:07 +00:00
|
|
|
** to be invalidated whenever sqlite3_step() is called from within
|
2021-05-14 09:07:09 +00:00
|
|
|
** a v-table method.
|
|
|
|
*/
|
|
|
|
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
|
|
|
sqlite3ResetOneSchema(db, pOp->p1);
|
|
|
|
}
|
|
|
|
p->expired = 1;
|
|
|
|
rc = SQLITE_SCHEMA;
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
|
|
|
|
** from being modified in sqlite3VdbeHalt(). If this statement is
|
|
|
|
** reprepared, changeCntOn will be set again. */
|
|
|
|
p->changeCntOn = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: ReadCookie P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Read cookie number P3 from database P1 and write it into register P2.
|
|
|
|
** P3==1 is the schema version. P3==2 is the database format.
|
|
|
|
** P3==3 is the recommended pager cache size, and so forth. P1==0 is
|
|
|
|
** the main database file and P1==1 is the database file used to store
|
|
|
|
** temporary tables.
|
|
|
|
**
|
|
|
|
** There must be a read-lock on the database (either a transaction
|
|
|
|
** must be started or there must be an open cursor) before
|
|
|
|
** executing this instruction.
|
|
|
|
*/
|
|
|
|
case OP_ReadCookie: { /* out2 */
|
|
|
|
int iMeta;
|
|
|
|
int iDb;
|
|
|
|
int iCookie;
|
|
|
|
|
|
|
|
assert( p->bIsReader );
|
|
|
|
iDb = pOp->p1;
|
|
|
|
iCookie = pOp->p3;
|
|
|
|
assert( pOp->p3<SQLITE_N_BTREE_META );
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
|
|
assert( DbMaskTest(p->btreeMask, iDb) );
|
|
|
|
|
|
|
|
sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = iMeta;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SetCookie P1 P2 P3 * P5
|
|
|
|
**
|
|
|
|
** Write the integer value P3 into cookie number P2 of database P1.
|
|
|
|
** P2==1 is the schema version. P2==2 is the database format.
|
2022-07-22 04:46:07 +00:00
|
|
|
** P2==3 is the recommended pager cache
|
|
|
|
** size, and so forth. P1==0 is the main database file and P1==1 is the
|
2021-05-14 09:07:09 +00:00
|
|
|
** database file used to store temporary tables.
|
|
|
|
**
|
|
|
|
** A transaction must be started before executing this opcode.
|
|
|
|
**
|
|
|
|
** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
|
|
|
|
** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
|
|
|
|
** has P5 set to 1, so that the internal schema version will be different
|
|
|
|
** from the database schema version, resulting in a schema reset.
|
|
|
|
*/
|
|
|
|
case OP_SetCookie: {
|
|
|
|
Db *pDb;
|
|
|
|
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
pDb = &db->aDb[pOp->p1];
|
|
|
|
assert( pDb->pBt!=0 );
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
|
|
|
|
/* See note about index shifting on OP_ReadCookie */
|
|
|
|
rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
|
|
|
|
if( pOp->p2==BTREE_SCHEMA_VERSION ){
|
|
|
|
/* When the schema cookie changes, record the new cookie internally */
|
2022-11-28 20:54:48 +00:00
|
|
|
*(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
|
2021-05-14 09:07:09 +00:00
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3FkClearTriggerCache(db, pOp->p1);
|
2021-05-14 09:07:09 +00:00
|
|
|
}else if( pOp->p2==BTREE_FILE_FORMAT ){
|
|
|
|
/* Record changes in the file format */
|
|
|
|
pDb->pSchema->file_format = pOp->p3;
|
|
|
|
}
|
|
|
|
if( pOp->p1==1 ){
|
|
|
|
/* Invalidate all prepared statements whenever the TEMP database
|
|
|
|
** schema is changed. Ticket #1644 */
|
|
|
|
sqlite3ExpirePreparedStatements(db, 0);
|
|
|
|
p->expired = 0;
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: root=P2 iDb=P3
|
|
|
|
**
|
|
|
|
** Open a read-only cursor for the database table whose root page is
|
2022-07-22 04:46:07 +00:00
|
|
|
** P2 in a database file. The database file is determined by P3.
|
|
|
|
** P3==0 means the main database, P3==1 means the database used for
|
2021-05-14 09:07:09 +00:00
|
|
|
** temporary tables, and P3>1 means used the corresponding attached
|
|
|
|
** database. Give the new cursor an identifier of P1. The P1
|
|
|
|
** values need not be contiguous but all P1 values should be small integers.
|
|
|
|
** It is an error for P1 to be negative.
|
|
|
|
**
|
|
|
|
** Allowed P5 bits:
|
|
|
|
** <ul>
|
|
|
|
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
|
|
|
|
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
|
|
|
|
** of OP_SeekLE/OP_IdxLT)
|
|
|
|
** </ul>
|
|
|
|
**
|
|
|
|
** The P4 value may be either an integer (P4_INT32) or a pointer to
|
2022-07-22 04:46:07 +00:00
|
|
|
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
2021-05-14 09:07:09 +00:00
|
|
|
** object, then table being opened must be an [index b-tree] where the
|
2022-07-22 04:46:07 +00:00
|
|
|
** KeyInfo object defines the content and collating
|
|
|
|
** sequence of that index b-tree. Otherwise, if P4 is an integer
|
2021-05-14 09:07:09 +00:00
|
|
|
** value, then the table being opened must be a [table b-tree] with a
|
|
|
|
** number of columns no less than the value of P4.
|
|
|
|
**
|
|
|
|
** See also: OpenWrite, ReopenIdx
|
|
|
|
*/
|
|
|
|
/* Opcode: ReopenIdx P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: root=P2 iDb=P3
|
|
|
|
**
|
|
|
|
** The ReopenIdx opcode works like OP_OpenRead except that it first
|
|
|
|
** checks to see if the cursor on P1 is already open on the same
|
|
|
|
** b-tree and if it is this opcode becomes a no-op. In other words,
|
|
|
|
** if the cursor is already open, do not reopen it.
|
|
|
|
**
|
|
|
|
** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
|
|
|
|
** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
|
|
|
|
** be the same as every other ReopenIdx or OpenRead for the same cursor
|
|
|
|
** number.
|
|
|
|
**
|
|
|
|
** Allowed P5 bits:
|
|
|
|
** <ul>
|
|
|
|
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
|
|
|
|
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
|
|
|
|
** of OP_SeekLE/OP_IdxLT)
|
|
|
|
** </ul>
|
|
|
|
**
|
|
|
|
** See also: OP_OpenRead, OP_OpenWrite
|
|
|
|
*/
|
|
|
|
/* Opcode: OpenWrite P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: root=P2 iDb=P3
|
|
|
|
**
|
|
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
|
|
** page is P2 (or whose root page is held in register P2 if the
|
|
|
|
** OPFLAG_P2ISREG bit is set in P5 - see below).
|
|
|
|
**
|
|
|
|
** The P4 value may be either an integer (P4_INT32) or a pointer to
|
2022-07-22 04:46:07 +00:00
|
|
|
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
2021-05-14 09:07:09 +00:00
|
|
|
** object, then table being opened must be an [index b-tree] where the
|
2022-07-22 04:46:07 +00:00
|
|
|
** KeyInfo object defines the content and collating
|
|
|
|
** sequence of that index b-tree. Otherwise, if P4 is an integer
|
2021-05-14 09:07:09 +00:00
|
|
|
** value, then the table being opened must be a [table b-tree] with a
|
|
|
|
** number of columns no less than the value of P4.
|
|
|
|
**
|
|
|
|
** Allowed P5 bits:
|
|
|
|
** <ul>
|
|
|
|
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
|
|
|
|
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
|
|
|
|
** of OP_SeekLE/OP_IdxLT)
|
|
|
|
** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
|
|
|
|
** and subsequently delete entries in an index btree. This is a
|
|
|
|
** hint to the storage engine that the storage engine is allowed to
|
|
|
|
** ignore. The hint is not used by the official SQLite b*tree storage
|
|
|
|
** engine, but is used by COMDB2.
|
|
|
|
** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
|
|
|
|
** as the root page, not the value of P2 itself.
|
|
|
|
** </ul>
|
|
|
|
**
|
|
|
|
** This instruction works like OpenRead except that it opens the cursor
|
|
|
|
** in read/write mode.
|
|
|
|
**
|
|
|
|
** See also: OP_OpenRead, OP_ReopenIdx
|
|
|
|
*/
|
|
|
|
case OP_ReopenIdx: {
|
|
|
|
int nField;
|
|
|
|
KeyInfo *pKeyInfo;
|
|
|
|
u32 p2;
|
|
|
|
int iDb;
|
|
|
|
int wrFlag;
|
|
|
|
Btree *pX;
|
|
|
|
VdbeCursor *pCur;
|
|
|
|
Db *pDb;
|
|
|
|
|
|
|
|
assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
|
|
|
|
assert( pOp->p4type==P4_KEYINFO );
|
|
|
|
pCur = p->apCsr[pOp->p1];
|
|
|
|
if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
|
|
|
|
assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCur->eCurType==CURTYPE_BTREE );
|
|
|
|
sqlite3BtreeClearCursor(pCur->uc.pCursor);
|
2021-05-14 09:07:09 +00:00
|
|
|
goto open_cursor_set_hints;
|
|
|
|
}
|
|
|
|
/* If the cursor is not currently open or is open on a different
|
|
|
|
** index, then fall through into OP_OpenRead to force a reopen */
|
|
|
|
case OP_OpenRead:
|
|
|
|
case OP_OpenWrite:
|
|
|
|
|
|
|
|
assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
|
|
|
|
assert( p->bIsReader );
|
|
|
|
assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
|
|
|
|
|| p->readOnly==0 );
|
|
|
|
|
|
|
|
if( p->expired==1 ){
|
|
|
|
rc = SQLITE_ABORT_ROLLBACK;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
nField = 0;
|
|
|
|
pKeyInfo = 0;
|
|
|
|
p2 = (u32)pOp->p2;
|
|
|
|
iDb = pOp->p3;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, iDb) );
|
|
|
|
pDb = &db->aDb[iDb];
|
|
|
|
pX = pDb->pBt;
|
|
|
|
assert( pX!=0 );
|
|
|
|
if( pOp->opcode==OP_OpenWrite ){
|
|
|
|
assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
|
|
|
|
wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
|
|
|
p->minWriteFileFormat = pDb->pSchema->file_format;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
wrFlag = 0;
|
|
|
|
}
|
|
|
|
if( pOp->p5 & OPFLAG_P2ISREG ){
|
|
|
|
assert( p2>0 );
|
|
|
|
assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( pOp->opcode==OP_OpenWrite );
|
|
|
|
pIn2 = &aMem[p2];
|
|
|
|
assert( memIsValid(pIn2) );
|
|
|
|
assert( (pIn2->flags & MEM_Int)!=0 );
|
|
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
|
|
p2 = (int)pIn2->u.i;
|
|
|
|
/* The p2 value always comes from a prior OP_CreateBtree opcode and
|
|
|
|
** that opcode will always set the p2 value to 2 or more or else fail.
|
|
|
|
** If there were a failure, the prepared statement would have halted
|
|
|
|
** before reaching this instruction. */
|
|
|
|
assert( p2>=2 );
|
|
|
|
}
|
|
|
|
if( pOp->p4type==P4_KEYINFO ){
|
|
|
|
pKeyInfo = pOp->p4.pKeyInfo;
|
|
|
|
assert( pKeyInfo->enc==ENC(db) );
|
|
|
|
assert( pKeyInfo->db==db );
|
|
|
|
nField = pKeyInfo->nAllField;
|
|
|
|
}else if( pOp->p4type==P4_INT32 ){
|
|
|
|
nField = pOp->p4.i;
|
|
|
|
}
|
|
|
|
assert( pOp->p1>=0 );
|
|
|
|
assert( nField>=0 );
|
|
|
|
testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
|
2022-11-28 20:54:48 +00:00
|
|
|
pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCur==0 ) goto no_mem;
|
2022-11-28 20:54:48 +00:00
|
|
|
pCur->iDb = iDb;
|
2021-05-14 09:07:09 +00:00
|
|
|
pCur->nullRow = 1;
|
|
|
|
pCur->isOrdered = 1;
|
|
|
|
pCur->pgnoRoot = p2;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pCur->wrFlag = wrFlag;
|
|
|
|
#endif
|
|
|
|
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
|
|
|
|
pCur->pKeyInfo = pKeyInfo;
|
|
|
|
/* Set the VdbeCursor.isTable variable. Previous versions of
|
|
|
|
** SQLite used to check if the root-page flags were sane at this point
|
|
|
|
** and report database corruption if they were not, but this check has
|
2022-07-22 04:46:07 +00:00
|
|
|
** since moved into the btree layer. */
|
2021-05-14 09:07:09 +00:00
|
|
|
pCur->isTable = pOp->p4type!=P4_KEYINFO;
|
|
|
|
|
|
|
|
open_cursor_set_hints:
|
|
|
|
assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
|
|
|
|
assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
|
|
|
|
testcase( pOp->p5 & OPFLAG_BULKCSR );
|
|
|
|
testcase( pOp->p2 & OPFLAG_SEEKEQ );
|
|
|
|
sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
|
|
|
|
(pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: OpenDup P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Open a new cursor P1 that points to the same ephemeral table as
|
|
|
|
** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
|
|
|
|
** opcode. Only ephemeral cursors may be duplicated.
|
|
|
|
**
|
|
|
|
** Duplicate ephemeral cursors are used for self-joins of materialized views.
|
|
|
|
*/
|
|
|
|
case OP_OpenDup: {
|
|
|
|
VdbeCursor *pOrig; /* The original cursor to be duplicated */
|
|
|
|
VdbeCursor *pCx; /* The new cursor */
|
|
|
|
|
|
|
|
pOrig = p->apCsr[pOp->p2];
|
|
|
|
assert( pOrig );
|
|
|
|
assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCx==0 ) goto no_mem;
|
|
|
|
pCx->nullRow = 1;
|
|
|
|
pCx->isEphemeral = 1;
|
|
|
|
pCx->pKeyInfo = pOrig->pKeyInfo;
|
|
|
|
pCx->isTable = pOrig->isTable;
|
|
|
|
pCx->pgnoRoot = pOrig->pgnoRoot;
|
|
|
|
pCx->isOrdered = pOrig->isOrdered;
|
2022-11-28 20:54:48 +00:00
|
|
|
pCx->ub.pBtx = pOrig->ub.pBtx;
|
|
|
|
pCx->noReuse = 1;
|
|
|
|
pOrig->noReuse = 1;
|
|
|
|
rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
|
2021-05-14 09:07:09 +00:00
|
|
|
pCx->pKeyInfo, pCx->uc.pCursor);
|
|
|
|
/* The sqlite3BtreeCursor() routine can only fail for the first cursor
|
|
|
|
** opened for a database. Since there is already an open cursor when this
|
|
|
|
** opcode is run, the sqlite3BtreeCursor() cannot fail */
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: OpenEphemeral P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: nColumn=P2
|
|
|
|
**
|
|
|
|
** Open a new cursor P1 to a transient table.
|
2022-07-22 04:46:07 +00:00
|
|
|
** The cursor is always opened read/write even if
|
2021-05-14 09:07:09 +00:00
|
|
|
** the main database is read-only. The ephemeral
|
|
|
|
** table is deleted automatically when the cursor is closed.
|
|
|
|
**
|
|
|
|
** If the cursor P1 is already opened on an ephemeral table, the table
|
|
|
|
** is cleared (all content is erased).
|
|
|
|
**
|
|
|
|
** P2 is the number of columns in the ephemeral table.
|
|
|
|
** The cursor points to a BTree table if P4==0 and to a BTree index
|
|
|
|
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
|
|
|
|
** that defines the format of keys in the index.
|
|
|
|
**
|
|
|
|
** The P5 parameter can be a mask of the BTREE_* flags defined
|
|
|
|
** in btree.h. These flags control aspects of the operation of
|
|
|
|
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
|
|
|
|
** added automatically.
|
|
|
|
**
|
|
|
|
** If P3 is positive, then reg[P3] is modified slightly so that it
|
|
|
|
** can be used as zero-length data for OP_Insert. This is an optimization
|
|
|
|
** that avoids an extra OP_Blob opcode to initialize that register.
|
|
|
|
*/
|
|
|
|
/* Opcode: OpenAutoindex P1 P2 * P4 *
|
|
|
|
** Synopsis: nColumn=P2
|
|
|
|
**
|
|
|
|
** This opcode works the same as OP_OpenEphemeral. It has a
|
|
|
|
** different name to distinguish its use. Tables created using
|
|
|
|
** by this opcode will be used for automatically created transient
|
|
|
|
** indices in joins.
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
case OP_OpenAutoindex:
|
2021-05-14 09:07:09 +00:00
|
|
|
case OP_OpenEphemeral: {
|
|
|
|
VdbeCursor *pCx;
|
|
|
|
KeyInfo *pKeyInfo;
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
static const int vfsFlags =
|
2021-05-14 09:07:09 +00:00
|
|
|
SQLITE_OPEN_READWRITE |
|
|
|
|
SQLITE_OPEN_CREATE |
|
|
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
|
|
SQLITE_OPEN_TRANSIENT_DB;
|
|
|
|
assert( pOp->p1>=0 );
|
|
|
|
assert( pOp->p2>=0 );
|
|
|
|
if( pOp->p3>0 ){
|
|
|
|
/* Make register reg[P3] into a value that can be used as the data
|
|
|
|
** form sqlite3BtreeInsert() where the length of the data is zero. */
|
|
|
|
assert( pOp->p2==0 ); /* Only used when number of columns is zero */
|
|
|
|
assert( pOp->opcode==OP_OpenEphemeral );
|
|
|
|
assert( aMem[pOp->p3].flags & MEM_Null );
|
|
|
|
aMem[pOp->p3].n = 0;
|
|
|
|
aMem[pOp->p3].z = "";
|
|
|
|
}
|
|
|
|
pCx = p->apCsr[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* If the ephermeral table is already open and has no duplicates from
|
|
|
|
** OP_OpenDup, then erase all existing content so that the table is
|
|
|
|
** empty again, rather than creating a new table. */
|
|
|
|
assert( pCx->isEphemeral );
|
|
|
|
pCx->seqCount = 0;
|
|
|
|
pCx->cacheStatus = CACHE_STALE;
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCx==0 ) goto no_mem;
|
|
|
|
pCx->isEphemeral = 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
|
2021-05-14 09:07:09 +00:00
|
|
|
BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
|
|
|
|
vfsFlags);
|
|
|
|
if( rc==SQLITE_OK ){
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
/* If a transient index is required, create it by calling
|
|
|
|
** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
|
|
|
|
** opening it. If a transient table is required, just use the
|
|
|
|
** automatically created table with root-page 1 (an BLOB_INTKEY table).
|
|
|
|
*/
|
|
|
|
if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
|
|
|
|
assert( pOp->p4type==P4_KEYINFO );
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
|
2022-07-22 04:46:07 +00:00
|
|
|
BTREE_BLOBKEY | pOp->p5);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
|
|
|
|
assert( pKeyInfo->db==db );
|
|
|
|
assert( pKeyInfo->enc==ENC(db) );
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
|
2021-05-14 09:07:09 +00:00
|
|
|
pKeyInfo, pCx->uc.pCursor);
|
|
|
|
}
|
|
|
|
pCx->isTable = 0;
|
|
|
|
}else{
|
|
|
|
pCx->pgnoRoot = SCHEMA_ROOT;
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
|
2021-05-14 09:07:09 +00:00
|
|
|
0, pCx->uc.pCursor);
|
|
|
|
pCx->isTable = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
|
|
|
|
if( rc ){
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3BtreeClose(pCx->ub.pBtx);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
pCx->nullRow = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SorterOpen P1 P2 P3 P4 *
|
|
|
|
**
|
|
|
|
** This opcode works like OP_OpenEphemeral except that it opens
|
|
|
|
** a transient index that is specifically designed to sort large
|
|
|
|
** tables using an external merge-sort algorithm.
|
|
|
|
**
|
|
|
|
** If argument P3 is non-zero, then it indicates that the sorter may
|
|
|
|
** assume that a stable sort considering the first P3 fields of each
|
|
|
|
** key is sufficient to produce the required results.
|
|
|
|
*/
|
|
|
|
case OP_SorterOpen: {
|
|
|
|
VdbeCursor *pCx;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 );
|
|
|
|
assert( pOp->p2>=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCx==0 ) goto no_mem;
|
|
|
|
pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
|
|
|
assert( pCx->pKeyInfo->db==db );
|
|
|
|
assert( pCx->pKeyInfo->enc==ENC(db) );
|
|
|
|
rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SequenceTest P1 P2 * * *
|
|
|
|
** Synopsis: if( cursor[P1].ctr++ ) pc = P2
|
|
|
|
**
|
|
|
|
** P1 is a sorter cursor. If the sequence counter is currently zero, jump
|
|
|
|
** to P2. Regardless of whether or not the jump is taken, increment the
|
|
|
|
** the sequence value.
|
|
|
|
*/
|
|
|
|
case OP_SequenceTest: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( isSorter(pC) );
|
|
|
|
if( (pC->seqCount++)==0 ){
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: OpenPseudo P1 P2 P3 * *
|
|
|
|
** Synopsis: P3 columns in r[P2]
|
|
|
|
**
|
|
|
|
** Open a new cursor that points to a fake table that contains a single
|
|
|
|
** row of data. The content of that one row is the content of memory
|
2022-07-22 04:46:07 +00:00
|
|
|
** register P2. In other words, cursor P1 becomes an alias for the
|
2021-05-14 09:07:09 +00:00
|
|
|
** MEM_Blob content contained in register P2.
|
|
|
|
**
|
|
|
|
** A pseudo-table created by this opcode is used to hold a single
|
|
|
|
** row output from the sorter so that the row can be decomposed into
|
|
|
|
** individual columns using the OP_Column opcode. The OP_Column opcode
|
|
|
|
** is the only cursor opcode that works with a pseudo-table.
|
|
|
|
**
|
|
|
|
** P3 is the number of fields in the records that will be stored by
|
|
|
|
** the pseudo-table.
|
|
|
|
*/
|
|
|
|
case OP_OpenPseudo: {
|
|
|
|
VdbeCursor *pCx;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 );
|
|
|
|
assert( pOp->p3>=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCx==0 ) goto no_mem;
|
|
|
|
pCx->nullRow = 1;
|
|
|
|
pCx->seekResult = pOp->p2;
|
|
|
|
pCx->isTable = 1;
|
|
|
|
/* Give this pseudo-cursor a fake BtCursor pointer so that pCx
|
|
|
|
** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
|
|
|
|
** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
|
|
|
|
** which is a performance optimization */
|
|
|
|
pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
|
|
|
|
assert( pOp->p5==0 );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Close P1 * * * *
|
|
|
|
**
|
|
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
|
|
** currently open, this instruction is a no-op.
|
|
|
|
*/
|
|
|
|
case OP_Close: {
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
|
|
|
|
p->apCsr[pOp->p1] = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
|
|
|
|
/* Opcode: ColumnsUsed P1 * * P4 *
|
|
|
|
**
|
|
|
|
** This opcode (which only exists if SQLite was compiled with
|
|
|
|
** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
|
|
|
|
** table or index for cursor P1 are used. P4 is a 64-bit integer
|
|
|
|
** (P4_INT64) in which the first 63 bits are one for each of the
|
|
|
|
** first 63 columns of the table or index that are actually used
|
|
|
|
** by the cursor. The high-order bit is set if any column after
|
|
|
|
** the 64th is used.
|
|
|
|
*/
|
|
|
|
case OP_ColumnsUsed: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
pC->maskUsed = *(u64*)pOp->p4.pI64;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Opcode: SeekGE P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
|
|
** use the value in register P3 as the key. If cursor P1 refers
|
|
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
|
|
** that are used as an unpacked index key.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
|
|
** is greater than or equal to the key value. If there are no records
|
2021-05-14 09:07:09 +00:00
|
|
|
** greater than or equal to the key and P2 is not zero, then jump to P2.
|
|
|
|
**
|
|
|
|
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
|
|
|
|
** opcode will either land on a record that exactly matches the key, or
|
|
|
|
** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
|
|
|
|
** this opcode must be followed by an IdxLE opcode with the same arguments.
|
|
|
|
** The IdxGT opcode will be skipped if this opcode succeeds, but the
|
2022-07-22 04:46:07 +00:00
|
|
|
** IdxGT opcode will be used on subsequent loop iterations. The
|
2021-05-14 09:07:09 +00:00
|
|
|
** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
|
|
|
|
** is an equality search.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in forward order,
|
|
|
|
** from the beginning toward the end. In other words, the cursor is
|
|
|
|
** configured to use Next, not Prev.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
|
|
|
|
*/
|
|
|
|
/* Opcode: SeekGT P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
|
|
** that are used as an unpacked index key.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
|
|
** is greater than the key value. If there are no records greater than
|
2021-05-14 09:07:09 +00:00
|
|
|
** the key and P2 is not zero, then jump to P2.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in forward order,
|
|
|
|
** from the beginning toward the end. In other words, the cursor is
|
|
|
|
** configured to use Next, not Prev.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
/* Opcode: SeekLT P1 P2 P3 P4 *
|
2021-05-14 09:07:09 +00:00
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
|
|
** that are used as an unpacked index key.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
|
|
** is less than the key value. If there are no records less than
|
2021-05-14 09:07:09 +00:00
|
|
|
** the key and P2 is not zero, then jump to P2.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in reverse order,
|
|
|
|
** from the end toward the beginning. In other words, the cursor is
|
|
|
|
** configured to use Prev, not Next.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
|
|
|
|
*/
|
|
|
|
/* Opcode: SeekLE P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
|
|
** that are used as an unpacked index key.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
|
|
** is less than or equal to the key value. If there are no records
|
2021-05-14 09:07:09 +00:00
|
|
|
** less than or equal to the key and P2 is not zero, then jump to P2.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in reverse order,
|
|
|
|
** from the end toward the beginning. In other words, the cursor is
|
|
|
|
** configured to use Prev, not Next.
|
|
|
|
**
|
|
|
|
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
|
|
|
|
** opcode will either land on a record that exactly matches the key, or
|
|
|
|
** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
|
|
|
|
** this opcode must be followed by an IdxLE opcode with the same arguments.
|
|
|
|
** The IdxGE opcode will be skipped if this opcode succeeds, but the
|
2022-07-22 04:46:07 +00:00
|
|
|
** IdxGE opcode will be used on subsequent loop iterations. The
|
2021-05-14 09:07:09 +00:00
|
|
|
** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
|
|
|
|
** is an equality search.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
|
|
|
|
*/
|
|
|
|
case OP_SeekLT: /* jump, in3, group */
|
|
|
|
case OP_SeekLE: /* jump, in3, group */
|
|
|
|
case OP_SeekGE: /* jump, in3, group */
|
|
|
|
case OP_SeekGT: { /* jump, in3, group */
|
|
|
|
int res; /* Comparison result */
|
|
|
|
int oc; /* Opcode */
|
|
|
|
VdbeCursor *pC; /* The cursor to seek */
|
|
|
|
UnpackedRecord r; /* The key to seek for */
|
|
|
|
int nField; /* Number of columns or fields in the key */
|
|
|
|
i64 iKey; /* The rowid we are to seek to */
|
|
|
|
int eqOnly; /* Only interested in == results */
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p2!=0 );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( OP_SeekLE == OP_SeekLT+1 );
|
|
|
|
assert( OP_SeekGE == OP_SeekLT+2 );
|
|
|
|
assert( OP_SeekGT == OP_SeekLT+3 );
|
|
|
|
assert( pC->isOrdered );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
oc = pOp->opcode;
|
|
|
|
eqOnly = 0;
|
|
|
|
pC->nullRow = 0;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pC->seekOp = pOp->opcode;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
if( pC->isTable ){
|
|
|
|
u16 flags3, newType;
|
|
|
|
/* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
|
|
|
|
assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
|
|
|
|
|| CORRUPT_DB );
|
|
|
|
|
|
|
|
/* The input value in P3 might be of any type: integer, real, string,
|
|
|
|
** blob, or NULL. But it needs to be an integer before we can do
|
|
|
|
** the seek, so convert it. */
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
flags3 = pIn3->flags;
|
|
|
|
if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
|
|
|
|
applyNumericAffinity(pIn3, 0);
|
|
|
|
}
|
|
|
|
iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
|
|
|
|
newType = pIn3->flags; /* Record the type after applying numeric affinity */
|
|
|
|
pIn3->flags = flags3; /* But convert the type back to its original */
|
|
|
|
|
|
|
|
/* If the P3 value could not be converted into an integer without
|
|
|
|
** loss of information, then special processing is required... */
|
|
|
|
if( (newType & (MEM_Int|MEM_IntReal))==0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
int c;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( (newType & MEM_Real)==0 ){
|
|
|
|
if( (newType & MEM_Null) || oc>=OP_SeekGE ){
|
|
|
|
VdbeBranchTaken(1,2);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}else{
|
|
|
|
rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
goto seek_not_found;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
}
|
|
|
|
c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* If the approximation iKey is larger than the actual real search
|
|
|
|
** term, substitute >= for > and < for <=. e.g. if the search term
|
|
|
|
** is 4.9 and the integer approximation 5:
|
|
|
|
**
|
|
|
|
** (x > 4.9) -> (x >= 5)
|
|
|
|
** (x <= 4.9) -> (x < 5)
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
if( c>0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( OP_SeekGE==(OP_SeekGT-1) );
|
|
|
|
assert( OP_SeekLT==(OP_SeekLE-1) );
|
|
|
|
assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
|
|
|
|
if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the approximation iKey is smaller than the actual real search
|
|
|
|
** term, substitute <= for < and > for >=. */
|
2022-11-28 20:54:48 +00:00
|
|
|
else if( c<0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( OP_SeekLE==(OP_SeekLT+1) );
|
|
|
|
assert( OP_SeekGT==(OP_SeekGE+1) );
|
|
|
|
assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
|
|
|
|
if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->movetoTarget = iKey; /* Used by OP_Delete */
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
|
|
|
|
** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
|
|
|
|
** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
|
|
|
|
** with the same key.
|
|
|
|
*/
|
|
|
|
if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
|
|
|
|
eqOnly = 1;
|
|
|
|
assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
|
|
|
|
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
|
|
|
|
assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
|
|
|
|
assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
|
|
|
|
assert( pOp[1].p1==pOp[0].p1 );
|
|
|
|
assert( pOp[1].p2==pOp[0].p2 );
|
|
|
|
assert( pOp[1].p3==pOp[0].p3 );
|
|
|
|
assert( pOp[1].p4.i==pOp[0].p4.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
nField = pOp->p4.i;
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
assert( nField>0 );
|
|
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
|
|
r.nField = (u16)nField;
|
|
|
|
|
|
|
|
/* The next line of code computes as follows, only faster:
|
|
|
|
** if( oc==OP_SeekGT || oc==OP_SeekLE ){
|
|
|
|
** r.default_rc = -1;
|
|
|
|
** }else{
|
|
|
|
** r.default_rc = +1;
|
|
|
|
** }
|
|
|
|
*/
|
|
|
|
r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
|
|
|
|
assert( oc!=OP_SeekGT || r.default_rc==-1 );
|
|
|
|
assert( oc!=OP_SeekLE || r.default_rc==-1 );
|
|
|
|
assert( oc!=OP_SeekGE || r.default_rc==+1 );
|
|
|
|
assert( oc!=OP_SeekLT || r.default_rc==+1 );
|
|
|
|
|
|
|
|
r.aMem = &aMem[pOp->p3];
|
|
|
|
#ifdef SQLITE_DEBUG
|
2022-11-28 20:54:48 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i=0; i<r.nField; i++){
|
|
|
|
assert( memIsValid(&r.aMem[i]) );
|
|
|
|
if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
|
|
|
|
}
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
r.eqSeen = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
if( eqOnly && r.eqSeen==0 ){
|
|
|
|
assert( res!=0 );
|
|
|
|
goto seek_not_found;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
sqlite3_search_count++;
|
|
|
|
#endif
|
|
|
|
if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
|
|
|
|
if( res<0 || (res==0 && oc==OP_SeekGT) ){
|
|
|
|
res = 0;
|
|
|
|
rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
if( rc==SQLITE_DONE ){
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
res = 1;
|
|
|
|
}else{
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
res = 0;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( oc==OP_SeekLT || oc==OP_SeekLE );
|
|
|
|
if( res>0 || (res==0 && oc==OP_SeekLT) ){
|
|
|
|
res = 0;
|
|
|
|
rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
if( rc==SQLITE_DONE ){
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
res = 1;
|
|
|
|
}else{
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* res might be negative because the table is empty. Check to
|
|
|
|
** see if this is the case.
|
|
|
|
*/
|
|
|
|
res = sqlite3BtreeEof(pC->uc.pCursor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
seek_not_found:
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( res ){
|
|
|
|
goto jump_to_p2;
|
|
|
|
}else if( eqOnly ){
|
|
|
|
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
|
|
|
|
pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: SeekScan P1 P2 * * P5
|
2021-05-14 09:07:09 +00:00
|
|
|
** Synopsis: Scan-ahead up to P1 rows
|
|
|
|
**
|
|
|
|
** This opcode is a prefix opcode to OP_SeekGE. In other words, this
|
|
|
|
** opcode must be immediately followed by OP_SeekGE. This constraint is
|
|
|
|
** checked by assert() statements.
|
|
|
|
**
|
|
|
|
** This opcode uses the P1 through P4 operands of the subsequent
|
|
|
|
** OP_SeekGE. In the text that follows, the operands of the subsequent
|
|
|
|
** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
|
2022-11-28 20:54:48 +00:00
|
|
|
** the P1, P2 and P5 operands of this opcode are also used, and are called
|
|
|
|
** This.P1, This.P2 and This.P5.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** This opcode helps to optimize IN operators on a multi-column index
|
|
|
|
** where the IN operator is on the later terms of the index by avoiding
|
|
|
|
** unnecessary seeks on the btree, substituting steps to the next row
|
|
|
|
** of the b-tree instead. A correct answer is obtained if this opcode
|
|
|
|
** is omitted or is a no-op.
|
|
|
|
**
|
|
|
|
** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
|
|
|
|
** is the desired entry that we want the cursor SeekGE.P1 to be pointing
|
2022-11-28 20:54:48 +00:00
|
|
|
** to. Call this SeekGE.P3/P4 row the "target".
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** If the SeekGE.P1 cursor is not currently pointing to a valid row,
|
|
|
|
** then this opcode is a no-op and control passes through into the OP_SeekGE.
|
|
|
|
**
|
|
|
|
** If the SeekGE.P1 cursor is pointing to a valid row, then that row
|
|
|
|
** might be the target row, or it might be near and slightly before the
|
2022-11-28 20:54:48 +00:00
|
|
|
** target row, or it might be after the target row. If the cursor is
|
|
|
|
** currently before the target row, then this opcode attempts to position
|
|
|
|
** the cursor on or after the target row by invoking sqlite3BtreeStep()
|
|
|
|
** on the cursor between 1 and This.P1 times.
|
|
|
|
**
|
|
|
|
** The This.P5 parameter is a flag that indicates what to do if the
|
|
|
|
** cursor ends up pointing at a valid row that is past the target
|
|
|
|
** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
|
|
|
|
** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
|
|
|
|
** case occurs when there are no inequality constraints to the right of
|
|
|
|
** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case
|
|
|
|
** occurs when there are inequality constraints to the right of the IN
|
|
|
|
** operator. In that case, the This.P2 will point either directly to or
|
|
|
|
** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
|
|
|
|
** loop terminate.
|
|
|
|
**
|
|
|
|
** Possible outcomes from this opcode:<ol>
|
|
|
|
**
|
|
|
|
** <li> If the cursor is initally not pointed to any valid row, then
|
|
|
|
** fall through into the subsequent OP_SeekGE opcode.
|
|
|
|
**
|
|
|
|
** <li> If the cursor is left pointing to a row that is before the target
|
|
|
|
** row, even after making as many as This.P1 calls to
|
|
|
|
** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
|
|
|
|
**
|
|
|
|
** <li> If the cursor is left pointing at the target row, either because it
|
|
|
|
** was at the target row to begin with or because one or more
|
|
|
|
** sqlite3BtreeNext() calls moved the cursor to the target row,
|
|
|
|
** then jump to This.P2..,
|
|
|
|
**
|
|
|
|
** <li> If the cursor started out before the target row and a call to
|
|
|
|
** to sqlite3BtreeNext() moved the cursor off the end of the index
|
|
|
|
** (indicating that the target row definitely does not exist in the
|
|
|
|
** btree) then jump to SeekGE.P2, ending the loop.
|
|
|
|
**
|
|
|
|
** <li> If the cursor ends up on a valid row that is past the target row
|
|
|
|
** (indicating that the target row does not exist in the btree) then
|
|
|
|
** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
|
2021-05-14 09:07:09 +00:00
|
|
|
** </ol>
|
|
|
|
*/
|
|
|
|
case OP_SeekScan: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
int res;
|
|
|
|
int nStep;
|
|
|
|
UnpackedRecord r;
|
|
|
|
|
|
|
|
assert( pOp[1].opcode==OP_SeekGE );
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
|
|
|
|
** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
|
|
|
|
** opcode past the OP_SeekGE itself. */
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p2>=(int)(pOp-aOp)+2 );
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->p5==0 ){
|
|
|
|
/* There are no inequality constraints following the IN constraint. */
|
|
|
|
assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
|
|
|
|
assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
|
|
|
|
assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
|
|
|
|
assert( aOp[pOp->p2-1].opcode==OP_IdxGT
|
|
|
|
|| aOp[pOp->p2-1].opcode==OP_IdxGE );
|
|
|
|
testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
|
|
|
|
}else{
|
|
|
|
/* There are inequality constraints. */
|
|
|
|
assert( pOp->p2==(int)(pOp-aOp)+2 );
|
|
|
|
assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
assert( pOp->p1>0 );
|
|
|
|
pC = p->apCsr[pOp[1].p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( !pC->isTable );
|
|
|
|
if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("... cursor not valid - fall through\n");
|
2022-07-22 04:46:07 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
nStep = pOp->p1;
|
|
|
|
assert( nStep>=1 );
|
|
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
|
|
r.nField = (u16)pOp[1].p4.i;
|
|
|
|
r.default_rc = 0;
|
|
|
|
r.aMem = &aMem[pOp[1].p3];
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i=0; i<r.nField; i++){
|
|
|
|
assert( memIsValid(&r.aMem[i]) );
|
|
|
|
REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
res = 0; /* Not needed. Only used to silence a warning. */
|
|
|
|
while(1){
|
|
|
|
rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( res>0 && pOp->p5==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
seekscan_search_fail:
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Jump to SeekGE.P2, ending the loop */
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("... %d steps and then skip\n", pOp->p1 - nStep);
|
2022-07-22 04:46:07 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
VdbeBranchTaken(1,3);
|
|
|
|
pOp++;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( res>=0 ){
|
|
|
|
/* Jump to This.P2, bypassing the OP_SeekGE opcode */
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("... %d steps and then success\n", pOp->p1 - nStep);
|
2022-07-22 04:46:07 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
VdbeBranchTaken(2,3);
|
|
|
|
goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( nStep<=0 ){
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("... fall through after %d steps\n", pOp->p1);
|
2022-07-22 04:46:07 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
VdbeBranchTaken(0,3);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
nStep--;
|
|
|
|
rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
|
|
|
|
if( rc ){
|
|
|
|
if( rc==SQLITE_DONE ){
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
goto seekscan_search_fail;
|
|
|
|
}else{
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: SeekHit P1 P2 P3 * *
|
|
|
|
** Synopsis: set P2<=seekHit<=P3
|
|
|
|
**
|
|
|
|
** Increase or decrease the seekHit value for cursor P1, if necessary,
|
|
|
|
** so that it is no less than P2 and no greater than P3.
|
|
|
|
**
|
|
|
|
** The seekHit integer represents the maximum of terms in an index for which
|
|
|
|
** there is known to be at least one match. If the seekHit value is smaller
|
|
|
|
** than the total number of equality terms in an index lookup, then the
|
|
|
|
** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
|
|
|
|
** early, thus saving work. This is part of the IN-early-out optimization.
|
|
|
|
**
|
|
|
|
** P1 must be a valid b-tree cursor.
|
|
|
|
*/
|
|
|
|
case OP_SeekHit: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pOp->p3>=pOp->p2 );
|
|
|
|
if( pC->seekHit<pOp->p2 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->seekHit = pOp->p2;
|
|
|
|
}else if( pC->seekHit>pOp->p3 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->seekHit = pOp->p3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IfNotOpen P1 P2 * * *
|
|
|
|
** Synopsis: if( !csr[P1] ) goto P2
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** If cursor P1 is not open or if P1 is set to a NULL row using the
|
|
|
|
** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_IfNotOpen: { /* jump */
|
2022-11-28 20:54:48 +00:00
|
|
|
VdbeCursor *pCur;
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
2022-11-28 20:54:48 +00:00
|
|
|
pCur = p->apCsr[pOp->p1];
|
|
|
|
VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
|
|
|
|
if( pCur==0 || pCur->nullRow ){
|
2021-05-14 09:07:09 +00:00
|
|
|
goto jump_to_p2_and_check_for_interrupt;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Found P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
|
|
|
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
|
|
|
** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
|
|
|
** record.
|
|
|
|
**
|
|
|
|
** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
|
|
|
** is a prefix of any entry in P1 then a jump is made to P2 and
|
|
|
|
** P1 is left pointing at the matching entry.
|
|
|
|
**
|
|
|
|
** This operation leaves the cursor in a state where it can be
|
|
|
|
** advanced in the forward direction. The Next instruction will work,
|
|
|
|
** but not the Prev instruction.
|
|
|
|
**
|
|
|
|
** See also: NotFound, NoConflict, NotExists. SeekGe
|
|
|
|
*/
|
|
|
|
/* Opcode: NotFound P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
|
|
|
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
|
|
|
** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
|
|
|
** record.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
2022-07-22 04:46:07 +00:00
|
|
|
** is not the prefix of any entry in P1 then a jump is made to P2. If P1
|
2021-05-14 09:07:09 +00:00
|
|
|
** does contain an entry whose prefix matches the P3/P4 record then control
|
|
|
|
** falls through to the next instruction and P1 is left pointing at the
|
|
|
|
** matching entry.
|
|
|
|
**
|
|
|
|
** This operation leaves the cursor in a state where it cannot be
|
|
|
|
** advanced in either direction. In other words, the Next and Prev
|
|
|
|
** opcodes do not work after this operation.
|
|
|
|
**
|
|
|
|
** See also: Found, NotExists, NoConflict, IfNoHope
|
|
|
|
*/
|
|
|
|
/* Opcode: IfNoHope P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
|
|
|
** Register P3 is the first of P4 registers that form an unpacked
|
|
|
|
** record. Cursor P1 is an index btree. P2 is a jump destination.
|
|
|
|
** In other words, the operands to this opcode are the same as the
|
|
|
|
** operands to OP_NotFound and OP_IdxGT.
|
|
|
|
**
|
|
|
|
** This opcode is an optimization attempt only. If this opcode always
|
|
|
|
** falls through, the correct answer is still obtained, but extra works
|
|
|
|
** is performed.
|
|
|
|
**
|
|
|
|
** A value of N in the seekHit flag of cursor P1 means that there exists
|
|
|
|
** a key P3:N that will match some record in the index. We want to know
|
|
|
|
** if it is possible for a record P3:P4 to match some record in the
|
|
|
|
** index. If it is not possible, we can skips some work. So if seekHit
|
|
|
|
** is less than P4, attempt to find out if a match is possible by running
|
|
|
|
** OP_NotFound.
|
|
|
|
**
|
|
|
|
** This opcode is used in IN clause processing for a multi-column key.
|
|
|
|
** If an IN clause is attached to an element of the key other than the
|
|
|
|
** left-most element, and if there are no matches on the most recent
|
|
|
|
** seek over the whole key, then it might be that one of the key element
|
|
|
|
** to the left is prohibiting a match, and hence there is "no hope" of
|
|
|
|
** any match regardless of how many IN clause elements are checked.
|
|
|
|
** In such a case, we abandon the IN clause search early, using this
|
|
|
|
** opcode. The opcode name comes from the fact that the
|
|
|
|
** jump is taken if there is "no hope" of achieving a match.
|
|
|
|
**
|
|
|
|
** See also: NotFound, SeekHit
|
|
|
|
*/
|
|
|
|
/* Opcode: NoConflict P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
|
|
|
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
|
|
|
** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
|
|
|
** record.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
|
|
|
** contains any NULL value, jump immediately to P2. If all terms of the
|
|
|
|
** record are not-NULL then a check is done to determine if any row in the
|
|
|
|
** P1 index btree has a matching key prefix. If there are no matches, jump
|
|
|
|
** immediately to P2. If there is a match, fall through and leave the P1
|
|
|
|
** cursor pointing to the matching row.
|
|
|
|
**
|
|
|
|
** This opcode is similar to OP_NotFound with the exceptions that the
|
|
|
|
** branch is always taken if any part of the search key input is NULL.
|
|
|
|
**
|
|
|
|
** This operation leaves the cursor in a state where it cannot be
|
|
|
|
** advanced in either direction. In other words, the Next and Prev
|
|
|
|
** opcodes do not work after this operation.
|
|
|
|
**
|
|
|
|
** See also: NotFound, Found, NotExists
|
|
|
|
*/
|
|
|
|
case OP_IfNoHope: { /* jump, in3 */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
printf("seekHit is %d\n", pC->seekHit);
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pC->seekHit>=pOp->p4.i ) break;
|
|
|
|
/* Fall through into OP_NotFound */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
}
|
|
|
|
case OP_NoConflict: /* jump, in3 */
|
|
|
|
case OP_NotFound: /* jump, in3 */
|
|
|
|
case OP_Found: { /* jump, in3 */
|
|
|
|
int alreadyExists;
|
|
|
|
int ii;
|
|
|
|
VdbeCursor *pC;
|
|
|
|
UnpackedRecord *pIdxKey;
|
|
|
|
UnpackedRecord r;
|
|
|
|
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pC->seekOp = pOp->opcode;
|
|
|
|
#endif
|
2022-11-28 20:54:48 +00:00
|
|
|
r.aMem = &aMem[pOp->p3];
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
assert( pC->isTable==0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
r.nField = (u16)pOp->p4.i;
|
|
|
|
if( r.nField>0 ){
|
|
|
|
/* Key values in an array of registers */
|
2021-05-14 09:07:09 +00:00
|
|
|
r.pKeyInfo = pC->pKeyInfo;
|
2022-11-28 20:54:48 +00:00
|
|
|
r.default_rc = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
for(ii=0; ii<r.nField; ii++){
|
|
|
|
assert( memIsValid(&r.aMem[ii]) );
|
|
|
|
assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
|
|
|
|
if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
|
|
|
|
}
|
|
|
|
#endif
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Composite key generated by OP_MakeRecord */
|
|
|
|
assert( r.aMem->flags & MEM_Blob );
|
|
|
|
assert( pOp->opcode!=OP_NoConflict );
|
|
|
|
rc = ExpandBlob(r.aMem);
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
|
|
|
if( rc ) goto no_mem;
|
2022-11-28 20:54:48 +00:00
|
|
|
pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pIdxKey==0 ) goto no_mem;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
|
|
|
|
pIdxKey->default_rc = 0;
|
|
|
|
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
|
|
|
|
sqlite3DbFreeNN(db, pIdxKey);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
alreadyExists = (pC->seekResult==0);
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->nullRow = 1-alreadyExists;
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
if( pOp->opcode==OP_Found ){
|
|
|
|
VdbeBranchTaken(alreadyExists!=0,2);
|
|
|
|
if( alreadyExists ) goto jump_to_p2;
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !alreadyExists ){
|
|
|
|
VdbeBranchTaken(1,2);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
if( pOp->opcode==OP_NoConflict ){
|
|
|
|
/* For the OP_NoConflict opcode, take the jump if any of the
|
|
|
|
** input fields are NULL, since any key with a NULL will not
|
|
|
|
** conflict */
|
|
|
|
for(ii=0; ii<r.nField; ii++){
|
|
|
|
if( r.aMem[ii].flags & MEM_Null ){
|
|
|
|
VdbeBranchTaken(1,2);
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(0,2);
|
|
|
|
if( pOp->opcode==OP_IfNoHope ){
|
|
|
|
pC->seekHit = pOp->p4.i;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SeekRowid P1 P2 P3 * *
|
|
|
|
** Synopsis: intkey=r[P3]
|
|
|
|
**
|
|
|
|
** P1 is the index of a cursor open on an SQL table btree (with integer
|
|
|
|
** keys). If register P3 does not contain an integer or if P1 does not
|
2022-07-22 04:46:07 +00:00
|
|
|
** contain a record with rowid P3 then jump immediately to P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
|
2022-07-22 04:46:07 +00:00
|
|
|
** a record with rowid P3 then
|
2021-05-14 09:07:09 +00:00
|
|
|
** leave the cursor pointing at that record and fall through to the next
|
|
|
|
** instruction.
|
|
|
|
**
|
|
|
|
** The OP_NotExists opcode performs the same operation, but with OP_NotExists
|
|
|
|
** the P3 register must be guaranteed to contain an integer value. With this
|
|
|
|
** opcode, register P3 might not contain an integer.
|
|
|
|
**
|
|
|
|
** The OP_NotFound opcode performs the same operation on index btrees
|
|
|
|
** (with arbitrary multi-value keys).
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor in a state where it cannot be advanced
|
|
|
|
** in either direction. In other words, the Next and Prev opcodes will
|
|
|
|
** not work following this opcode.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, NoConflict, SeekRowid
|
|
|
|
*/
|
|
|
|
/* Opcode: NotExists P1 P2 P3 * *
|
|
|
|
** Synopsis: intkey=r[P3]
|
|
|
|
**
|
|
|
|
** P1 is the index of a cursor open on an SQL table btree (with integer
|
|
|
|
** keys). P3 is an integer rowid. If P1 does not contain a record with
|
|
|
|
** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
|
2022-07-22 04:46:07 +00:00
|
|
|
** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
|
2021-05-14 09:07:09 +00:00
|
|
|
** leave the cursor pointing at that record and fall through to the next
|
|
|
|
** instruction.
|
|
|
|
**
|
|
|
|
** The OP_SeekRowid opcode performs the same operation but also allows the
|
|
|
|
** P3 register to contain a non-integer value, in which case the jump is
|
|
|
|
** always taken. This opcode requires that P3 always contain an integer.
|
|
|
|
**
|
|
|
|
** The OP_NotFound opcode performs the same operation on index btrees
|
|
|
|
** (with arbitrary multi-value keys).
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor in a state where it cannot be advanced
|
|
|
|
** in either direction. In other words, the Next and Prev opcodes will
|
|
|
|
** not work following this opcode.
|
|
|
|
**
|
|
|
|
** See also: Found, NotFound, NoConflict, SeekRowid
|
|
|
|
*/
|
|
|
|
case OP_SeekRowid: { /* jump, in3 */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
int res;
|
|
|
|
u64 iKey;
|
|
|
|
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
testcase( pIn3->flags & MEM_Int );
|
|
|
|
testcase( pIn3->flags & MEM_IntReal );
|
|
|
|
testcase( pIn3->flags & MEM_Real );
|
|
|
|
testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
|
|
|
|
if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
|
|
|
|
/* If pIn3->u.i does not contain an integer, compute iKey as the
|
|
|
|
** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
|
|
|
|
** into an integer without loss of information. Take care to avoid
|
|
|
|
** changing the datatype of pIn3, however, as it is used by other
|
|
|
|
** parts of the prepared statement. */
|
|
|
|
Mem x = pIn3[0];
|
|
|
|
applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
|
|
|
|
if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
|
|
|
|
iKey = x.u.i;
|
|
|
|
goto notExistsWithKey;
|
|
|
|
}
|
|
|
|
/* Fall through into OP_NotExists */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
case OP_NotExists: /* jump, in3 */
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
iKey = pIn3->u.i;
|
|
|
|
notExistsWithKey:
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
|
|
|
|
#endif
|
|
|
|
assert( pC->isTable );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
assert( pCrsr!=0 );
|
|
|
|
res = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( rc==SQLITE_OK || res==0 );
|
|
|
|
pC->movetoTarget = iKey; /* Used by OP_Delete */
|
|
|
|
pC->nullRow = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
pC->seekResult = res;
|
|
|
|
if( res!=0 ){
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
if( pOp->p2==0 ){
|
|
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
}else{
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Sequence P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]=cursor[P1].ctr++
|
|
|
|
**
|
|
|
|
** Find the next available sequence number for cursor P1.
|
|
|
|
** Write the sequence number into register P2.
|
|
|
|
** The sequence number on the cursor is incremented after this
|
2022-07-22 04:46:07 +00:00
|
|
|
** instruction.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_Sequence: { /* out2 */
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( p->apCsr[pOp->p1]!=0 );
|
|
|
|
assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: NewRowid P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2]=rowid
|
|
|
|
**
|
|
|
|
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
|
|
|
** The record number is not previously used as a key in the database
|
|
|
|
** table that cursor P1 points to. The new record number is written
|
|
|
|
** written to register P2.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If P3>0 then P3 is a register in the root frame of this VDBE that holds
|
2021-05-14 09:07:09 +00:00
|
|
|
** the largest previously generated record number. No new record numbers are
|
2022-07-22 04:46:07 +00:00
|
|
|
** allowed to be less than this value. When this value reaches its maximum,
|
2021-05-14 09:07:09 +00:00
|
|
|
** an SQLITE_FULL error is generated. The P3 register is updated with the '
|
|
|
|
** generated record number. This P3 mechanism is used to help implement the
|
|
|
|
** AUTOINCREMENT feature.
|
|
|
|
*/
|
|
|
|
case OP_NewRowid: { /* out2 */
|
|
|
|
i64 v; /* The new rowid */
|
|
|
|
VdbeCursor *pC; /* Cursor of table to get the new rowid */
|
|
|
|
int res; /* Result of an sqlite3BtreeLast() */
|
|
|
|
int cnt; /* Counter to limit the number of searches */
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
|
|
|
|
VdbeFrame *pFrame; /* Root frame of VDBE */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
v = 0;
|
|
|
|
res = 0;
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->isTable );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
{
|
|
|
|
/* The next rowid or record number (different terms for the same
|
|
|
|
** thing) is obtained in a two-step algorithm.
|
|
|
|
**
|
|
|
|
** First we attempt to find the largest existing rowid and add one
|
|
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
|
|
** positive integer, we have to fall through to the second
|
|
|
|
** probabilistic algorithm
|
|
|
|
**
|
|
|
|
** The second algorithm is to select a rowid at random and see if
|
|
|
|
** it already exists in the table. If it does not exist, we have
|
|
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
|
|
** and try again, up to 100 times.
|
|
|
|
*/
|
|
|
|
assert( pC->isTable );
|
|
|
|
|
|
|
|
#ifdef SQLITE_32BIT_ROWID
|
|
|
|
# define MAX_ROWID 0x7fffffff
|
|
|
|
#else
|
|
|
|
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
|
|
|
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
|
|
|
** to provide the constant while making all compilers happy.
|
|
|
|
*/
|
|
|
|
# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if( !pC->useRandomRowid ){
|
|
|
|
rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
if( res ){
|
|
|
|
v = 1; /* IMP: R-61914-48074 */
|
|
|
|
}else{
|
|
|
|
assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
|
|
|
|
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
|
|
|
|
if( v>=MAX_ROWID ){
|
|
|
|
pC->useRandomRowid = 1;
|
|
|
|
}else{
|
|
|
|
v++; /* IMP: R-29538-34987 */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
if( pOp->p3 ){
|
|
|
|
/* Assert that P3 is a valid memory cell. */
|
|
|
|
assert( pOp->p3>0 );
|
|
|
|
if( p->pFrame ){
|
|
|
|
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
|
|
|
/* Assert that P3 is a valid memory cell. */
|
|
|
|
assert( pOp->p3<=pFrame->nMem );
|
|
|
|
pMem = &pFrame->aMem[pOp->p3];
|
|
|
|
}else{
|
|
|
|
/* Assert that P3 is a valid memory cell. */
|
|
|
|
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pMem = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pMem);
|
|
|
|
}
|
|
|
|
assert( memIsValid(pMem) );
|
|
|
|
|
|
|
|
REGISTER_TRACE(pOp->p3, pMem);
|
|
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
|
|
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
|
|
|
|
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
|
|
|
rc = SQLITE_FULL; /* IMP: R-17817-00630 */
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
if( v<pMem->u.i+1 ){
|
|
|
|
v = pMem->u.i + 1;
|
|
|
|
}
|
|
|
|
pMem->u.i = v;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( pC->useRandomRowid ){
|
|
|
|
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
|
|
|
|
** largest possible integer (9223372036854775807) then the database
|
|
|
|
** engine starts picking positive candidate ROWIDs at random until
|
|
|
|
** it finds one that is not previously used. */
|
|
|
|
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
|
|
|
|
** an AUTOINCREMENT table. */
|
|
|
|
cnt = 0;
|
|
|
|
do{
|
|
|
|
sqlite3_randomness(sizeof(v), &v);
|
|
|
|
v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
|
2022-11-28 20:54:48 +00:00
|
|
|
}while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
|
2021-05-14 09:07:09 +00:00
|
|
|
0, &res))==SQLITE_OK)
|
|
|
|
&& (res==0)
|
|
|
|
&& (++cnt<100));
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( res==0 ){
|
|
|
|
rc = SQLITE_FULL; /* IMP: R-38219-53002 */
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
assert( v>0 ); /* EV: R-40812-03570 */
|
|
|
|
}
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
}
|
|
|
|
pOut->u.i = v;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Insert P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: intkey=r[P3] data=r[P2]
|
|
|
|
**
|
|
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
|
|
** created if it doesn't already exist or the data for an existing
|
|
|
|
** entry is overwritten. The data is the value MEM_Blob stored in register
|
|
|
|
** number P2. The key is stored in register P3. The key must
|
|
|
|
** be a MEM_Int.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
|
|
|
|
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
|
|
|
|
** then rowid is stored for subsequent return by the
|
|
|
|
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
|
|
|
**
|
|
|
|
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
|
|
|
|
** run faster by avoiding an unnecessary seek on cursor P1. However,
|
|
|
|
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
|
|
|
|
** seeks on the cursor or if the most recent seek used a key equal to P3.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
|
|
|
|
** UPDATE operation. Otherwise (if the flag is clear) then this opcode
|
|
|
|
** is part of an INSERT operation. The difference is only important to
|
|
|
|
** the update hook.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Parameter P4 may point to a Table structure, or may be NULL. If it is
|
|
|
|
** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
|
2021-05-14 09:07:09 +00:00
|
|
|
** following a successful insert.
|
|
|
|
**
|
|
|
|
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
|
|
|
|
** allocated, then ownership of P2 is transferred to the pseudo-cursor
|
|
|
|
** and register P2 becomes ephemeral. If the cursor is changed, the
|
|
|
|
** value of register P2 will then change. Make sure this does not
|
|
|
|
** cause any problems.)
|
|
|
|
**
|
|
|
|
** This instruction only works on tables. The equivalent instruction
|
|
|
|
** for indices is OP_IdxInsert.
|
|
|
|
*/
|
|
|
|
case OP_Insert: {
|
|
|
|
Mem *pData; /* MEM cell holding data for the record to be inserted */
|
|
|
|
Mem *pKey; /* MEM cell holding key for the record */
|
|
|
|
VdbeCursor *pC; /* Cursor to table into which insert is written */
|
|
|
|
int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
|
|
|
|
const char *zDb; /* database name - used by the update hook */
|
|
|
|
Table *pTab; /* Table structure - used by update and pre-update hooks */
|
|
|
|
BtreePayload x; /* Payload to be inserted */
|
|
|
|
|
|
|
|
pData = &aMem[pOp->p2];
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( memIsValid(pData) );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
|
|
|
|
assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
|
|
|
|
REGISTER_TRACE(pOp->p2, pData);
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, pC);
|
|
|
|
|
|
|
|
pKey = &aMem[pOp->p3];
|
|
|
|
assert( pKey->flags & MEM_Int );
|
|
|
|
assert( memIsValid(pKey) );
|
|
|
|
REGISTER_TRACE(pOp->p3, pKey);
|
|
|
|
x.nKey = pKey->u.i;
|
|
|
|
|
|
|
|
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
|
|
|
|
assert( pC->iDb>=0 );
|
|
|
|
zDb = db->aDb[pC->iDb].zDbSName;
|
|
|
|
pTab = pOp->p4.pTab;
|
|
|
|
assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
|
|
|
|
}else{
|
|
|
|
pTab = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
zDb = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
|
|
/* Invoke the pre-update hook, if any */
|
|
|
|
if( pTab ){
|
|
|
|
if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
if( db->xUpdateCallback==0 || pTab->aCol==0 ){
|
|
|
|
/* Prevent post-update hook from running in cases when it should not */
|
|
|
|
pTab = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pOp->p5 & OPFLAG_ISNOOP ) break;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
|
|
|
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
|
|
|
|
assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
|
|
|
|
x.pData = pData->z;
|
|
|
|
x.nData = pData->n;
|
|
|
|
seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
|
|
|
|
if( pData->flags & MEM_Zero ){
|
|
|
|
x.nZero = pData->u.nZero;
|
|
|
|
}else{
|
|
|
|
x.nZero = 0;
|
|
|
|
}
|
|
|
|
x.pKey = 0;
|
|
|
|
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
|
2022-07-22 04:46:07 +00:00
|
|
|
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
|
2021-05-14 09:07:09 +00:00
|
|
|
seekResult
|
|
|
|
);
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
|
|
|
|
/* Invoke the update-hook if required. */
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( pTab ){
|
|
|
|
assert( db->xUpdateCallback!=0 );
|
|
|
|
assert( pTab->aCol!=0 );
|
|
|
|
db->xUpdateCallback(db->pUpdateArg,
|
|
|
|
(pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
|
|
|
|
zDb, pTab->zName, x.nKey);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: RowCell P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** P1 and P2 are both open cursors. Both must be opened on the same type
|
|
|
|
** of table - intkey or index. This opcode is used as part of copying
|
|
|
|
** the current row from P2 into P1. If the cursors are opened on intkey
|
|
|
|
** tables, register P3 contains the rowid to use with the new record in
|
|
|
|
** P1. If they are opened on index tables, P3 is not used.
|
|
|
|
**
|
|
|
|
** This opcode must be followed by either an Insert or InsertIdx opcode
|
|
|
|
** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
|
|
|
|
*/
|
|
|
|
case OP_RowCell: {
|
|
|
|
VdbeCursor *pDest; /* Cursor to write to */
|
|
|
|
VdbeCursor *pSrc; /* Cursor to read from */
|
|
|
|
i64 iKey; /* Rowid value to insert with */
|
|
|
|
assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
|
|
|
|
assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
|
|
|
|
assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
|
|
|
|
assert( pOp[1].p5 & OPFLAG_PREFORMAT );
|
|
|
|
pDest = p->apCsr[pOp->p1];
|
|
|
|
pSrc = p->apCsr[pOp->p2];
|
|
|
|
iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
|
|
|
|
rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Opcode: Delete P1 P2 P3 P4 P5
|
|
|
|
**
|
|
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
|
|
|
|
** the cursor will be left pointing at either the next or the previous
|
|
|
|
** record in the table. If it is left pointing at the next record, then
|
|
|
|
** the next Next instruction will be a no-op. As a result, in this case
|
2022-07-22 04:46:07 +00:00
|
|
|
** it is ok to delete a record from within a Next loop. If
|
2021-05-14 09:07:09 +00:00
|
|
|
** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
|
|
|
|
** left in an undefined state.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
|
|
|
|
** delete one of several associated with deleting a table row and all its
|
|
|
|
** associated index entries. Exactly one of those deletes is the "primary"
|
|
|
|
** delete. The others are all on OPFLAG_FORDELETE cursors or else are
|
|
|
|
** marked with the AUXDELETE flag.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
|
|
|
|
** change count is incremented (otherwise not).
|
|
|
|
**
|
|
|
|
** P1 must not be pseudo-table. It has to be a real table with
|
|
|
|
** multiple rows.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** If P4 is not NULL then it points to a Table object. In this case either
|
2021-05-14 09:07:09 +00:00
|
|
|
** the update or pre-update hook, or both, may be invoked. The P1 cursor must
|
2022-07-22 04:46:07 +00:00
|
|
|
** have been positioned using OP_NotFound prior to invoking this opcode in
|
|
|
|
** this case. Specifically, if one is configured, the pre-update hook is
|
|
|
|
** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
|
2021-05-14 09:07:09 +00:00
|
|
|
** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
|
|
|
|
** of the memory cell that contains the value that the rowid of the row will
|
|
|
|
** be set to by the update.
|
|
|
|
*/
|
|
|
|
case OP_Delete: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
const char *zDb;
|
|
|
|
Table *pTab;
|
|
|
|
int opflags;
|
|
|
|
|
|
|
|
opflags = pOp->p2;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, pC);
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->p4type==P4_TABLE
|
|
|
|
&& HasRowid(pOp->p4.pTab)
|
|
|
|
&& pOp->p5==0
|
|
|
|
&& sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
|
|
|
|
){
|
|
|
|
/* If p5 is zero, the seek operation that positioned the cursor prior to
|
|
|
|
** OP_Delete will have also set the pC->movetoTarget field to the rowid of
|
|
|
|
** the row that is being deleted */
|
|
|
|
i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
|
|
|
|
assert( CORRUPT_DB || pC->movetoTarget==iKey );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* If the update-hook or pre-update-hook will be invoked, set zDb to
|
|
|
|
** the name of the db to pass as to it. Also set local pTab to a copy
|
|
|
|
** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
|
2022-07-22 04:46:07 +00:00
|
|
|
** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
|
2021-05-14 09:07:09 +00:00
|
|
|
** VdbeCursor.movetoTarget to the current rowid. */
|
|
|
|
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
|
|
|
|
assert( pC->iDb>=0 );
|
|
|
|
assert( pOp->p4.pTab!=0 );
|
|
|
|
zDb = db->aDb[pC->iDb].zDbSName;
|
|
|
|
pTab = pOp->p4.pTab;
|
|
|
|
if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
|
|
|
|
pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
|
|
|
|
}
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
zDb = 0;
|
|
|
|
pTab = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
|
|
/* Invoke the pre-update-hook if required. */
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
|
|
|
|
if( db->xPreUpdateCallback && pTab ){
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( !(opflags & OPFLAG_ISUPDATE)
|
|
|
|
|| HasRowid(pTab)==0
|
|
|
|
|| (aMem[pOp->p3].flags & MEM_Int)
|
2021-05-14 09:07:09 +00:00
|
|
|
);
|
|
|
|
sqlite3VdbePreUpdateHook(p, pC,
|
2022-07-22 04:46:07 +00:00
|
|
|
(opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
|
2021-05-14 09:07:09 +00:00
|
|
|
zDb, pTab, pC->movetoTarget,
|
2022-11-28 20:54:48 +00:00
|
|
|
pOp->p3, -1
|
2021-05-14 09:07:09 +00:00
|
|
|
);
|
|
|
|
}
|
|
|
|
if( opflags & OPFLAG_ISNOOP ) break;
|
|
|
|
#endif
|
2022-07-22 04:46:07 +00:00
|
|
|
|
|
|
|
/* Only flags that can be set are SAVEPOISTION and AUXDELETE */
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
|
|
|
|
assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
|
|
|
|
assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( p->pFrame==0 ){
|
|
|
|
if( pC->isEphemeral==0
|
|
|
|
&& (pOp->p5 & OPFLAG_AUXDELETE)==0
|
|
|
|
&& (pC->wrFlag & OPFLAG_FORDELETE)==0
|
|
|
|
){
|
|
|
|
nExtraDelete++;
|
|
|
|
}
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ){
|
|
|
|
nExtraDelete--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
pC->seekResult = 0;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
|
|
|
|
/* Invoke the update-hook if required. */
|
|
|
|
if( opflags & OPFLAG_NCHANGE ){
|
|
|
|
p->nChange++;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
|
|
|
|
pC->movetoTarget);
|
|
|
|
assert( pC->iDb>=0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Opcode: ResetCount * * * * *
|
|
|
|
**
|
|
|
|
** The value of the change counter is copied to the database handle
|
|
|
|
** change counter (returned by subsequent calls to sqlite3_changes()).
|
|
|
|
** Then the VMs internal change counter resets to 0.
|
|
|
|
** This is used by trigger programs.
|
|
|
|
*/
|
|
|
|
case OP_ResetCount: {
|
|
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
|
|
p->nChange = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SorterCompare P1 P2 P3 P4
|
|
|
|
** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
|
|
|
|
**
|
|
|
|
** P1 is a sorter cursor. This instruction compares a prefix of the
|
2022-07-22 04:46:07 +00:00
|
|
|
** record blob in register P3 against a prefix of the entry that
|
2021-05-14 09:07:09 +00:00
|
|
|
** the sorter cursor currently points to. Only the first P4 fields
|
|
|
|
** of r[P3] and the sorter record are compared.
|
|
|
|
**
|
|
|
|
** If either P3 or the sorter contains a NULL in one of their significant
|
|
|
|
** fields (not counting the P4 fields at the end which are ignored) then
|
|
|
|
** the comparison is assumed to be equal.
|
|
|
|
**
|
|
|
|
** Fall through to next instruction if the two records compare equal to
|
|
|
|
** each other. Jump to P2 if they are different.
|
|
|
|
*/
|
|
|
|
case OP_SorterCompare: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
int res;
|
|
|
|
int nKeyCol;
|
|
|
|
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( isSorter(pC) );
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
nKeyCol = pOp->p4.i;
|
|
|
|
res = 0;
|
|
|
|
rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( res ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Opcode: SorterData P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2]=data
|
|
|
|
**
|
|
|
|
** Write into register P2 the current sorter data for sorter cursor P1.
|
|
|
|
** Then clear the column header cache on cursor P3.
|
|
|
|
**
|
|
|
|
** This opcode is normally use to move a record out of the sorter and into
|
|
|
|
** a register that is the source for a pseudo-table cursor created using
|
|
|
|
** OpenPseudo. That pseudo-table cursor is the one that is identified by
|
|
|
|
** parameter P3. Clearing the P3 column cache as part of this opcode saves
|
|
|
|
** us from having to issue a separate NullRow instruction to clear that cache.
|
|
|
|
*/
|
|
|
|
case OP_SorterData: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( isSorter(pC) );
|
|
|
|
rc = sqlite3VdbeSorterRowkey(pC, pOut);
|
|
|
|
assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: RowData P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2]=data
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Write into register P2 the complete row content for the row at
|
2021-05-14 09:07:09 +00:00
|
|
|
** which cursor P1 is currently pointing.
|
2022-07-22 04:46:07 +00:00
|
|
|
** There is no interpretation of the data.
|
|
|
|
** It is just copied onto the P2 register exactly as
|
2021-05-14 09:07:09 +00:00
|
|
|
** it is found in the database file.
|
|
|
|
**
|
|
|
|
** If cursor P1 is an index, then the content is the key of the row.
|
|
|
|
** If cursor P2 is a table, then the content extracted is the data.
|
|
|
|
**
|
|
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
|
|
** of a real table, not a pseudo-table.
|
|
|
|
**
|
|
|
|
** If P3!=0 then this opcode is allowed to make an ephemeral pointer
|
|
|
|
** into the database page. That means that the content of the output
|
|
|
|
** register will be invalidated as soon as the cursor moves - including
|
|
|
|
** moves caused by other cursors that "save" the current cursors
|
|
|
|
** position in order that they can write to the same table. If P3==0
|
|
|
|
** then a copy of the data is made into memory. P3!=0 is faster, but
|
|
|
|
** P3==0 is safer.
|
|
|
|
**
|
|
|
|
** If P3!=0 then the content of the P2 register is unsuitable for use
|
|
|
|
** in OP_Result and any OP_Result will invalidate the P2 register content.
|
|
|
|
** The P2 register content is invalidated by opcodes like OP_Function or
|
|
|
|
** by any use of another cursor pointing to the same table.
|
|
|
|
*/
|
|
|
|
case OP_RowData: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
u32 n;
|
|
|
|
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( isSorter(pC)==0 );
|
|
|
|
assert( pC->nullRow==0 );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
|
|
|
|
/* The OP_RowData opcodes always follow OP_NotExists or
|
|
|
|
** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
|
|
|
|
** that might invalidate the cursor.
|
|
|
|
** If this where not the case, on of the following assert()s
|
|
|
|
** would fail. Should this ever change (because of changes in the code
|
|
|
|
** generator) then the fix would be to insert a call to
|
|
|
|
** sqlite3VdbeCursorMoveto().
|
|
|
|
*/
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
|
|
|
|
|
|
|
n = sqlite3BtreePayloadSize(pCrsr);
|
|
|
|
if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
|
|
goto too_big;
|
|
|
|
}
|
|
|
|
testcase( n==0 );
|
|
|
|
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( !pOp->p3 ) Deephemeralize(pOut);
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Rowid P1 P2 * * *
|
2022-11-28 20:54:48 +00:00
|
|
|
** Synopsis: r[P2]=PX rowid of P1
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Store in register P2 an integer which is the key of the table entry that
|
|
|
|
** P1 is currently point to.
|
|
|
|
**
|
|
|
|
** P1 can be either an ordinary table or a virtual table. There used to
|
|
|
|
** be a separate OP_VRowid opcode for use with virtual tables, but this
|
|
|
|
** one opcode now works for both table types.
|
|
|
|
*/
|
|
|
|
case OP_Rowid: { /* out2 */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
i64 v;
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
|
|
|
|
if( pC->nullRow ){
|
|
|
|
pOut->flags = MEM_Null;
|
|
|
|
break;
|
|
|
|
}else if( pC->deferredMoveto ){
|
|
|
|
v = pC->movetoTarget;
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
}else if( pC->eCurType==CURTYPE_VTAB ){
|
|
|
|
assert( pC->uc.pVCur!=0 );
|
|
|
|
pVtab = pC->uc.pVCur->pVtab;
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
assert( pModule->xRowid );
|
|
|
|
rc = pModule->xRowid(pC->uc.pVCur, &v);
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
}else{
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
rc = sqlite3VdbeCursorRestore(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( pC->nullRow ){
|
|
|
|
pOut->flags = MEM_Null;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
|
|
|
|
}
|
|
|
|
pOut->u.i = v;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: NullRow P1 * * * *
|
|
|
|
**
|
|
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
|
|
** that occur while the cursor is on the null row will always
|
|
|
|
** write a NULL.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** If cursor P1 is not previously opened, open it now to a special
|
|
|
|
** pseudo-cursor that always returns NULL for every column.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_NullRow: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pC==0 ){
|
|
|
|
/* If the cursor is not already open, create a special kind of
|
|
|
|
** pseudo-cursor that always gives null rows. */
|
|
|
|
pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
|
|
|
|
if( pC==0 ) goto no_mem;
|
|
|
|
pC->seekResult = 0;
|
|
|
|
pC->isTable = 1;
|
|
|
|
pC->noReuse = 1;
|
|
|
|
pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
pC->nullRow = 1;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
if( pC->eCurType==CURTYPE_BTREE ){
|
|
|
|
assert( pC->uc.pCursor!=0 );
|
|
|
|
sqlite3BtreeClearCursor(pC->uc.pCursor);
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SeekEnd P1 * * * *
|
|
|
|
**
|
|
|
|
** Position cursor P1 at the end of the btree for the purpose of
|
|
|
|
** appending a new entry onto the btree.
|
|
|
|
**
|
|
|
|
** It is assumed that the cursor is used only for appending and so
|
|
|
|
** if the cursor is valid, then the cursor must already be pointing
|
|
|
|
** at the end of the btree and so no changes are made to
|
|
|
|
** the cursor.
|
|
|
|
*/
|
|
|
|
/* Opcode: Last P1 P2 * * *
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The next use of the Rowid or Column or Prev instruction for P1
|
2021-05-14 09:07:09 +00:00
|
|
|
** will refer to the last entry in the database table or index.
|
|
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
|
|
** to the following instruction.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in reverse order,
|
|
|
|
** from the end toward the beginning. In other words, the cursor is
|
|
|
|
** configured to use Prev, not Next.
|
|
|
|
*/
|
|
|
|
case OP_SeekEnd:
|
|
|
|
case OP_Last: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
res = 0;
|
|
|
|
assert( pCrsr!=0 );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pC->seekOp = pOp->opcode;
|
|
|
|
#endif
|
|
|
|
if( pOp->opcode==OP_SeekEnd ){
|
|
|
|
assert( pOp->p2==0 );
|
|
|
|
pC->seekResult = -1;
|
|
|
|
if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
|
|
pC->nullRow = (u8)res;
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( pOp->p2>0 ){
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( res ) goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IfSmaller P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Estimate the number of rows in the table P1. Jump to P2 if that
|
|
|
|
** estimate is less than approximately 2**(0.1*P3).
|
|
|
|
*/
|
|
|
|
case OP_IfSmaller: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
int res;
|
|
|
|
i64 sz;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
assert( pCrsr );
|
|
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( res==0 ){
|
|
|
|
sz = sqlite3BtreeRowCountEst(pCrsr);
|
|
|
|
if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( res ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: SorterSort P1 P2 * * *
|
|
|
|
**
|
|
|
|
** After all records have been inserted into the Sorter object
|
|
|
|
** identified by P1, invoke this opcode to actually do the sorting.
|
|
|
|
** Jump to P2 if there are no records to be sorted.
|
|
|
|
**
|
|
|
|
** This opcode is an alias for OP_Sort and OP_Rewind that is used
|
|
|
|
** for Sorter objects.
|
|
|
|
*/
|
|
|
|
/* Opcode: Sort P1 P2 * * *
|
|
|
|
**
|
|
|
|
** This opcode does exactly the same thing as OP_Rewind except that
|
|
|
|
** it increments an undocumented global variable used for testing.
|
|
|
|
**
|
|
|
|
** Sorting is accomplished by writing records into a sorting index,
|
|
|
|
** then rewinding that index and playing it back from beginning to
|
|
|
|
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
|
|
|
** rewinding so that the global variable will be incremented and
|
|
|
|
** regression tests can determine whether or not the optimizer is
|
|
|
|
** correctly optimizing out sorts.
|
|
|
|
*/
|
|
|
|
case OP_SorterSort: /* jump */
|
|
|
|
case OP_Sort: { /* jump */
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
sqlite3_sort_count++;
|
|
|
|
sqlite3_search_count--;
|
|
|
|
#endif
|
|
|
|
p->aCounter[SQLITE_STMTSTATUS_SORT]++;
|
|
|
|
/* Fall through into OP_Rewind */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
}
|
|
|
|
/* Opcode: Rewind P1 P2 * * *
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
2021-05-14 09:07:09 +00:00
|
|
|
** will refer to the first entry in the database table or index.
|
|
|
|
** If the table or index is empty, jump immediately to P2.
|
2022-07-22 04:46:07 +00:00
|
|
|
** If the table or index is not empty, fall through to the following
|
2021-05-14 09:07:09 +00:00
|
|
|
** instruction.
|
|
|
|
**
|
|
|
|
** This opcode leaves the cursor configured to move in forward order,
|
|
|
|
** from the beginning toward the end. In other words, the cursor is
|
|
|
|
** configured to use Next, not Prev.
|
|
|
|
*/
|
|
|
|
case OP_Rewind: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p5==0 );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
|
|
|
|
res = 1;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pC->seekOp = OP_Rewind;
|
|
|
|
#endif
|
|
|
|
if( isSorter(pC) ){
|
|
|
|
rc = sqlite3VdbeSorterRewind(pC, &res);
|
|
|
|
}else{
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
assert( pCrsr );
|
|
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
|
|
pC->deferredMoveto = 0;
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
pC->nullRow = (u8)res;
|
|
|
|
assert( pOp->p2>0 && pOp->p2<p->nOp );
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( res ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: Next P1 P2 P3 * P5
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
|
|
** jump immediately to P2.
|
|
|
|
**
|
|
|
|
** The Next opcode is only valid following an SeekGT, SeekGE, or
|
|
|
|
** OP_Rewind opcode used to position the cursor. Next is not allowed
|
|
|
|
** to follow SeekLT, SeekLE, or OP_Last.
|
|
|
|
**
|
|
|
|
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
|
|
|
|
** been opened prior to this opcode or the program will segfault.
|
|
|
|
**
|
|
|
|
** The P3 value is a hint to the btree implementation. If P3==1, that
|
|
|
|
** means P1 is an SQL index and that this instruction could have been
|
|
|
|
** omitted if that index had been unique. P3 is usually 0. P3 is
|
|
|
|
** always either 0 or 1.
|
|
|
|
**
|
|
|
|
** If P5 is positive and the jump is taken, then event counter
|
|
|
|
** number P5-1 in the prepared statement is incremented.
|
|
|
|
**
|
|
|
|
** See also: Prev
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: Prev P1 P2 P3 * P5
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
|
|
** table or index. If there is no previous key/value pairs then fall through
|
|
|
|
** to the following instruction. But if the cursor backup was successful,
|
|
|
|
** jump immediately to P2.
|
|
|
|
**
|
|
|
|
**
|
|
|
|
** The Prev opcode is only valid following an SeekLT, SeekLE, or
|
|
|
|
** OP_Last opcode used to position the cursor. Prev is not allowed
|
|
|
|
** to follow SeekGT, SeekGE, or OP_Rewind.
|
|
|
|
**
|
|
|
|
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
|
|
|
|
** not open then the behavior is undefined.
|
|
|
|
**
|
|
|
|
** The P3 value is a hint to the btree implementation. If P3==1, that
|
|
|
|
** means P1 is an SQL index and that this instruction could have been
|
|
|
|
** omitted if that index had been unique. P3 is usually 0. P3 is
|
|
|
|
** always either 0 or 1.
|
|
|
|
**
|
|
|
|
** If P5 is positive and the jump is taken, then event counter
|
|
|
|
** number P5-1 in the prepared statement is incremented.
|
|
|
|
*/
|
|
|
|
/* Opcode: SorterNext P1 P2 * * P5
|
|
|
|
**
|
|
|
|
** This opcode works just like OP_Next except that P1 must be a
|
|
|
|
** sorter object for which the OP_SorterSort opcode has been
|
|
|
|
** invoked. This opcode advances the cursor to the next sorted
|
|
|
|
** record, or jumps to P2 if there are no more sorted records.
|
|
|
|
*/
|
|
|
|
case OP_SorterNext: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( isSorter(pC) );
|
|
|
|
rc = sqlite3VdbeSorterNext(db, pC);
|
|
|
|
goto next_tail;
|
2022-11-28 20:54:48 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
case OP_Prev: /* jump */
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pOp->p5==0
|
|
|
|
|| pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
|
|
|
|
|| pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
|
2021-05-14 09:07:09 +00:00
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
|
|
|
|
|| pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
|
|
|
|
|| pC->seekOp==OP_NullRow);
|
|
|
|
rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
|
|
|
|
goto next_tail;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
case OP_Next: /* jump */
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p5==0
|
|
|
|
|| pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
|
|
|
|
|| pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
|
2021-05-14 09:07:09 +00:00
|
|
|
|| pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
|
|
|
|
|| pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
|
|
|
|
|| pC->seekOp==OP_IfNoHope);
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
next_tail:
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
VdbeBranchTaken(rc==SQLITE_OK,2);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
pC->nullRow = 0;
|
|
|
|
p->aCounter[pOp->p5]++;
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
sqlite3_search_count++;
|
|
|
|
#endif
|
|
|
|
goto jump_to_p2_and_check_for_interrupt;
|
|
|
|
}
|
|
|
|
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
pC->nullRow = 1;
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IdxInsert P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: key=r[P2]
|
|
|
|
**
|
|
|
|
** Register P2 holds an SQL index key made using the
|
|
|
|
** MakeRecord instructions. This opcode writes that key
|
|
|
|
** into the index P1. Data for the entry is nil.
|
|
|
|
**
|
|
|
|
** If P4 is not zero, then it is the number of values in the unpacked
|
|
|
|
** key of reg(P2). In that case, P3 is the index of the first register
|
|
|
|
** for the unpacked key. The availability of the unpacked key can sometimes
|
|
|
|
** be an optimization.
|
|
|
|
**
|
|
|
|
** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
|
|
|
|
** that this insert is likely to be an append.
|
|
|
|
**
|
|
|
|
** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
|
|
|
|
** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
|
|
|
|
** then the change counter is unchanged.
|
|
|
|
**
|
|
|
|
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
|
|
|
|
** run faster by avoiding an unnecessary seek on cursor P1. However,
|
|
|
|
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
|
|
|
|
** seeks on the cursor or if the most recent seek used a key equivalent
|
2022-07-22 04:46:07 +00:00
|
|
|
** to P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** This instruction only works for indices. The equivalent instruction
|
|
|
|
** for tables is OP_Insert.
|
|
|
|
*/
|
|
|
|
case OP_IdxInsert: { /* in2 */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtreePayload x;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, pC);
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( !isSorter(pC) );
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
|
|
|
|
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->isTable==0 );
|
|
|
|
rc = ExpandBlob(pIn2);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
x.nKey = pIn2->n;
|
|
|
|
x.pKey = pIn2->z;
|
|
|
|
x.aMem = aMem + pOp->p3;
|
|
|
|
x.nMem = (u16)pOp->p4.i;
|
|
|
|
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
|
2022-07-22 04:46:07 +00:00
|
|
|
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
|
2021-05-14 09:07:09 +00:00
|
|
|
((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
|
|
|
|
);
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
if( rc) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SorterInsert P1 P2 * * *
|
|
|
|
** Synopsis: key=r[P2]
|
|
|
|
**
|
|
|
|
** Register P2 holds an SQL index key made using the
|
|
|
|
** MakeRecord instructions. This opcode writes that key
|
|
|
|
** into the sorter P1. Data for the entry is nil.
|
|
|
|
*/
|
|
|
|
case OP_SorterInsert: { /* in2 */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, pC);
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( isSorter(pC) );
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
assert( pIn2->flags & MEM_Blob );
|
|
|
|
assert( pC->isTable==0 );
|
|
|
|
rc = ExpandBlob(pIn2);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
rc = sqlite3VdbeSorterWrite(pC, pIn2);
|
|
|
|
if( rc) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IdxDelete P1 P2 P3 * P5
|
|
|
|
** Synopsis: key=r[P2@P3]
|
|
|
|
**
|
|
|
|
** The content of P3 registers starting at register P2 form
|
2022-07-22 04:46:07 +00:00
|
|
|
** an unpacked index key. This opcode removes that entry from the
|
2021-05-14 09:07:09 +00:00
|
|
|
** index opened by cursor P1.
|
|
|
|
**
|
|
|
|
** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
|
|
|
|
** if no matching index entry is found. This happens when running
|
|
|
|
** an UPDATE or DELETE statement and the index entry to be updated
|
|
|
|
** or deleted is not found. For some uses of IdxDelete
|
|
|
|
** (example: the EXCEPT operator) it does not matter that no matching
|
2022-11-28 20:54:48 +00:00
|
|
|
** entry is found. For those cases, P5 is zero. Also, do not raise
|
|
|
|
** this (self-correcting and non-critical) error if in writable_schema mode.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
case OP_IdxDelete: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
BtCursor *pCrsr;
|
|
|
|
int res;
|
|
|
|
UnpackedRecord r;
|
|
|
|
|
|
|
|
assert( pOp->p3>0 );
|
|
|
|
assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, pC);
|
|
|
|
pCrsr = pC->uc.pCursor;
|
|
|
|
assert( pCrsr!=0 );
|
|
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
|
|
r.nField = (u16)pOp->p3;
|
|
|
|
r.default_rc = 0;
|
|
|
|
r.aMem = &aMem[pOp->p2];
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
if( res==0 ){
|
|
|
|
rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
2022-11-28 20:54:48 +00:00
|
|
|
}else if( pOp->p5 && !sqlite3WritableSchema(db) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
pC->seekResult = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: DeferredSeek P1 * P3 P4 *
|
|
|
|
** Synopsis: Move P3 to P1.rowid if needed
|
|
|
|
**
|
|
|
|
** P1 is an open index cursor and P3 is a cursor on the corresponding
|
|
|
|
** table. This opcode does a deferred seek of the P3 table cursor
|
|
|
|
** to the row that corresponds to the current row of P1.
|
|
|
|
**
|
|
|
|
** This is a deferred seek. Nothing actually happens until
|
|
|
|
** the cursor is used to read a record. That way, if no reads
|
|
|
|
** occur, no unnecessary I/O happens.
|
|
|
|
**
|
|
|
|
** P4 may be an array of integers (type P4_INTARRAY) containing
|
|
|
|
** one entry for each column in the P3 table. If array entry a(i)
|
2022-07-22 04:46:07 +00:00
|
|
|
** is non-zero, then reading column a(i)-1 from cursor P3 is
|
|
|
|
** equivalent to performing the deferred seek and then reading column i
|
2021-05-14 09:07:09 +00:00
|
|
|
** from P1. This information is stored in P3 and used to redirect
|
|
|
|
** reads against P3 over to P1, thus possibly avoiding the need to
|
|
|
|
** seek and read cursor P3.
|
|
|
|
*/
|
|
|
|
/* Opcode: IdxRowid P1 P2 * * *
|
|
|
|
** Synopsis: r[P2]=rowid
|
|
|
|
**
|
|
|
|
** Write into register P2 an integer which is the last entry in the record at
|
|
|
|
** the end of the index key pointed to by cursor P1. This integer should be
|
|
|
|
** the rowid of the table entry to which this index entry points.
|
|
|
|
**
|
|
|
|
** See also: Rowid, MakeRecord.
|
|
|
|
*/
|
|
|
|
case OP_DeferredSeek:
|
|
|
|
case OP_IdxRowid: { /* out2 */
|
|
|
|
VdbeCursor *pC; /* The P1 index cursor */
|
|
|
|
VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
|
|
|
|
i64 rowid; /* Rowid that P1 current points to */
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC->uc.pCursor!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pC->isTable==0 || IsNullCursor(pC) );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
|
|
|
|
|
|
|
|
/* The IdxRowid and Seek opcodes are combined because of the commonality
|
|
|
|
** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
|
|
|
|
rc = sqlite3VdbeCursorRestore(pC);
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
|
|
|
|
** since it was last positioned and an error (e.g. OOM or an IO error)
|
|
|
|
** occurs while trying to reposition it. */
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
if( !pC->nullRow ){
|
|
|
|
rowid = 0; /* Not needed. Only used to silence a warning. */
|
|
|
|
rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
if( pOp->opcode==OP_DeferredSeek ){
|
|
|
|
assert( pOp->p3>=0 && pOp->p3<p->nCursor );
|
|
|
|
pTabCur = p->apCsr[pOp->p3];
|
|
|
|
assert( pTabCur!=0 );
|
|
|
|
assert( pTabCur->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pTabCur->uc.pCursor!=0 );
|
|
|
|
assert( pTabCur->isTable );
|
|
|
|
pTabCur->nullRow = 0;
|
|
|
|
pTabCur->movetoTarget = rowid;
|
|
|
|
pTabCur->deferredMoveto = 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
pTabCur->cacheStatus = CACHE_STALE;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
|
|
|
|
assert( !pTabCur->isEphemeral );
|
2022-11-28 20:54:48 +00:00
|
|
|
pTabCur->ub.aAltMap = pOp->p4.ai;
|
|
|
|
assert( !pC->isEphemeral );
|
2021-05-14 09:07:09 +00:00
|
|
|
pTabCur->pAltCursor = pC;
|
|
|
|
}else{
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = rowid;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
assert( pOp->opcode==OP_IdxRowid );
|
|
|
|
sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: FinishSeek P1 * * * *
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** If cursor P1 was previously moved via OP_DeferredSeek, complete that
|
|
|
|
** seek operation now, without further delay. If the cursor seek has
|
|
|
|
** already occurred, this instruction is a no-op.
|
|
|
|
*/
|
|
|
|
case OP_FinishSeek: {
|
|
|
|
VdbeCursor *pC; /* The P1 index cursor */
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
if( pC->deferredMoveto ){
|
|
|
|
rc = sqlite3VdbeFinishMoveto(pC);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IdxGE P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
|
|
** key that omits the PRIMARY KEY. Compare this key value against the index
|
|
|
|
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
|
2021-05-14 09:07:09 +00:00
|
|
|
** fields at the end.
|
|
|
|
**
|
|
|
|
** If the P1 index entry is greater than or equal to the key value
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
/* Opcode: IdxGT P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
|
|
** key that omits the PRIMARY KEY. Compare this key value against the index
|
|
|
|
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
|
2021-05-14 09:07:09 +00:00
|
|
|
** fields at the end.
|
|
|
|
**
|
|
|
|
** If the P1 index entry is greater than the key value
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
/* Opcode: IdxLT P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The P4 register values beginning with P3 form an unpacked index
|
2021-05-14 09:07:09 +00:00
|
|
|
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
|
|
|
|
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
|
|
|
|
** ROWID on the P1 index.
|
|
|
|
**
|
|
|
|
** If the P1 index entry is less than the key value then jump to P2.
|
|
|
|
** Otherwise fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
/* Opcode: IdxLE P1 P2 P3 P4 *
|
|
|
|
** Synopsis: key=r[P3@P4]
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The P4 register values beginning with P3 form an unpacked index
|
2021-05-14 09:07:09 +00:00
|
|
|
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
|
|
|
|
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
|
|
|
|
** ROWID on the P1 index.
|
|
|
|
**
|
|
|
|
** If the P1 index entry is less than or equal to the key value then jump
|
|
|
|
** to P2. Otherwise fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
case OP_IdxLE: /* jump */
|
|
|
|
case OP_IdxGT: /* jump */
|
|
|
|
case OP_IdxLT: /* jump */
|
|
|
|
case OP_IdxGE: { /* jump */
|
|
|
|
VdbeCursor *pC;
|
|
|
|
int res;
|
|
|
|
UnpackedRecord r;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->isOrdered );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->uc.pCursor!=0);
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
|
|
r.nField = (u16)pOp->p4.i;
|
|
|
|
if( pOp->opcode<OP_IdxLT ){
|
|
|
|
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
|
|
|
|
r.default_rc = -1;
|
|
|
|
}else{
|
|
|
|
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
|
|
|
|
r.default_rc = 0;
|
|
|
|
}
|
|
|
|
r.aMem = &aMem[pOp->p3];
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i=0; i<r.nField; i++){
|
|
|
|
assert( memIsValid(&r.aMem[i]) );
|
|
|
|
REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Inlined version of sqlite3VdbeIdxKeyCompare() */
|
|
|
|
{
|
|
|
|
i64 nCellKey = 0;
|
|
|
|
BtCursor *pCur;
|
|
|
|
Mem m;
|
|
|
|
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
pCur = pC->uc.pCursor;
|
|
|
|
assert( sqlite3BtreeCursorIsValid(pCur) );
|
|
|
|
nCellKey = sqlite3BtreePayloadSize(pCur);
|
|
|
|
/* nCellKey will always be between 0 and 0xffffffff because of the way
|
|
|
|
** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
|
|
|
|
if( nCellKey<=0 || nCellKey>0x7fffffff ){
|
|
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
sqlite3VdbeMemInit(&m, db, 0);
|
|
|
|
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3VdbeMemReleaseMalloc(&m);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
/* End of inlined sqlite3VdbeIdxKeyCompare() */
|
|
|
|
|
|
|
|
assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
|
|
|
|
if( (pOp->opcode&1)==(OP_IdxLT&1) ){
|
|
|
|
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
|
|
|
|
res = -res;
|
|
|
|
}else{
|
|
|
|
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
|
|
|
|
res++;
|
|
|
|
}
|
|
|
|
VdbeBranchTaken(res>0,2);
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
if( res>0 ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Destroy P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Delete an entire database table or index whose root page in the database
|
|
|
|
** file is given by P1.
|
|
|
|
**
|
|
|
|
** The table being destroyed is in the main database file if P3==0. If
|
|
|
|
** P3==1 then the table to be clear is in the auxiliary database file
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
|
|
**
|
|
|
|
** If AUTOVACUUM is enabled then it is possible that another root page
|
|
|
|
** might be moved into the newly deleted root page in order to keep all
|
|
|
|
** root pages contiguous at the beginning of the database. The former
|
|
|
|
** value of the root page that moved - its value before the move occurred -
|
|
|
|
** is stored in register P2. If no page movement was required (because the
|
2022-07-22 04:46:07 +00:00
|
|
|
** table being dropped was already the last one in the database) then a
|
|
|
|
** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
|
2021-05-14 09:07:09 +00:00
|
|
|
** is stored in register P2.
|
|
|
|
**
|
|
|
|
** This opcode throws an error if there are any active reader VMs when
|
2022-07-22 04:46:07 +00:00
|
|
|
** it is invoked. This is done to avoid the difficulty associated with
|
|
|
|
** updating existing cursors when a root page is moved in an AUTOVACUUM
|
|
|
|
** database. This error is thrown even if the database is not an AUTOVACUUM
|
|
|
|
** db in order to avoid introducing an incompatibility between autovacuum
|
2021-05-14 09:07:09 +00:00
|
|
|
** and non-autovacuum modes.
|
|
|
|
**
|
|
|
|
** See also: Clear
|
|
|
|
*/
|
|
|
|
case OP_Destroy: { /* out2 */
|
|
|
|
int iMoved;
|
|
|
|
int iDb;
|
|
|
|
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
assert( pOp->p1>1 );
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->flags = MEM_Null;
|
|
|
|
if( db->nVdbeRead > db->nVDestroy+1 ){
|
|
|
|
rc = SQLITE_LOCKED;
|
|
|
|
p->errorAction = OE_Abort;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}else{
|
|
|
|
iDb = pOp->p3;
|
|
|
|
assert( DbMaskTest(p->btreeMask, iDb) );
|
|
|
|
iMoved = 0; /* Not needed. Only to silence a warning. */
|
|
|
|
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
|
|
|
|
pOut->flags = MEM_Int;
|
|
|
|
pOut->u.i = iMoved;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
|
|
if( iMoved!=0 ){
|
|
|
|
sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
|
|
|
|
/* All OP_Destroy operations occur on the same btree */
|
|
|
|
assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
|
|
|
|
resetSchemaOnFault = iDb+1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Clear P1 P2 P3
|
|
|
|
**
|
|
|
|
** Delete all contents of the database table or index whose root page
|
|
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
|
|
** remove the table or index from the database file.
|
|
|
|
**
|
|
|
|
** The table being clear is in the main database file if P2==0. If
|
|
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** If the P3 value is non-zero, then the row change count is incremented
|
|
|
|
** by the number of rows in the table being cleared. If P3 is greater
|
|
|
|
** than zero, then the value stored in register P3 is also incremented
|
|
|
|
** by the number of rows in the table being cleared.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** See also: Destroy
|
|
|
|
*/
|
|
|
|
case OP_Clear: {
|
2022-11-28 20:54:48 +00:00
|
|
|
i64 nChange;
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
nChange = 0;
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p2) );
|
2022-11-28 20:54:48 +00:00
|
|
|
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pOp->p3 ){
|
|
|
|
p->nChange += nChange;
|
|
|
|
if( pOp->p3>0 ){
|
|
|
|
assert( memIsValid(&aMem[pOp->p3]) );
|
|
|
|
memAboutToChange(p, &aMem[pOp->p3]);
|
|
|
|
aMem[pOp->p3].u.i += nChange;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: ResetSorter P1 * * * *
|
|
|
|
**
|
|
|
|
** Delete all contents from the ephemeral table or sorter
|
|
|
|
** that is open on cursor P1.
|
|
|
|
**
|
|
|
|
** This opcode only works for cursors used for sorting and
|
|
|
|
** opened with OP_OpenEphemeral or OP_SorterOpen.
|
|
|
|
*/
|
|
|
|
case OP_ResetSorter: {
|
|
|
|
VdbeCursor *pC;
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
if( isSorter(pC) ){
|
|
|
|
sqlite3VdbeSorterReset(db, pC->uc.pSorter);
|
|
|
|
}else{
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
assert( pC->isEphemeral );
|
|
|
|
rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: CreateBtree P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2]=root iDb=P1 flags=P3
|
|
|
|
**
|
|
|
|
** Allocate a new b-tree in the main database file if P1==0 or in the
|
|
|
|
** TEMP database file if P1==1 or in an attached database if
|
|
|
|
** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
|
|
|
|
** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
|
|
|
|
** The root page number of the new b-tree is stored in register P2.
|
|
|
|
*/
|
|
|
|
case OP_CreateBtree: { /* out2 */
|
|
|
|
Pgno pgno;
|
|
|
|
Db *pDb;
|
|
|
|
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pgno = 0;
|
|
|
|
assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
pDb = &db->aDb[pOp->p1];
|
|
|
|
assert( pDb->pBt!=0 );
|
|
|
|
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
pOut->u.i = pgno;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: SqlExec * * * P4 *
|
|
|
|
**
|
|
|
|
** Run the SQL statement or statements specified in the P4 string.
|
|
|
|
*/
|
|
|
|
case OP_SqlExec: {
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
db->nSqlExec++;
|
|
|
|
rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
|
|
|
|
db->nSqlExec--;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: ParseSchema P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Read and parse all entries from the schema table of database P1
|
|
|
|
** that match the WHERE clause P4. If P4 is a NULL pointer, then the
|
|
|
|
** entire schema for P1 is reparsed.
|
|
|
|
**
|
|
|
|
** This opcode invokes the parser to create a new virtual machine,
|
|
|
|
** then runs the new virtual machine. It is thus a re-entrant opcode.
|
|
|
|
*/
|
|
|
|
case OP_ParseSchema: {
|
|
|
|
int iDb;
|
|
|
|
const char *zSchema;
|
|
|
|
char *zSql;
|
|
|
|
InitData initData;
|
|
|
|
|
|
|
|
/* Any prepared statement that invokes this opcode will hold mutexes
|
2022-07-22 04:46:07 +00:00
|
|
|
** on every btree. This is a prerequisite for invoking
|
2021-05-14 09:07:09 +00:00
|
|
|
** sqlite3InitCallback().
|
|
|
|
*/
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
for(iDb=0; iDb<db->nDb; iDb++){
|
|
|
|
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
iDb = pOp->p1;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
|
|
|
|
|| db->mallocFailed
|
|
|
|
|| (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
|
|
if( pOp->p4.z==0 ){
|
|
|
|
sqlite3SchemaClear(db->aDb[iDb].pSchema);
|
|
|
|
db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
|
|
|
|
rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
|
|
|
p->expired = 0;
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
{
|
2022-11-28 20:54:48 +00:00
|
|
|
zSchema = LEGACY_SCHEMA_TABLE;
|
2021-05-14 09:07:09 +00:00
|
|
|
initData.db = db;
|
|
|
|
initData.iDb = iDb;
|
|
|
|
initData.pzErrMsg = &p->zErrMsg;
|
|
|
|
initData.mInitFlags = 0;
|
|
|
|
initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
|
|
|
|
zSql = sqlite3MPrintf(db,
|
|
|
|
"SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
|
|
|
|
db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
|
|
|
|
if( zSql==0 ){
|
|
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
|
|
}else{
|
|
|
|
assert( db->init.busy==0 );
|
|
|
|
db->init.busy = 1;
|
|
|
|
initData.rc = SQLITE_OK;
|
|
|
|
initData.nInitRow = 0;
|
|
|
|
assert( !db->mallocFailed );
|
|
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
|
|
if( rc==SQLITE_OK ) rc = initData.rc;
|
|
|
|
if( rc==SQLITE_OK && initData.nInitRow==0 ){
|
|
|
|
/* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
|
|
|
|
** at least one SQL statement. Any less than that indicates that
|
|
|
|
** the sqlite_schema table is corrupt. */
|
|
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
}
|
|
|
|
sqlite3DbFreeNN(db, zSql);
|
|
|
|
db->init.busy = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( rc ){
|
|
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
|
|
if( rc==SQLITE_NOMEM ){
|
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
break;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_ANALYZE)
|
|
|
|
/* Opcode: LoadAnalysis P1 * * * *
|
|
|
|
**
|
|
|
|
** Read the sqlite_stat1 table for database P1 and load the content
|
|
|
|
** of that table into the internal index hash table. This will cause
|
|
|
|
** the analysis to be used when preparing all subsequent queries.
|
|
|
|
*/
|
|
|
|
case OP_LoadAnalysis: {
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
rc = sqlite3AnalysisLoad(db, pOp->p1);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
2022-07-22 04:46:07 +00:00
|
|
|
break;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_OMIT_ANALYZE) */
|
|
|
|
|
|
|
|
/* Opcode: DropTable P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Remove the internal (in-memory) data structures that describe
|
|
|
|
** the table named P4 in database P1. This is called after a table
|
2022-07-22 04:46:07 +00:00
|
|
|
** is dropped from disk (using the Destroy opcode) in order to keep
|
2021-05-14 09:07:09 +00:00
|
|
|
** the internal representation of the
|
|
|
|
** schema consistent with what is on disk.
|
|
|
|
*/
|
|
|
|
case OP_DropTable: {
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: DropIndex P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Remove the internal (in-memory) data structures that describe
|
|
|
|
** the index named P4 in database P1. This is called after an index
|
|
|
|
** is dropped from disk (using the Destroy opcode)
|
|
|
|
** in order to keep the internal representation of the
|
|
|
|
** schema consistent with what is on disk.
|
|
|
|
*/
|
|
|
|
case OP_DropIndex: {
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: DropTrigger P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Remove the internal (in-memory) data structures that describe
|
|
|
|
** the trigger named P4 in database P1. This is called after a trigger
|
2022-07-22 04:46:07 +00:00
|
|
|
** is dropped from disk (using the Destroy opcode) in order to keep
|
2021-05-14 09:07:09 +00:00
|
|
|
** the internal representation of the
|
|
|
|
** schema consistent with what is on disk.
|
|
|
|
*/
|
|
|
|
case OP_DropTrigger: {
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
|
|
/* Opcode: IntegrityCk P1 P2 P3 P4 P5
|
|
|
|
**
|
|
|
|
** Do an analysis of the currently open database. Store in
|
|
|
|
** register P1 the text of an error message describing any problems.
|
|
|
|
** If no problems are found, store a NULL in register P1.
|
|
|
|
**
|
|
|
|
** The register P3 contains one less than the maximum number of allowed errors.
|
|
|
|
** At most reg(P3) errors will be reported.
|
2022-07-22 04:46:07 +00:00
|
|
|
** In other words, the analysis stops as soon as reg(P1) errors are
|
2021-05-14 09:07:09 +00:00
|
|
|
** seen. Reg(P1) is updated with the number of errors remaining.
|
|
|
|
**
|
|
|
|
** The root page numbers of all tables in the database are integers
|
|
|
|
** stored in P4_INTARRAY argument.
|
|
|
|
**
|
|
|
|
** If P5 is not zero, the check is done on the auxiliary database
|
|
|
|
** file, not the main database file.
|
|
|
|
**
|
|
|
|
** This opcode is used to implement the integrity_check pragma.
|
|
|
|
*/
|
|
|
|
case OP_IntegrityCk: {
|
|
|
|
int nRoot; /* Number of tables to check. (Number of root pages.) */
|
|
|
|
Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
|
|
|
|
int nErr; /* Number of errors reported */
|
|
|
|
char *z; /* Text of the error report */
|
|
|
|
Mem *pnErr; /* Register keeping track of errors remaining */
|
|
|
|
|
|
|
|
assert( p->bIsReader );
|
|
|
|
nRoot = pOp->p2;
|
|
|
|
aRoot = pOp->p4.ai;
|
|
|
|
assert( nRoot>0 );
|
|
|
|
assert( aRoot[0]==(Pgno)nRoot );
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pnErr = &aMem[pOp->p3];
|
|
|
|
assert( (pnErr->flags & MEM_Int)!=0 );
|
|
|
|
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pOp->p5<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p5) );
|
|
|
|
z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
|
|
|
|
(int)pnErr->u.i+1, &nErr);
|
|
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
|
|
if( nErr==0 ){
|
|
|
|
assert( z==0 );
|
|
|
|
}else if( z==0 ){
|
|
|
|
goto no_mem;
|
|
|
|
}else{
|
|
|
|
pnErr->u.i -= nErr-1;
|
|
|
|
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
|
|
|
|
}
|
|
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
|
|
sqlite3VdbeChangeEncoding(pIn1, encoding);
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
|
|
|
|
/* Opcode: RowSetAdd P1 P2 * * *
|
|
|
|
** Synopsis: rowset(P1)=r[P2]
|
|
|
|
**
|
|
|
|
** Insert the integer value held by register P2 into a RowSet object
|
|
|
|
** held in register P1.
|
|
|
|
**
|
|
|
|
** An assertion fails if P2 is not an integer.
|
|
|
|
*/
|
|
|
|
case OP_RowSetAdd: { /* in1, in2 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
assert( (pIn2->flags & MEM_Int)!=0 );
|
|
|
|
if( (pIn1->flags & MEM_Blob)==0 ){
|
|
|
|
if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
|
|
|
|
}
|
|
|
|
assert( sqlite3VdbeMemIsRowSet(pIn1) );
|
|
|
|
sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: RowSetRead P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P3]=rowset(P1)
|
|
|
|
**
|
|
|
|
** Extract the smallest value from the RowSet object in P1
|
|
|
|
** and put that value into register P3.
|
|
|
|
** Or, if RowSet object P1 is initially empty, leave P3
|
|
|
|
** unchanged and jump to instruction P2.
|
|
|
|
*/
|
|
|
|
case OP_RowSetRead: { /* jump, in1, out3 */
|
|
|
|
i64 val;
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
|
2022-07-22 04:46:07 +00:00
|
|
|
if( (pIn1->flags & MEM_Blob)==0
|
2021-05-14 09:07:09 +00:00
|
|
|
|| sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
|
|
|
|
){
|
|
|
|
/* The boolean index is empty */
|
|
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
|
|
VdbeBranchTaken(1,2);
|
|
|
|
goto jump_to_p2_and_check_for_interrupt;
|
|
|
|
}else{
|
|
|
|
/* A value was pulled from the index */
|
|
|
|
VdbeBranchTaken(0,2);
|
|
|
|
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
|
|
|
|
}
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: RowSetTest P1 P2 P3 P4
|
|
|
|
** Synopsis: if r[P3] in rowset(P1) goto P2
|
|
|
|
**
|
|
|
|
** Register P3 is assumed to hold a 64-bit integer value. If register P1
|
|
|
|
** contains a RowSet object and that RowSet object contains
|
|
|
|
** the value held in P3, jump to register P2. Otherwise, insert the
|
|
|
|
** integer in P3 into the RowSet and continue on to the
|
|
|
|
** next opcode.
|
|
|
|
**
|
|
|
|
** The RowSet object is optimized for the case where sets of integers
|
|
|
|
** are inserted in distinct phases, which each set contains no duplicates.
|
|
|
|
** Each set is identified by a unique P4 value. The first set
|
|
|
|
** must have P4==0, the final set must have P4==-1, and for all other sets
|
|
|
|
** must have P4>0.
|
|
|
|
**
|
|
|
|
** This allows optimizations: (a) when P4==0 there is no need to test
|
|
|
|
** the RowSet object for P3, as it is guaranteed not to contain it,
|
|
|
|
** (b) when P4==-1 there is no need to insert the value, as it will
|
|
|
|
** never be tested for, and (c) when a value that is part of set X is
|
|
|
|
** inserted, there is no need to search to see if the same value was
|
|
|
|
** previously inserted as part of set X (only if it was previously
|
|
|
|
** inserted as part of some other set).
|
|
|
|
*/
|
|
|
|
case OP_RowSetTest: { /* jump, in1, in3 */
|
|
|
|
int iSet;
|
|
|
|
int exists;
|
|
|
|
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
iSet = pOp->p4.i;
|
|
|
|
assert( pIn3->flags&MEM_Int );
|
|
|
|
|
|
|
|
/* If there is anything other than a rowset object in memory cell P1,
|
|
|
|
** delete it now and initialize P1 with an empty rowset
|
|
|
|
*/
|
|
|
|
if( (pIn1->flags & MEM_Blob)==0 ){
|
|
|
|
if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
|
|
|
|
}
|
|
|
|
assert( sqlite3VdbeMemIsRowSet(pIn1) );
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
|
|
assert( iSet==-1 || iSet>=0 );
|
|
|
|
if( iSet ){
|
|
|
|
exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
|
|
|
|
VdbeBranchTaken(exists!=0,2);
|
|
|
|
if( exists ) goto jump_to_p2;
|
|
|
|
}
|
|
|
|
if( iSet>=0 ){
|
|
|
|
sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
|
|
|
|
|
|
/* Opcode: Program P1 P2 P3 P4 P5
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P1 contains the address of the memory cell that contains the first memory
|
|
|
|
** cell in an array of values used as arguments to the sub-program. P2
|
|
|
|
** contains the address to jump to if the sub-program throws an IGNORE
|
|
|
|
** exception using the RAISE() function. Register P3 contains the address
|
|
|
|
** of a memory cell in this (the parent) VM that is used to allocate the
|
2021-05-14 09:07:09 +00:00
|
|
|
** memory required by the sub-vdbe at runtime.
|
|
|
|
**
|
|
|
|
** P4 is a pointer to the VM containing the trigger program.
|
|
|
|
**
|
|
|
|
** If P5 is non-zero, then recursive program invocation is enabled.
|
|
|
|
*/
|
|
|
|
case OP_Program: { /* jump */
|
|
|
|
int nMem; /* Number of memory registers for sub-program */
|
|
|
|
int nByte; /* Bytes of runtime space required for sub-program */
|
|
|
|
Mem *pRt; /* Register to allocate runtime space */
|
|
|
|
Mem *pMem; /* Used to iterate through memory cells */
|
|
|
|
Mem *pEnd; /* Last memory cell in new array */
|
|
|
|
VdbeFrame *pFrame; /* New vdbe frame to execute in */
|
|
|
|
SubProgram *pProgram; /* Sub-program to execute */
|
|
|
|
void *t; /* Token identifying trigger */
|
|
|
|
|
|
|
|
pProgram = pOp->p4.pProgram;
|
|
|
|
pRt = &aMem[pOp->p3];
|
|
|
|
assert( pProgram->nOp>0 );
|
2022-07-22 04:46:07 +00:00
|
|
|
|
|
|
|
/* If the p5 flag is clear, then recursive invocation of triggers is
|
2021-05-14 09:07:09 +00:00
|
|
|
** disabled for backwards compatibility (p5 is set if this sub-program
|
|
|
|
** is really a trigger, not a foreign key action, and the flag set
|
|
|
|
** and cleared by the "PRAGMA recursive_triggers" command is clear).
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
|
|
|
** It is recursive invocation of triggers, at the SQL level, that is
|
|
|
|
** disabled. In some cases a single trigger may generate more than one
|
|
|
|
** SubProgram (if the trigger may be executed with more than one different
|
2021-05-14 09:07:09 +00:00
|
|
|
** ON CONFLICT algorithm). SubProgram structures associated with a
|
2022-07-22 04:46:07 +00:00
|
|
|
** single trigger all have the same value for the SubProgram.token
|
2021-05-14 09:07:09 +00:00
|
|
|
** variable. */
|
|
|
|
if( pOp->p5 ){
|
|
|
|
t = pProgram->token;
|
|
|
|
for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
|
|
|
|
if( pFrame ) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
|
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
sqlite3VdbeError(p, "too many levels of trigger recursion");
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Register pRt is used to store the memory required to save the state
|
|
|
|
** of the current program, and the memory required at runtime to execute
|
2022-07-22 04:46:07 +00:00
|
|
|
** the trigger program. If this trigger has been fired before, then pRt
|
2021-05-14 09:07:09 +00:00
|
|
|
** is already allocated. Otherwise, it must be initialized. */
|
|
|
|
if( (pRt->flags&MEM_Blob)==0 ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* SubProgram.nMem is set to the number of memory cells used by the
|
2021-05-14 09:07:09 +00:00
|
|
|
** program stored in SubProgram.aOp. As well as these, one memory
|
|
|
|
** cell is required for each cursor used by the program. Set local
|
|
|
|
** variable nMem (and later, VdbeFrame.nChildMem) to this value.
|
|
|
|
*/
|
|
|
|
nMem = pProgram->nMem + pProgram->nCsr;
|
|
|
|
assert( nMem>0 );
|
|
|
|
if( pProgram->nCsr==0 ) nMem++;
|
|
|
|
nByte = ROUND8(sizeof(VdbeFrame))
|
|
|
|
+ nMem * sizeof(Mem)
|
|
|
|
+ pProgram->nCsr * sizeof(VdbeCursor*)
|
|
|
|
+ (pProgram->nOp + 7)/8;
|
|
|
|
pFrame = sqlite3DbMallocZero(db, nByte);
|
|
|
|
if( !pFrame ){
|
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
sqlite3VdbeMemRelease(pRt);
|
|
|
|
pRt->flags = MEM_Blob|MEM_Dyn;
|
|
|
|
pRt->z = (char*)pFrame;
|
|
|
|
pRt->n = nByte;
|
|
|
|
pRt->xDel = sqlite3VdbeFrameMemDel;
|
|
|
|
|
|
|
|
pFrame->v = p;
|
|
|
|
pFrame->nChildMem = nMem;
|
|
|
|
pFrame->nChildCsr = pProgram->nCsr;
|
|
|
|
pFrame->pc = (int)(pOp - aOp);
|
|
|
|
pFrame->aMem = p->aMem;
|
|
|
|
pFrame->nMem = p->nMem;
|
|
|
|
pFrame->apCsr = p->apCsr;
|
|
|
|
pFrame->nCursor = p->nCursor;
|
|
|
|
pFrame->aOp = p->aOp;
|
|
|
|
pFrame->nOp = p->nOp;
|
|
|
|
pFrame->token = pProgram->token;
|
|
|
|
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
|
|
|
|
pFrame->anExec = p->anExec;
|
|
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
|
|
|
|
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
|
|
|
|
pMem->flags = MEM_Undefined;
|
|
|
|
pMem->db = db;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
pFrame = (VdbeFrame*)pRt->z;
|
|
|
|
assert( pRt->xDel==sqlite3VdbeFrameMemDel );
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
|
2021-05-14 09:07:09 +00:00
|
|
|
|| (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
|
|
|
|
assert( pProgram->nCsr==pFrame->nChildCsr );
|
|
|
|
assert( (int)(pOp - aOp)==pFrame->pc );
|
|
|
|
}
|
|
|
|
|
|
|
|
p->nFrame++;
|
|
|
|
pFrame->pParent = p->pFrame;
|
|
|
|
pFrame->lastRowid = db->lastRowid;
|
|
|
|
pFrame->nChange = p->nChange;
|
|
|
|
pFrame->nDbChange = p->db->nChange;
|
|
|
|
assert( pFrame->pAuxData==0 );
|
|
|
|
pFrame->pAuxData = p->pAuxData;
|
|
|
|
p->pAuxData = 0;
|
|
|
|
p->nChange = 0;
|
|
|
|
p->pFrame = pFrame;
|
|
|
|
p->aMem = aMem = VdbeFrameMem(pFrame);
|
|
|
|
p->nMem = pFrame->nChildMem;
|
|
|
|
p->nCursor = (u16)pFrame->nChildCsr;
|
|
|
|
p->apCsr = (VdbeCursor **)&aMem[p->nMem];
|
|
|
|
pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
|
|
|
|
memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
|
|
|
|
p->aOp = aOp = pProgram->aOp;
|
|
|
|
p->nOp = pProgram->nOp;
|
|
|
|
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
|
|
|
|
p->anExec = 0;
|
|
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Verify that second and subsequent executions of the same trigger do not
|
|
|
|
** try to reuse register values from the first use. */
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i=0; i<p->nMem; i++){
|
|
|
|
aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
|
|
|
|
MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pOp = &aOp[-1];
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Param P1 P2 * * *
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** This opcode is only ever present in sub-programs called via the
|
|
|
|
** OP_Program instruction. Copy a value currently stored in a memory
|
|
|
|
** cell of the calling (parent) frame to cell P2 in the current frames
|
|
|
|
** address space. This is used by trigger programs to access the new.*
|
2021-05-14 09:07:09 +00:00
|
|
|
** and old.* values.
|
|
|
|
**
|
|
|
|
** The address of the cell in the parent frame is determined by adding
|
|
|
|
** the value of the P1 argument to the value of the P1 argument to the
|
|
|
|
** calling OP_Program instruction.
|
|
|
|
*/
|
|
|
|
case OP_Param: { /* out2 */
|
|
|
|
VdbeFrame *pFrame;
|
|
|
|
Mem *pIn;
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pFrame = p->pFrame;
|
2022-07-22 04:46:07 +00:00
|
|
|
pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
|
|
/* Opcode: FkCounter P1 P2 * * *
|
|
|
|
** Synopsis: fkctr[P1]+=P2
|
|
|
|
**
|
|
|
|
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
|
2022-07-22 04:46:07 +00:00
|
|
|
** If P1 is non-zero, the database constraint counter is incremented
|
|
|
|
** (deferred foreign key constraints). Otherwise, if P1 is zero, the
|
2021-05-14 09:07:09 +00:00
|
|
|
** statement counter is incremented (immediate foreign key constraints).
|
|
|
|
*/
|
|
|
|
case OP_FkCounter: {
|
|
|
|
if( db->flags & SQLITE_DeferFKs ){
|
|
|
|
db->nDeferredImmCons += pOp->p2;
|
|
|
|
}else if( pOp->p1 ){
|
|
|
|
db->nDeferredCons += pOp->p2;
|
|
|
|
}else{
|
|
|
|
p->nFkConstraint += pOp->p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: FkIfZero P1 P2 * * *
|
|
|
|
** Synopsis: if fkctr[P1]==0 goto P2
|
|
|
|
**
|
|
|
|
** This opcode tests if a foreign key constraint-counter is currently zero.
|
2022-07-22 04:46:07 +00:00
|
|
|
** If so, jump to instruction P2. Otherwise, fall through to the next
|
2021-05-14 09:07:09 +00:00
|
|
|
** instruction.
|
|
|
|
**
|
|
|
|
** If P1 is non-zero, then the jump is taken if the database constraint-counter
|
|
|
|
** is zero (the one that counts deferred constraint violations). If P1 is
|
|
|
|
** zero, the jump is taken if the statement constraint-counter is zero
|
|
|
|
** (immediate foreign key constraint violations).
|
|
|
|
*/
|
|
|
|
case OP_FkIfZero: { /* jump */
|
|
|
|
if( pOp->p1 ){
|
|
|
|
VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
|
|
|
|
if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
|
|
|
|
}else{
|
|
|
|
VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
|
|
|
|
if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
/* Opcode: MemMax P1 P2 * * *
|
|
|
|
** Synopsis: r[P1]=max(r[P1],r[P2])
|
|
|
|
**
|
|
|
|
** P1 is a register in the root frame of this VM (the root frame is
|
|
|
|
** different from the current frame if this instruction is being executed
|
2022-07-22 04:46:07 +00:00
|
|
|
** within a sub-program). Set the value of register P1 to the maximum of
|
2021-05-14 09:07:09 +00:00
|
|
|
** its current value and the value in register P2.
|
|
|
|
**
|
|
|
|
** This instruction throws an error if the memory cell is not initially
|
|
|
|
** an integer.
|
|
|
|
*/
|
|
|
|
case OP_MemMax: { /* in2 */
|
|
|
|
VdbeFrame *pFrame;
|
|
|
|
if( p->pFrame ){
|
|
|
|
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
|
|
|
pIn1 = &pFrame->aMem[pOp->p1];
|
|
|
|
}else{
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
}
|
|
|
|
assert( memIsValid(pIn1) );
|
|
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
|
|
pIn2 = &aMem[pOp->p2];
|
|
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
|
|
if( pIn1->u.i<pIn2->u.i){
|
|
|
|
pIn1->u.i = pIn2->u.i;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
|
|
|
|
/* Opcode: IfPos P1 P2 P3 * *
|
|
|
|
** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
|
|
|
|
**
|
|
|
|
** Register P1 must contain an integer.
|
|
|
|
** If the value of register P1 is 1 or greater, subtract P3 from the
|
|
|
|
** value in P1 and jump to P2.
|
|
|
|
**
|
|
|
|
** If the initial value of register P1 is less than 1, then the
|
|
|
|
** value is unchanged and control passes through to the next instruction.
|
|
|
|
*/
|
|
|
|
case OP_IfPos: { /* jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pIn1->flags&MEM_Int );
|
|
|
|
VdbeBranchTaken( pIn1->u.i>0, 2);
|
|
|
|
if( pIn1->u.i>0 ){
|
|
|
|
pIn1->u.i -= pOp->p3;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: OffsetLimit P1 P2 P3 * *
|
|
|
|
** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
|
|
|
|
**
|
|
|
|
** This opcode performs a commonly used computation associated with
|
2022-11-28 20:54:48 +00:00
|
|
|
** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
|
2021-05-14 09:07:09 +00:00
|
|
|
** holds the offset counter. The opcode computes the combined value
|
|
|
|
** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
|
|
|
|
** value computed is the total number of rows that will need to be
|
|
|
|
** visited in order to complete the query.
|
|
|
|
**
|
|
|
|
** If r[P3] is zero or negative, that means there is no OFFSET
|
|
|
|
** and r[P2] is set to be the value of the LIMIT, r[P1].
|
|
|
|
**
|
|
|
|
** if r[P1] is zero or negative, that means there is no LIMIT
|
2022-07-22 04:46:07 +00:00
|
|
|
** and r[P2] is set to -1.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
|
|
|
|
*/
|
|
|
|
case OP_OffsetLimit: { /* in1, out2, in3 */
|
|
|
|
i64 x;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
assert( pIn1->flags & MEM_Int );
|
|
|
|
assert( pIn3->flags & MEM_Int );
|
|
|
|
x = pIn1->u.i;
|
|
|
|
if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
|
|
|
|
/* If the LIMIT is less than or equal to zero, loop forever. This
|
|
|
|
** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
|
|
|
|
** also loop forever. This is undocumented. In fact, one could argue
|
|
|
|
** that the loop should terminate. But assuming 1 billion iterations
|
|
|
|
** per second (far exceeding the capabilities of any current hardware)
|
|
|
|
** it would take nearly 300 years to actually reach the limit. So
|
|
|
|
** looping forever is a reasonable approximation. */
|
|
|
|
pOut->u.i = -1;
|
|
|
|
}else{
|
|
|
|
pOut->u.i = x;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: IfNotZero P1 P2 * * *
|
|
|
|
** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
|
|
|
|
**
|
|
|
|
** Register P1 must contain an integer. If the content of register P1 is
|
|
|
|
** initially greater than zero, then decrement the value in register P1.
|
2022-07-22 04:46:07 +00:00
|
|
|
** If it is non-zero (negative or positive) and then also jump to P2.
|
2021-05-14 09:07:09 +00:00
|
|
|
** If register P1 is initially zero, leave it unchanged and fall through.
|
|
|
|
*/
|
|
|
|
case OP_IfNotZero: { /* jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pIn1->flags&MEM_Int );
|
|
|
|
VdbeBranchTaken(pIn1->u.i<0, 2);
|
|
|
|
if( pIn1->u.i ){
|
|
|
|
if( pIn1->u.i>0 ) pIn1->u.i--;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: DecrJumpZero P1 P2 * * *
|
|
|
|
** Synopsis: if (--r[P1])==0 goto P2
|
|
|
|
**
|
|
|
|
** Register P1 must hold an integer. Decrement the value in P1
|
|
|
|
** and jump to P2 if the new value is exactly zero.
|
|
|
|
*/
|
|
|
|
case OP_DecrJumpZero: { /* jump, in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pIn1->flags&MEM_Int );
|
|
|
|
if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
|
|
|
|
VdbeBranchTaken(pIn1->u.i==0, 2);
|
|
|
|
if( pIn1->u.i==0 ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Opcode: AggStep * P2 P3 P4 P5
|
|
|
|
** Synopsis: accum=r[P3] step(r[P2@P5])
|
|
|
|
**
|
|
|
|
** Execute the xStep function for an aggregate.
|
2022-07-22 04:46:07 +00:00
|
|
|
** The function has P5 arguments. P4 is a pointer to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** FuncDef structure that specifies the function. Register P3 is the
|
|
|
|
** accumulator.
|
|
|
|
**
|
|
|
|
** The P5 arguments are taken from register P2 and its
|
|
|
|
** successors.
|
|
|
|
*/
|
|
|
|
/* Opcode: AggInverse * P2 P3 P4 P5
|
|
|
|
** Synopsis: accum=r[P3] inverse(r[P2@P5])
|
|
|
|
**
|
|
|
|
** Execute the xInverse function for an aggregate.
|
2022-07-22 04:46:07 +00:00
|
|
|
** The function has P5 arguments. P4 is a pointer to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** FuncDef structure that specifies the function. Register P3 is the
|
|
|
|
** accumulator.
|
|
|
|
**
|
|
|
|
** The P5 arguments are taken from register P2 and its
|
|
|
|
** successors.
|
|
|
|
*/
|
|
|
|
/* Opcode: AggStep1 P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: accum=r[P3] step(r[P2@P5])
|
|
|
|
**
|
|
|
|
** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
|
2022-07-22 04:46:07 +00:00
|
|
|
** aggregate. The function has P5 arguments. P4 is a pointer to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** FuncDef structure that specifies the function. Register P3 is the
|
|
|
|
** accumulator.
|
|
|
|
**
|
|
|
|
** The P5 arguments are taken from register P2 and its
|
|
|
|
** successors.
|
|
|
|
**
|
|
|
|
** This opcode is initially coded as OP_AggStep0. On first evaluation,
|
|
|
|
** the FuncDef stored in P4 is converted into an sqlite3_context and
|
|
|
|
** the opcode is changed. In this way, the initialization of the
|
|
|
|
** sqlite3_context only happens once, instead of on each call to the
|
|
|
|
** step function.
|
|
|
|
*/
|
|
|
|
case OP_AggInverse:
|
|
|
|
case OP_AggStep: {
|
|
|
|
int n;
|
|
|
|
sqlite3_context *pCtx;
|
|
|
|
|
|
|
|
assert( pOp->p4type==P4_FUNCDEF );
|
|
|
|
n = pOp->p5;
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
|
|
|
|
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
|
|
|
|
pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
|
|
|
|
(sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
|
|
|
|
if( pCtx==0 ) goto no_mem;
|
|
|
|
pCtx->pMem = 0;
|
|
|
|
pCtx->pOut = (Mem*)&(pCtx->argv[n]);
|
|
|
|
sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
|
|
|
|
pCtx->pFunc = pOp->p4.pFunc;
|
|
|
|
pCtx->iOp = (int)(pOp - aOp);
|
|
|
|
pCtx->pVdbe = p;
|
|
|
|
pCtx->skipFlag = 0;
|
|
|
|
pCtx->isError = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
pCtx->enc = encoding;
|
2021-05-14 09:07:09 +00:00
|
|
|
pCtx->argc = n;
|
|
|
|
pOp->p4type = P4_FUNCCTX;
|
|
|
|
pOp->p4.pCtx = pCtx;
|
|
|
|
|
|
|
|
/* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
|
|
|
|
assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
|
|
|
|
|
|
|
|
pOp->opcode = OP_AggStep1;
|
|
|
|
/* Fall through into OP_AggStep */
|
|
|
|
/* no break */ deliberate_fall_through
|
|
|
|
}
|
|
|
|
case OP_AggStep1: {
|
|
|
|
int i;
|
|
|
|
sqlite3_context *pCtx;
|
|
|
|
Mem *pMem;
|
|
|
|
|
|
|
|
assert( pOp->p4type==P4_FUNCCTX );
|
|
|
|
pCtx = pOp->p4.pCtx;
|
|
|
|
pMem = &aMem[pOp->p3];
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( pOp->p1 ){
|
|
|
|
/* This is an OP_AggInverse call. Verify that xStep has always
|
|
|
|
** been called at least once prior to any xInverse call. */
|
|
|
|
assert( pMem->uTemp==0x1122e0e3 );
|
|
|
|
}else{
|
|
|
|
/* This is an OP_AggStep call. Mark it as such. */
|
|
|
|
pMem->uTemp = 0x1122e0e3;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* If this function is inside of a trigger, the register array in aMem[]
|
|
|
|
** might change from one evaluation to the next. The next block of code
|
|
|
|
** checks to see if the register array has changed, and if so it
|
|
|
|
** reinitializes the relavant parts of the sqlite3_context object */
|
|
|
|
if( pCtx->pMem != pMem ){
|
|
|
|
pCtx->pMem = pMem;
|
|
|
|
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
for(i=0; i<pCtx->argc; i++){
|
|
|
|
assert( memIsValid(pCtx->argv[i]) );
|
|
|
|
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
pMem->n++;
|
|
|
|
assert( pCtx->pOut->flags==MEM_Null );
|
|
|
|
assert( pCtx->isError==0 );
|
|
|
|
assert( pCtx->skipFlag==0 );
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
|
|
if( pOp->p1 ){
|
|
|
|
(pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
(pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
|
|
|
|
|
|
|
|
if( pCtx->isError ){
|
|
|
|
if( pCtx->isError>0 ){
|
|
|
|
sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
|
|
|
|
rc = pCtx->isError;
|
|
|
|
}
|
|
|
|
if( pCtx->skipFlag ){
|
|
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
|
|
i = pOp[-1].p1;
|
|
|
|
if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
|
|
|
|
pCtx->skipFlag = 0;
|
|
|
|
}
|
|
|
|
sqlite3VdbeMemRelease(pCtx->pOut);
|
|
|
|
pCtx->pOut->flags = MEM_Null;
|
|
|
|
pCtx->isError = 0;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
assert( pCtx->pOut->flags==MEM_Null );
|
|
|
|
assert( pCtx->skipFlag==0 );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: AggFinal P1 P2 * P4 *
|
|
|
|
** Synopsis: accum=r[P1] N=P2
|
|
|
|
**
|
|
|
|
** P1 is the memory location that is the accumulator for an aggregate
|
2022-07-22 04:46:07 +00:00
|
|
|
** or window function. Execute the finalizer function
|
2021-05-14 09:07:09 +00:00
|
|
|
** for an aggregate and store the result in P1.
|
|
|
|
**
|
|
|
|
** P2 is the number of arguments that the step function takes and
|
|
|
|
** P4 is a pointer to the FuncDef for this function. The P2
|
|
|
|
** argument is not used by this opcode. It is only there to disambiguate
|
|
|
|
** functions that can take varying numbers of arguments. The
|
|
|
|
** P4 argument is only needed for the case where
|
|
|
|
** the step function was not previously called.
|
|
|
|
*/
|
|
|
|
/* Opcode: AggValue * P2 P3 P4 *
|
|
|
|
** Synopsis: r[P3]=value N=P2
|
|
|
|
**
|
|
|
|
** Invoke the xValue() function and store the result in register P3.
|
|
|
|
**
|
|
|
|
** P2 is the number of arguments that the step function takes and
|
|
|
|
** P4 is a pointer to the FuncDef for this function. The P2
|
|
|
|
** argument is not used by this opcode. It is only there to disambiguate
|
|
|
|
** functions that can take varying numbers of arguments. The
|
|
|
|
** P4 argument is only needed for the case where
|
|
|
|
** the step function was not previously called.
|
|
|
|
*/
|
|
|
|
case OP_AggValue:
|
|
|
|
case OP_AggFinal: {
|
|
|
|
Mem *pMem;
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
|
|
|
|
pMem = &aMem[pOp->p1];
|
|
|
|
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
|
|
if( pOp->p3 ){
|
|
|
|
memAboutToChange(p, &aMem[pOp->p3]);
|
|
|
|
rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
|
|
|
|
pMem = &aMem[pOp->p3];
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc ){
|
|
|
|
sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
sqlite3VdbeChangeEncoding(pMem, encoding);
|
|
|
|
UPDATE_MAX_BLOBSIZE(pMem);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
|
|
/* Opcode: Checkpoint P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Checkpoint database P1. This is a no-op if P1 is not currently in
|
|
|
|
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
|
|
|
|
** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
|
|
|
|
** SQLITE_BUSY or not, respectively. Write the number of pages in the
|
|
|
|
** WAL after the checkpoint into mem[P3+1] and the number of pages
|
|
|
|
** in the WAL that have been checkpointed after the checkpoint
|
|
|
|
** completes into mem[P3+2]. However on an error, mem[P3+1] and
|
|
|
|
** mem[P3+2] are initialized to -1.
|
|
|
|
*/
|
|
|
|
case OP_Checkpoint: {
|
|
|
|
int i; /* Loop counter */
|
|
|
|
int aRes[3]; /* Results */
|
|
|
|
Mem *pMem; /* Write results here */
|
|
|
|
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
aRes[0] = 0;
|
|
|
|
aRes[1] = aRes[2] = -1;
|
|
|
|
assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
|
|
|
|
|| pOp->p2==SQLITE_CHECKPOINT_FULL
|
|
|
|
|| pOp->p2==SQLITE_CHECKPOINT_RESTART
|
|
|
|
|| pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
|
|
|
|
);
|
|
|
|
rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
|
|
|
|
if( rc ){
|
|
|
|
if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
aRes[0] = 1;
|
|
|
|
}
|
|
|
|
for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
|
|
|
|
sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
|
2022-07-22 04:46:07 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
break;
|
2022-07-22 04:46:07 +00:00
|
|
|
};
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PRAGMA
|
|
|
|
/* Opcode: JournalMode P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Change the journal mode of database P1 to P3. P3 must be one of the
|
|
|
|
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
|
|
|
|
** modes (delete, truncate, persist, off and memory), this is a simple
|
|
|
|
** operation. No IO is required.
|
|
|
|
**
|
|
|
|
** If changing into or out of WAL mode the procedure is more complicated.
|
|
|
|
**
|
|
|
|
** Write a string containing the final journal-mode to register P2.
|
|
|
|
*/
|
|
|
|
case OP_JournalMode: { /* out2 */
|
|
|
|
Btree *pBt; /* Btree to change journal mode of */
|
|
|
|
Pager *pPager; /* Pager associated with pBt */
|
|
|
|
int eNew; /* New journal mode */
|
|
|
|
int eOld; /* The old journal mode */
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
|
|
const char *zFilename; /* Name of database file for pPager */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
eNew = pOp->p3;
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( eNew==PAGER_JOURNALMODE_DELETE
|
|
|
|
|| eNew==PAGER_JOURNALMODE_TRUNCATE
|
|
|
|
|| eNew==PAGER_JOURNALMODE_PERSIST
|
2021-05-14 09:07:09 +00:00
|
|
|
|| eNew==PAGER_JOURNALMODE_OFF
|
|
|
|
|| eNew==PAGER_JOURNALMODE_MEMORY
|
|
|
|
|| eNew==PAGER_JOURNALMODE_WAL
|
|
|
|
|| eNew==PAGER_JOURNALMODE_QUERY
|
|
|
|
);
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
|
|
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
|
|
pPager = sqlite3BtreePager(pBt);
|
|
|
|
eOld = sqlite3PagerGetJournalMode(pPager);
|
|
|
|
if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( sqlite3BtreeHoldsMutex(pBt) );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
|
|
zFilename = sqlite3PagerFilename(pPager, 1);
|
|
|
|
|
|
|
|
/* Do not allow a transition to journal_mode=WAL for a database
|
2022-07-22 04:46:07 +00:00
|
|
|
** in temporary storage or if the VFS does not support shared memory
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
if( eNew==PAGER_JOURNALMODE_WAL
|
|
|
|
&& (sqlite3Strlen30(zFilename)==0 /* Temp file */
|
|
|
|
|| !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
|
|
|
|
){
|
|
|
|
eNew = eOld;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( (eNew!=eOld)
|
|
|
|
&& (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
|
|
|
|
){
|
|
|
|
if( !db->autoCommit || db->nVdbeRead>1 ){
|
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
sqlite3VdbeError(p,
|
|
|
|
"cannot change %s wal mode from within a transaction",
|
|
|
|
(eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
|
|
|
|
);
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}else{
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
if( eOld==PAGER_JOURNALMODE_WAL ){
|
|
|
|
/* If leaving WAL mode, close the log file. If successful, the call
|
2022-07-22 04:46:07 +00:00
|
|
|
** to PagerCloseWal() checkpoints and deletes the write-ahead-log
|
|
|
|
** file. An EXCLUSIVE lock may still be held on the database file
|
|
|
|
** after a successful return.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
rc = sqlite3PagerCloseWal(pPager, db);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
sqlite3PagerSetJournalMode(pPager, eNew);
|
|
|
|
}
|
|
|
|
}else if( eOld==PAGER_JOURNALMODE_MEMORY ){
|
|
|
|
/* Cannot transition directly from MEMORY to WAL. Use mode OFF
|
|
|
|
** as an intermediate */
|
|
|
|
sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Open a transaction on the database file. Regardless of the journal
|
|
|
|
** mode, this transaction always uses a rollback journal.
|
|
|
|
*/
|
|
|
|
assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
|
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_WAL */
|
|
|
|
|
|
|
|
if( rc ) eNew = eOld;
|
|
|
|
eNew = sqlite3PagerSetJournalMode(pPager, eNew);
|
|
|
|
|
|
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
|
|
pOut->z = (char *)sqlite3JournalModename(eNew);
|
|
|
|
pOut->n = sqlite3Strlen30(pOut->z);
|
|
|
|
pOut->enc = SQLITE_UTF8;
|
|
|
|
sqlite3VdbeChangeEncoding(pOut, encoding);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
#endif /* SQLITE_OMIT_PRAGMA */
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
|
|
/* Opcode: Vacuum P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
|
|
|
|
** for an attached database. The "temp" database may not be vacuumed.
|
|
|
|
**
|
|
|
|
** If P2 is not zero, then it is a register holding a string which is
|
|
|
|
** the file into which the result of vacuum should be written. When
|
|
|
|
** P2 is zero, the vacuum overwrites the original database.
|
|
|
|
*/
|
|
|
|
case OP_Vacuum: {
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
|
|
|
|
pOp->p2 ? &aMem[pOp->p2] : 0);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
|
|
/* Opcode: IncrVacuum P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Perform a single step of the incremental vacuum procedure on
|
|
|
|
** the P1 database. If the vacuum has finished, jump to instruction
|
|
|
|
** P2. Otherwise, fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
case OP_IncrVacuum: { /* jump */
|
|
|
|
Btree *pBt;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
|
|
rc = sqlite3BtreeIncrVacuum(pBt);
|
|
|
|
VdbeBranchTaken(rc==SQLITE_DONE,2);
|
|
|
|
if( rc ){
|
|
|
|
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Opcode: Expire P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Cause precompiled statements to expire. When an expired statement
|
|
|
|
** is executed using sqlite3_step() it will either automatically
|
|
|
|
** reprepare itself (if it was originally created using sqlite3_prepare_v2())
|
|
|
|
** or it will fail with SQLITE_SCHEMA.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
|
|
|
** then only the currently executing statement is expired.
|
|
|
|
**
|
|
|
|
** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
|
|
|
|
** then running SQL statements are allowed to continue to run to completion.
|
|
|
|
** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
|
|
|
|
** that might help the statement run faster but which does not affect the
|
|
|
|
** correctness of operation.
|
|
|
|
*/
|
|
|
|
case OP_Expire: {
|
|
|
|
assert( pOp->p2==0 || pOp->p2==1 );
|
|
|
|
if( !pOp->p1 ){
|
|
|
|
sqlite3ExpirePreparedStatements(db, pOp->p2);
|
|
|
|
}else{
|
|
|
|
p->expired = pOp->p2+1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: CursorLock P1 * * * *
|
|
|
|
**
|
|
|
|
** Lock the btree to which cursor P1 is pointing so that the btree cannot be
|
|
|
|
** written by an other cursor.
|
|
|
|
*/
|
|
|
|
case OP_CursorLock: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
sqlite3BtreeCursorPin(pC->uc.pCursor);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: CursorUnlock P1 * * * *
|
|
|
|
**
|
|
|
|
** Unlock the btree to which cursor P1 is pointing so that it can be
|
|
|
|
** written by other cursors.
|
|
|
|
*/
|
|
|
|
case OP_CursorUnlock: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
assert( pC!=0 );
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
sqlite3BtreeCursorUnpin(pC->uc.pCursor);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
|
|
/* Opcode: TableLock P1 P2 P3 P4 *
|
|
|
|
** Synopsis: iDb=P1 root=P2 write=P3
|
|
|
|
**
|
|
|
|
** Obtain a lock on a particular table. This instruction is only used when
|
2022-07-22 04:46:07 +00:00
|
|
|
** the shared-cache feature is enabled.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** P1 is the index of the database in sqlite3.aDb[] of the database
|
|
|
|
** on which the lock is acquired. A readlock is obtained if P3==0 or
|
|
|
|
** a write lock if P3==1.
|
|
|
|
**
|
|
|
|
** P2 contains the root-page of the table to lock.
|
|
|
|
**
|
|
|
|
** P4 contains a pointer to the name of the table being locked. This is only
|
|
|
|
** used to generate an error message if the lock cannot be obtained.
|
|
|
|
*/
|
|
|
|
case OP_TableLock: {
|
|
|
|
u8 isWriteLock = (u8)pOp->p3;
|
|
|
|
if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
|
2022-07-22 04:46:07 +00:00
|
|
|
int p1 = pOp->p1;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( p1>=0 && p1<db->nDb );
|
|
|
|
assert( DbMaskTest(p->btreeMask, p1) );
|
|
|
|
assert( isWriteLock==0 || isWriteLock==1 );
|
|
|
|
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
|
|
|
if( rc ){
|
|
|
|
if( (rc&0xFF)==SQLITE_LOCKED ){
|
|
|
|
const char *z = pOp->p4.z;
|
|
|
|
sqlite3VdbeError(p, "database table is locked: %s", z);
|
|
|
|
}
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VBegin * * * P4 *
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
|
2021-05-14 09:07:09 +00:00
|
|
|
** xBegin method for that table.
|
|
|
|
**
|
|
|
|
** Also, whether or not P4 is set, check that this is not being called from
|
|
|
|
** within a callback to a virtual table xSync() method. If it is, the error
|
|
|
|
** code will be set to SQLITE_LOCKED.
|
|
|
|
*/
|
|
|
|
case OP_VBegin: {
|
|
|
|
VTable *pVTab;
|
|
|
|
pVTab = pOp->p4.pVtab;
|
|
|
|
rc = sqlite3VtabBegin(db, pVTab);
|
|
|
|
if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VCreate P1 P2 * * *
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P2 is a register that holds the name of a virtual table in database
|
2021-05-14 09:07:09 +00:00
|
|
|
** P1. Call the xCreate method for that table.
|
|
|
|
*/
|
|
|
|
case OP_VCreate: {
|
|
|
|
Mem sMem; /* For storing the record being decoded */
|
|
|
|
const char *zTab; /* Name of the virtual table */
|
|
|
|
|
|
|
|
memset(&sMem, 0, sizeof(sMem));
|
|
|
|
sMem.db = db;
|
|
|
|
/* Because P2 is always a static string, it is impossible for the
|
|
|
|
** sqlite3VdbeMemCopy() to fail */
|
|
|
|
assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
|
|
|
|
assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
|
|
|
|
rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
|
|
|
|
assert( rc==SQLITE_OK );
|
|
|
|
zTab = (const char*)sqlite3_value_text(&sMem);
|
|
|
|
assert( zTab || db->mallocFailed );
|
|
|
|
if( zTab ){
|
|
|
|
rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
|
|
|
|
}
|
|
|
|
sqlite3VdbeMemRelease(&sMem);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VDestroy P1 * * P4 *
|
|
|
|
**
|
|
|
|
** P4 is the name of a virtual table in database P1. Call the xDestroy method
|
|
|
|
** of that table.
|
|
|
|
*/
|
|
|
|
case OP_VDestroy: {
|
|
|
|
db->nVDestroy++;
|
|
|
|
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
|
|
|
|
db->nVDestroy--;
|
|
|
|
assert( p->errorAction==OE_Abort && p->usesStmtJournal );
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VOpen P1 * * P4 *
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
|
|
** P1 is a cursor number. This opcode opens a cursor to the virtual
|
|
|
|
** table and stores that cursor in P1.
|
|
|
|
*/
|
|
|
|
case OP_VOpen: {
|
|
|
|
VdbeCursor *pCur;
|
|
|
|
sqlite3_vtab_cursor *pVCur;
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
|
|
|
|
assert( p->bIsReader );
|
|
|
|
pCur = 0;
|
|
|
|
pVCur = 0;
|
|
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
|
|
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
|
|
|
|
rc = SQLITE_LOCKED;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
rc = pModule->xOpen(pVtab, &pVCur);
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
|
|
|
|
/* Initialize sqlite3_vtab_cursor base class */
|
|
|
|
pVCur->pVtab = pVtab;
|
|
|
|
|
|
|
|
/* Initialize vdbe cursor object */
|
2022-11-28 20:54:48 +00:00
|
|
|
pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pCur ){
|
|
|
|
pCur->uc.pVCur = pVCur;
|
|
|
|
pVtab->nRef++;
|
|
|
|
}else{
|
|
|
|
assert( db->mallocFailed );
|
|
|
|
pModule->xClose(pVCur);
|
|
|
|
goto no_mem;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VInitIn P1 P2 P3 * *
|
|
|
|
** Synopsis: r[P2]=ValueList(P1,P3)
|
|
|
|
**
|
|
|
|
** Set register P2 to be a pointer to a ValueList object for cursor P1
|
|
|
|
** with cache register P3 and output register P3+1. This ValueList object
|
|
|
|
** can be used as the first argument to sqlite3_vtab_in_first() and
|
|
|
|
** sqlite3_vtab_in_next() to extract all of the values stored in the P1
|
|
|
|
** cursor. Register P3 is used to hold the values returned by
|
|
|
|
** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
|
|
|
|
*/
|
|
|
|
case OP_VInitIn: { /* out2 */
|
|
|
|
VdbeCursor *pC; /* The cursor containing the RHS values */
|
|
|
|
ValueList *pRhs; /* New ValueList object to put in reg[P2] */
|
|
|
|
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
pRhs = sqlite3_malloc64( sizeof(*pRhs) );
|
|
|
|
if( pRhs==0 ) goto no_mem;
|
|
|
|
pRhs->pCsr = pC->uc.pCursor;
|
|
|
|
pRhs->pOut = &aMem[pOp->p3];
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->flags = MEM_Null;
|
|
|
|
sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VFilter P1 P2 P3 P4 *
|
|
|
|
** Synopsis: iplan=r[P3] zplan='P4'
|
|
|
|
**
|
|
|
|
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
|
|
|
** the filtered result set is empty.
|
|
|
|
**
|
|
|
|
** P4 is either NULL or a string that was generated by the xBestIndex
|
|
|
|
** method of the module. The interpretation of the P4 string is left
|
|
|
|
** to the module implementation.
|
|
|
|
**
|
|
|
|
** This opcode invokes the xFilter method on the virtual table specified
|
|
|
|
** by P1. The integer query plan parameter to xFilter is stored in register
|
|
|
|
** P3. Register P3+1 stores the argc parameter to be passed to the
|
|
|
|
** xFilter method. Registers P3+2..P3+1+argc are the argc
|
|
|
|
** additional parameters which are passed to
|
|
|
|
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
|
|
|
|
**
|
|
|
|
** A jump is made to P2 if the result set after filtering would be empty.
|
|
|
|
*/
|
|
|
|
case OP_VFilter: { /* jump */
|
|
|
|
int nArg;
|
|
|
|
int iQuery;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
Mem *pQuery;
|
|
|
|
Mem *pArgc;
|
|
|
|
sqlite3_vtab_cursor *pVCur;
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
VdbeCursor *pCur;
|
|
|
|
int res;
|
|
|
|
int i;
|
|
|
|
Mem **apArg;
|
|
|
|
|
|
|
|
pQuery = &aMem[pOp->p3];
|
|
|
|
pArgc = &pQuery[1];
|
|
|
|
pCur = p->apCsr[pOp->p1];
|
|
|
|
assert( memIsValid(pQuery) );
|
|
|
|
REGISTER_TRACE(pOp->p3, pQuery);
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCur!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pCur->eCurType==CURTYPE_VTAB );
|
|
|
|
pVCur = pCur->uc.pVCur;
|
|
|
|
pVtab = pVCur->pVtab;
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
|
|
|
|
/* Grab the index number and argc parameters */
|
|
|
|
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
|
|
|
|
nArg = (int)pArgc->u.i;
|
|
|
|
iQuery = (int)pQuery->u.i;
|
|
|
|
|
|
|
|
/* Invoke the xFilter method */
|
|
|
|
apArg = p->apArg;
|
|
|
|
for(i = 0; i<nArg; i++){
|
|
|
|
apArg[i] = &pArgc[i+1];
|
|
|
|
}
|
|
|
|
rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
res = pModule->xEof(pVCur);
|
|
|
|
pCur->nullRow = 0;
|
|
|
|
VdbeBranchTaken(res!=0,2);
|
|
|
|
if( res ) goto jump_to_p2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VColumn P1 P2 P3 * P5
|
|
|
|
** Synopsis: r[P3]=vcolumn(P2)
|
|
|
|
**
|
|
|
|
** Store in register P3 the value of the P2-th column of
|
|
|
|
** the current row of the virtual-table of cursor P1.
|
|
|
|
**
|
|
|
|
** If the VColumn opcode is being used to fetch the value of
|
|
|
|
** an unchanging column during an UPDATE operation, then the P5
|
|
|
|
** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
|
|
|
|
** function to return true inside the xColumn method of the virtual
|
|
|
|
** table implementation. The P5 column might also contain other
|
|
|
|
** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
|
|
|
|
** unused by OP_VColumn.
|
|
|
|
*/
|
|
|
|
case OP_VColumn: {
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
Mem *pDest;
|
|
|
|
sqlite3_context sContext;
|
|
|
|
|
|
|
|
VdbeCursor *pCur = p->apCsr[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCur!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pDest = &aMem[pOp->p3];
|
|
|
|
memAboutToChange(p, pDest);
|
|
|
|
if( pCur->nullRow ){
|
|
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
break;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCur->eCurType==CURTYPE_VTAB );
|
2021-05-14 09:07:09 +00:00
|
|
|
pVtab = pCur->uc.pVCur->pVtab;
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
assert( pModule->xColumn );
|
|
|
|
memset(&sContext, 0, sizeof(sContext));
|
|
|
|
sContext.pOut = pDest;
|
2022-11-28 20:54:48 +00:00
|
|
|
sContext.enc = encoding;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
|
|
|
|
if( pOp->p5 & OPFLAG_NOCHNG ){
|
|
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
pDest->flags = MEM_Null|MEM_Zero;
|
|
|
|
pDest->u.nZero = 0;
|
|
|
|
}else{
|
|
|
|
MemSetTypeFlag(pDest, MEM_Null);
|
|
|
|
}
|
|
|
|
rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( sContext.isError>0 ){
|
|
|
|
sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
|
|
|
|
rc = sContext.isError;
|
|
|
|
}
|
|
|
|
sqlite3VdbeChangeEncoding(pDest, encoding);
|
|
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
|
|
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VNext P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Advance virtual table P1 to the next row in its result set and
|
|
|
|
** jump to instruction P2. Or, if the virtual table has reached
|
|
|
|
** the end of its result set, then fall through to the next instruction.
|
|
|
|
*/
|
|
|
|
case OP_VNext: { /* jump */
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
int res;
|
|
|
|
VdbeCursor *pCur;
|
|
|
|
|
|
|
|
pCur = p->apCsr[pOp->p1];
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCur!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pCur->eCurType==CURTYPE_VTAB );
|
|
|
|
if( pCur->nullRow ){
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pVtab = pCur->uc.pVCur->pVtab;
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
assert( pModule->xNext );
|
|
|
|
|
|
|
|
/* Invoke the xNext() method of the module. There is no way for the
|
|
|
|
** underlying implementation to return an error if one occurs during
|
2022-07-22 04:46:07 +00:00
|
|
|
** xNext(). Instead, if an error occurs, true is returned (indicating that
|
2021-05-14 09:07:09 +00:00
|
|
|
** data is available) and the error code returned when xColumn or
|
|
|
|
** some other method is next invoked on the save virtual table cursor.
|
|
|
|
*/
|
|
|
|
rc = pModule->xNext(pCur->uc.pVCur);
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
res = pModule->xEof(pCur->uc.pVCur);
|
|
|
|
VdbeBranchTaken(!res,2);
|
|
|
|
if( !res ){
|
|
|
|
/* If there is data, jump to P2 */
|
|
|
|
goto jump_to_p2_and_check_for_interrupt;
|
|
|
|
}
|
|
|
|
goto check_for_interrupt;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VRename P1 * * P4 *
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
|
|
** This opcode invokes the corresponding xRename method. The value
|
|
|
|
** in register P1 is passed as the zName argument to the xRename method.
|
|
|
|
*/
|
|
|
|
case OP_VRename: {
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
Mem *pName;
|
|
|
|
int isLegacy;
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
isLegacy = (db->flags & SQLITE_LegacyAlter);
|
|
|
|
db->flags |= SQLITE_LegacyAlter;
|
|
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
|
|
pName = &aMem[pOp->p1];
|
|
|
|
assert( pVtab->pModule->xRename );
|
|
|
|
assert( memIsValid(pName) );
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
REGISTER_TRACE(pOp->p1, pName);
|
|
|
|
assert( pName->flags & MEM_Str );
|
|
|
|
testcase( pName->enc==SQLITE_UTF8 );
|
|
|
|
testcase( pName->enc==SQLITE_UTF16BE );
|
|
|
|
testcase( pName->enc==SQLITE_UTF16LE );
|
|
|
|
rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
rc = pVtab->pModule->xRename(pVtab, pName->z);
|
|
|
|
if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
p->expired = 0;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* Opcode: VUpdate P1 P2 P3 P4 P5
|
|
|
|
** Synopsis: data=r[P3@P2]
|
|
|
|
**
|
|
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
|
|
** This opcode invokes the corresponding xUpdate method. P2 values
|
2022-07-22 04:46:07 +00:00
|
|
|
** are contiguous memory cells starting at P3 to pass to the xUpdate
|
|
|
|
** invocation. The value in register (P3+P2-1) corresponds to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** p2th element of the argv array passed to xUpdate.
|
|
|
|
**
|
|
|
|
** The xUpdate method will do a DELETE or an INSERT or both.
|
|
|
|
** The argv[0] element (which corresponds to memory cell P3)
|
2022-07-22 04:46:07 +00:00
|
|
|
** is the rowid of a row to delete. If argv[0] is NULL then no
|
|
|
|
** deletion occurs. The argv[1] element is the rowid of the new
|
|
|
|
** row. This can be NULL to have the virtual table select the new
|
|
|
|
** rowid for itself. The subsequent elements in the array are
|
2021-05-14 09:07:09 +00:00
|
|
|
** the values of columns in the new row.
|
|
|
|
**
|
|
|
|
** If P2==1 then no insert is performed. argv[0] is the rowid of
|
|
|
|
** a row to delete.
|
|
|
|
**
|
|
|
|
** P1 is a boolean flag. If it is set to true and the xUpdate call
|
2022-07-22 04:46:07 +00:00
|
|
|
** is successful, then the value returned by sqlite3_last_insert_rowid()
|
2021-05-14 09:07:09 +00:00
|
|
|
** is set to the value of the rowid for the row just inserted.
|
|
|
|
**
|
|
|
|
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
|
|
|
|
** apply in the case of a constraint failure on an insert or update.
|
|
|
|
*/
|
|
|
|
case OP_VUpdate: {
|
|
|
|
sqlite3_vtab *pVtab;
|
|
|
|
const sqlite3_module *pModule;
|
|
|
|
int nArg;
|
|
|
|
int i;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite_int64 rowid = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
Mem **apArg;
|
|
|
|
Mem *pX;
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|
2021-05-14 09:07:09 +00:00
|
|
|
|| pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
|
|
|
|
);
|
|
|
|
assert( p->readOnly==0 );
|
|
|
|
if( db->mallocFailed ) goto no_mem;
|
|
|
|
sqlite3VdbeIncrWriteCounter(p, 0);
|
|
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
|
|
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
|
|
|
|
rc = SQLITE_LOCKED;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
pModule = pVtab->pModule;
|
|
|
|
nArg = pOp->p2;
|
|
|
|
assert( pOp->p4type==P4_VTAB );
|
|
|
|
if( ALWAYS(pModule->xUpdate) ){
|
|
|
|
u8 vtabOnConflict = db->vtabOnConflict;
|
|
|
|
apArg = p->apArg;
|
|
|
|
pX = &aMem[pOp->p3];
|
|
|
|
for(i=0; i<nArg; i++){
|
|
|
|
assert( memIsValid(pX) );
|
|
|
|
memAboutToChange(p, pX);
|
|
|
|
apArg[i] = pX;
|
|
|
|
pX++;
|
|
|
|
}
|
|
|
|
db->vtabOnConflict = pOp->p5;
|
|
|
|
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
|
|
|
db->vtabOnConflict = vtabOnConflict;
|
|
|
|
sqlite3VtabImportErrmsg(p, pVtab);
|
|
|
|
if( rc==SQLITE_OK && pOp->p1 ){
|
|
|
|
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
|
|
|
db->lastRowid = rowid;
|
|
|
|
}
|
|
|
|
if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
|
|
|
|
if( pOp->p5==OE_Ignore ){
|
|
|
|
rc = SQLITE_OK;
|
|
|
|
}else{
|
|
|
|
p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
p->nChange++;
|
|
|
|
}
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
|
|
/* Opcode: Pagecount P1 P2 * * *
|
|
|
|
**
|
|
|
|
** Write the current number of pages in database P1 to memory cell P2.
|
|
|
|
*/
|
|
|
|
case OP_Pagecount: { /* out2 */
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
|
|
/* Opcode: MaxPgcnt P1 P2 P3 * *
|
|
|
|
**
|
|
|
|
** Try to set the maximum page count for database P1 to the value in P3.
|
|
|
|
** Do not let the maximum page count fall below the current page count and
|
|
|
|
** do not change the maximum page count value if P3==0.
|
|
|
|
**
|
|
|
|
** Store the maximum page count after the change in register P2.
|
|
|
|
*/
|
|
|
|
case OP_MaxPgcnt: { /* out2 */
|
|
|
|
unsigned int newMax;
|
|
|
|
Btree *pBt;
|
|
|
|
|
|
|
|
pOut = out2Prerelease(p, pOp);
|
|
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
|
|
newMax = 0;
|
|
|
|
if( pOp->p3 ){
|
|
|
|
newMax = sqlite3BtreeLastPage(pBt);
|
|
|
|
if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
|
|
|
|
}
|
|
|
|
pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Opcode: Function P1 P2 P3 P4 *
|
|
|
|
** Synopsis: r[P3]=func(r[P2@NP])
|
|
|
|
**
|
|
|
|
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
|
|
|
|
** contains a pointer to the function to be run) with arguments taken
|
|
|
|
** from register P2 and successors. The number of arguments is in
|
|
|
|
** the sqlite3_context object that P4 points to.
|
|
|
|
** The result of the function is stored
|
|
|
|
** in register P3. Register P3 must not be one of the function inputs.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** function was determined to be constant at compile time. If the first
|
|
|
|
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
|
|
** whether meta data associated with a user function argument using the
|
|
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
|
|
** invocation of this opcode.
|
|
|
|
**
|
|
|
|
** See also: AggStep, AggFinal, PureFunc
|
|
|
|
*/
|
|
|
|
/* Opcode: PureFunc P1 P2 P3 P4 *
|
|
|
|
** Synopsis: r[P3]=func(r[P2@NP])
|
|
|
|
**
|
|
|
|
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
|
|
|
|
** contains a pointer to the function to be run) with arguments taken
|
|
|
|
** from register P2 and successors. The number of arguments is in
|
|
|
|
** the sqlite3_context object that P4 points to.
|
|
|
|
** The result of the function is stored
|
|
|
|
** in register P3. Register P3 must not be one of the function inputs.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
2021-05-14 09:07:09 +00:00
|
|
|
** function was determined to be constant at compile time. If the first
|
|
|
|
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
|
|
** whether meta data associated with a user function argument using the
|
|
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
|
|
** invocation of this opcode.
|
|
|
|
**
|
|
|
|
** This opcode works exactly like OP_Function. The only difference is in
|
|
|
|
** its name. This opcode is used in places where the function must be
|
|
|
|
** purely non-deterministic. Some built-in date/time functions can be
|
|
|
|
** either determinitic of non-deterministic, depending on their arguments.
|
|
|
|
** When those function are used in a non-deterministic way, they will check
|
|
|
|
** to see if they were called using OP_PureFunc instead of OP_Function, and
|
|
|
|
** if they were, they throw an error.
|
|
|
|
**
|
|
|
|
** See also: AggStep, AggFinal, Function
|
|
|
|
*/
|
|
|
|
case OP_PureFunc: /* group */
|
|
|
|
case OP_Function: { /* group */
|
|
|
|
int i;
|
|
|
|
sqlite3_context *pCtx;
|
|
|
|
|
|
|
|
assert( pOp->p4type==P4_FUNCCTX );
|
|
|
|
pCtx = pOp->p4.pCtx;
|
|
|
|
|
|
|
|
/* If this function is inside of a trigger, the register array in aMem[]
|
|
|
|
** might change from one evaluation to the next. The next block of code
|
|
|
|
** checks to see if the register array has changed, and if so it
|
|
|
|
** reinitializes the relavant parts of the sqlite3_context object */
|
|
|
|
pOut = &aMem[pOp->p3];
|
|
|
|
if( pCtx->pOut != pOut ){
|
|
|
|
pCtx->pVdbe = p;
|
|
|
|
pCtx->pOut = pOut;
|
2022-11-28 20:54:48 +00:00
|
|
|
pCtx->enc = encoding;
|
2021-05-14 09:07:09 +00:00
|
|
|
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
|
|
|
|
}
|
|
|
|
assert( pCtx->pVdbe==p );
|
|
|
|
|
|
|
|
memAboutToChange(p, pOut);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
for(i=0; i<pCtx->argc; i++){
|
|
|
|
assert( memIsValid(pCtx->argv[i]) );
|
|
|
|
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
|
|
assert( pCtx->isError==0 );
|
|
|
|
(*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
|
|
|
|
|
|
|
|
/* If the function returned an error, throw an exception */
|
|
|
|
if( pCtx->isError ){
|
|
|
|
if( pCtx->isError>0 ){
|
|
|
|
sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
|
|
|
|
rc = pCtx->isError;
|
|
|
|
}
|
|
|
|
sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
|
|
|
|
pCtx->isError = 0;
|
|
|
|
if( rc ) goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( (pOut->flags&MEM_Str)==0
|
|
|
|
|| pOut->enc==encoding
|
|
|
|
|| db->mallocFailed );
|
|
|
|
assert( !sqlite3VdbeMemTooBig(pOut) );
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Opcode: ClrSubtype P1 * * * *
|
|
|
|
** Synopsis: r[P1].subtype = 0
|
|
|
|
**
|
|
|
|
** Clear the subtype from register P1.
|
|
|
|
*/
|
|
|
|
case OP_ClrSubtype: { /* in1 */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
pIn1->flags &= ~MEM_Subtype;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: FilterAdd P1 * P3 P4 *
|
|
|
|
** Synopsis: filter(P1) += key(P3@P4)
|
|
|
|
**
|
|
|
|
** Compute a hash on the P4 registers starting with r[P3] and
|
|
|
|
** add that hash to the bloom filter contained in r[P1].
|
|
|
|
*/
|
|
|
|
case OP_FilterAdd: {
|
|
|
|
u64 h;
|
|
|
|
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( pIn1->flags & MEM_Blob );
|
|
|
|
assert( pIn1->n>0 );
|
|
|
|
h = filterHash(aMem, pOp);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
int ii;
|
|
|
|
for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
|
|
|
|
registerTrace(ii, &aMem[ii]);
|
|
|
|
}
|
|
|
|
printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
h %= pIn1->n;
|
|
|
|
pIn1->z[h/8] |= 1<<(h&7);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Opcode: Filter P1 P2 P3 P4 *
|
|
|
|
** Synopsis: if key(P3@P4) not in filter(P1) goto P2
|
|
|
|
**
|
|
|
|
** Compute a hash on the key contained in the P4 registers starting
|
|
|
|
** with r[P3]. Check to see if that hash is found in the
|
|
|
|
** bloom filter hosted by register P1. If it is not present then
|
|
|
|
** maybe jump to P2. Otherwise fall through.
|
|
|
|
**
|
|
|
|
** False negatives are harmless. It is always safe to fall through,
|
|
|
|
** even if the value is in the bloom filter. A false negative causes
|
|
|
|
** more CPU cycles to be used, but it should still yield the correct
|
|
|
|
** answer. However, an incorrect answer may well arise from a
|
|
|
|
** false positive - if the jump is taken when it should fall through.
|
|
|
|
*/
|
|
|
|
case OP_Filter: { /* jump */
|
|
|
|
u64 h;
|
|
|
|
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
|
|
assert( (pIn1->flags & MEM_Blob)!=0 );
|
|
|
|
assert( pIn1->n >= 1 );
|
|
|
|
h = filterHash(aMem, pOp);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags&SQLITE_VdbeTrace ){
|
|
|
|
int ii;
|
|
|
|
for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
|
|
|
|
registerTrace(ii, &aMem[ii]);
|
|
|
|
}
|
|
|
|
printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
h %= pIn1->n;
|
|
|
|
if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
|
|
|
|
VdbeBranchTaken(1, 2);
|
|
|
|
p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}else{
|
|
|
|
p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
|
|
|
|
VdbeBranchTaken(0, 2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* Opcode: Trace P1 P2 * P4 *
|
|
|
|
**
|
|
|
|
** Write P4 on the statement trace output if statement tracing is
|
|
|
|
** enabled.
|
|
|
|
**
|
|
|
|
** Operand P1 must be 0x7fffffff and P2 must positive.
|
|
|
|
*/
|
|
|
|
/* Opcode: Init P1 P2 P3 P4 *
|
|
|
|
** Synopsis: Start at P2
|
|
|
|
**
|
|
|
|
** Programs contain a single instance of this opcode as the very first
|
|
|
|
** opcode.
|
|
|
|
**
|
|
|
|
** If tracing is enabled (by the sqlite3_trace()) interface, then
|
|
|
|
** the UTF-8 string contained in P4 is emitted on the trace callback.
|
|
|
|
** Or if P4 is blank, use the string returned by sqlite3_sql().
|
|
|
|
**
|
|
|
|
** If P2 is not zero, jump to instruction P2.
|
|
|
|
**
|
|
|
|
** Increment the value of P1 so that OP_Once opcodes will jump the
|
|
|
|
** first time they are evaluated for this run.
|
|
|
|
**
|
|
|
|
** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
|
|
|
|
** error is encountered.
|
|
|
|
*/
|
|
|
|
case OP_Trace:
|
|
|
|
case OP_Init: { /* jump */
|
|
|
|
int i;
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
|
|
char *zTrace;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* If the P4 argument is not NULL, then it must be an SQL comment string.
|
|
|
|
** The "--" string is broken up to prevent false-positives with srcck1.c.
|
|
|
|
**
|
|
|
|
** This assert() provides evidence for:
|
|
|
|
** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
|
|
|
|
** would have been returned by the legacy sqlite3_trace() interface by
|
|
|
|
** using the X argument when X begins with "--" and invoking
|
|
|
|
** sqlite3_expanded_sql(P) otherwise.
|
|
|
|
*/
|
|
|
|
assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
|
|
|
|
|
|
|
|
/* OP_Init is always instruction 0 */
|
|
|
|
assert( pOp==p->aOp || pOp->opcode==OP_Trace );
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
|
|
if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
|
2022-11-28 20:54:48 +00:00
|
|
|
&& p->minWriteFileFormat!=254 /* tag-20220401a */
|
2021-05-14 09:07:09 +00:00
|
|
|
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
|
|
|
){
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
|
|
if( db->mTrace & SQLITE_TRACE_LEGACY ){
|
|
|
|
char *z = sqlite3VdbeExpandSql(p, zTrace);
|
|
|
|
db->trace.xLegacy(db->pTraceArg, z);
|
|
|
|
sqlite3_free(z);
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
if( db->nVdbeExec>1 ){
|
|
|
|
char *z = sqlite3MPrintf(db, "-- %s", zTrace);
|
|
|
|
(void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
|
|
|
|
sqlite3DbFree(db, z);
|
|
|
|
}else{
|
|
|
|
(void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_USE_FCNTL_TRACE
|
|
|
|
zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
|
|
|
|
if( zTrace ){
|
|
|
|
int j;
|
|
|
|
for(j=0; j<db->nDb; j++){
|
|
|
|
if( DbMaskTest(p->btreeMask, j)==0 ) continue;
|
|
|
|
sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_USE_FCNTL_TRACE */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( (db->flags & SQLITE_SqlTrace)!=0
|
|
|
|
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
|
|
|
){
|
|
|
|
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
#endif /* SQLITE_OMIT_TRACE */
|
|
|
|
assert( pOp->p2>0 );
|
|
|
|
if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
|
|
|
|
if( pOp->opcode==OP_Trace ) break;
|
|
|
|
for(i=1; i<p->nOp; i++){
|
|
|
|
if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
|
|
|
|
}
|
|
|
|
pOp->p1 = 0;
|
|
|
|
}
|
|
|
|
pOp->p1++;
|
|
|
|
p->aCounter[SQLITE_STMTSTATUS_RUN]++;
|
|
|
|
goto jump_to_p2;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_CURSOR_HINTS
|
|
|
|
/* Opcode: CursorHint P1 * * P4 *
|
|
|
|
**
|
|
|
|
** Provide a hint to cursor P1 that it only needs to return rows that
|
|
|
|
** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
|
|
|
|
** to values currently held in registers. TK_COLUMN terms in the P4
|
|
|
|
** expression refer to columns in the b-tree to which cursor P1 is pointing.
|
|
|
|
*/
|
|
|
|
case OP_CursorHint: {
|
|
|
|
VdbeCursor *pC;
|
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
assert( pOp->p4type==P4_EXPR );
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
|
|
if( pC ){
|
|
|
|
assert( pC->eCurType==CURTYPE_BTREE );
|
|
|
|
sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
|
|
|
|
pOp->p4.pExpr, aMem);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Opcode: Abortable * * * * *
|
|
|
|
**
|
|
|
|
** Verify that an Abort can happen. Assert if an Abort at this point
|
|
|
|
** might cause database corruption. This opcode only appears in debugging
|
|
|
|
** builds.
|
|
|
|
**
|
|
|
|
** An Abort is safe if either there have been no writes, or if there is
|
|
|
|
** an active statement journal.
|
|
|
|
*/
|
|
|
|
case OP_Abortable: {
|
|
|
|
sqlite3VdbeAssertAbortable(p);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Opcode: ReleaseReg P1 P2 P3 * P5
|
|
|
|
** Synopsis: release r[P1@P2] mask P3
|
|
|
|
**
|
|
|
|
** Release registers from service. Any content that was in the
|
|
|
|
** the registers is unreliable after this opcode completes.
|
|
|
|
**
|
|
|
|
** The registers released will be the P2 registers starting at P1,
|
|
|
|
** except if bit ii of P3 set, then do not release register P1+ii.
|
|
|
|
** In other words, P3 is a mask of registers to preserve.
|
|
|
|
**
|
|
|
|
** Releasing a register clears the Mem.pScopyFrom pointer. That means
|
|
|
|
** that if the content of the released register was set using OP_SCopy,
|
|
|
|
** a change to the value of the source register for the OP_SCopy will no longer
|
|
|
|
** generate an assertion fault in sqlite3VdbeMemAboutToChange().
|
|
|
|
**
|
|
|
|
** If P5 is set, then all released registers have their type set
|
|
|
|
** to MEM_Undefined so that any subsequent attempt to read the released
|
|
|
|
** register (before it is reinitialized) will generate an assertion fault.
|
|
|
|
**
|
|
|
|
** P5 ought to be set on every call to this opcode.
|
|
|
|
** However, there are places in the code generator will release registers
|
|
|
|
** before their are used, under the (valid) assumption that the registers
|
|
|
|
** will not be reallocated for some other purpose before they are used and
|
|
|
|
** hence are safe to release.
|
|
|
|
**
|
|
|
|
** This opcode is only available in testing and debugging builds. It is
|
|
|
|
** not generated for release builds. The purpose of this opcode is to help
|
|
|
|
** validate the generated bytecode. This opcode does not actually contribute
|
|
|
|
** to computing an answer.
|
|
|
|
*/
|
|
|
|
case OP_ReleaseReg: {
|
|
|
|
Mem *pMem;
|
|
|
|
int i;
|
|
|
|
u32 constMask;
|
|
|
|
assert( pOp->p1>0 );
|
|
|
|
assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
|
|
|
|
pMem = &aMem[pOp->p1];
|
|
|
|
constMask = pOp->p3;
|
|
|
|
for(i=0; i<pOp->p2; i++, pMem++){
|
|
|
|
if( i>=32 || (constMask & MASKBIT32(i))==0 ){
|
|
|
|
pMem->pScopyFrom = 0;
|
|
|
|
if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Opcode: Noop * * * * *
|
|
|
|
**
|
|
|
|
** Do nothing. This instruction is often useful as a jump
|
|
|
|
** destination.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
** The magic Explain opcode are only inserted when explain==2 (which
|
|
|
|
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
|
|
|
** This opcode records information from the optimizer. It is the
|
|
|
|
** the same as a no-op. This opcodesnever appears in a real VM program.
|
|
|
|
*/
|
|
|
|
default: { /* This is really OP_Noop, OP_Explain */
|
|
|
|
assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
** The cases of the switch statement above this line should all be indented
|
|
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
|
|
** readability. From this point on down, the normal indentation rules are
|
|
|
|
** restored.
|
|
|
|
*****************************************************************************/
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
{
|
|
|
|
u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
|
|
|
|
if( endTime>start ) pOrigOp->cycles += endTime - start;
|
|
|
|
pOrigOp->cnt++;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
|
|
** of the program. It is only here for testing and debugging.
|
|
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
|
|
*/
|
|
|
|
#ifndef NDEBUG
|
|
|
|
assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags & SQLITE_VdbeTrace ){
|
|
|
|
u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
|
|
|
|
if( rc!=0 ) printf("rc=%d\n",rc);
|
|
|
|
if( opProperty & (OPFLG_OUT2) ){
|
|
|
|
registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
|
|
|
|
}
|
|
|
|
if( opProperty & OPFLG_OUT3 ){
|
|
|
|
registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
|
|
|
|
}
|
|
|
|
if( opProperty==0xff ){
|
|
|
|
/* Never happens. This code exists to avoid a harmless linkage
|
|
|
|
** warning aboud sqlite3VdbeRegisterDump() being defined but not
|
|
|
|
** used. */
|
|
|
|
sqlite3VdbeRegisterDump(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
#endif /* NDEBUG */
|
|
|
|
} /* The end of the for(;;) loop the loops through opcodes */
|
|
|
|
|
|
|
|
/* If we reach this point, it means that execution is finished with
|
|
|
|
** an error of some kind.
|
|
|
|
*/
|
|
|
|
abort_due_to_error:
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
|
|
}else if( rc==SQLITE_IOERR_CORRUPTFS ){
|
|
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
}
|
|
|
|
assert( rc );
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
if( db->flags & SQLITE_VdbeTrace ){
|
|
|
|
const char *zTrace = p->zSql;
|
|
|
|
if( zTrace==0 ){
|
|
|
|
if( aOp[0].opcode==OP_Trace ){
|
|
|
|
zTrace = aOp[0].p4.z;
|
|
|
|
}
|
|
|
|
if( zTrace==0 ) zTrace = "???";
|
|
|
|
}
|
|
|
|
printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
|
|
|
|
sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
|
|
|
|
}
|
|
|
|
p->rc = rc;
|
|
|
|
sqlite3SystemError(db, rc);
|
|
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3_log(rc, "statement aborts at %d: [%s] %s",
|
2021-05-14 09:07:09 +00:00
|
|
|
(int)(pOp - aOp), p->zSql, p->zErrMsg);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
|
|
|
|
db->flags |= SQLITE_CorruptRdOnly;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = SQLITE_ERROR;
|
|
|
|
if( resetSchemaOnFault>0 ){
|
|
|
|
sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is the only way out of this procedure. We have to
|
|
|
|
** release the mutexes on btrees that were acquired at the
|
|
|
|
** top. */
|
|
|
|
vdbe_return:
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
|
|
while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
|
|
|
|
nProgressLimit += db->nProgressOps;
|
|
|
|
if( db->xProgress(db->pProgressArg) ){
|
|
|
|
nProgressLimit = LARGEST_UINT64;
|
|
|
|
rc = SQLITE_INTERRUPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
|
|
|
|
sqlite3VdbeLeave(p);
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( rc!=SQLITE_OK || nExtraDelete==0
|
|
|
|
|| sqlite3_strlike("DELETE%",p->zSql,0)!=0
|
2021-05-14 09:07:09 +00:00
|
|
|
);
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
|
|
|
** is encountered.
|
|
|
|
*/
|
|
|
|
too_big:
|
|
|
|
sqlite3VdbeError(p, "string or blob too big");
|
|
|
|
rc = SQLITE_TOOBIG;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
|
|
|
|
/* Jump to here if a malloc() fails.
|
|
|
|
*/
|
|
|
|
no_mem:
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
sqlite3VdbeError(p, "out of memory");
|
|
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
|
|
|
|
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
|
|
** flag.
|
|
|
|
*/
|
|
|
|
abort_due_to_interrupt:
|
|
|
|
assert( AtomicLoad(&db->u1.isInterrupted) );
|
|
|
|
rc = SQLITE_INTERRUPT;
|
|
|
|
goto abort_due_to_error;
|
|
|
|
}
|
|
|
|
|