2021-08-19 13:07:37 +00:00
|
|
|
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
|
|
|
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
|
|
|
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|
|
|
│ │
|
|
|
|
│ The author of this software is David M. Gay. │
|
|
|
|
│ Please send bug reports to David M. Gay <dmg@acm.org> │
|
|
|
|
│ or Justine Tunney <jtunney@gmail.com> │
|
|
|
|
│ │
|
|
|
|
│ Copyright (C) 1998, 1999 by Lucent Technologies │
|
|
|
|
│ All Rights Reserved │
|
|
|
|
│ │
|
|
|
|
│ Permission to use, copy, modify, and distribute this software and │
|
|
|
|
│ its documentation for any purpose and without fee is hereby │
|
|
|
|
│ granted, provided that the above copyright notice appear in all │
|
|
|
|
│ copies and that both that the copyright notice and this │
|
|
|
|
│ permission notice and warranty disclaimer appear in supporting │
|
|
|
|
│ documentation, and that the name of Lucent or any of its entities │
|
|
|
|
│ not be used in advertising or publicity pertaining to │
|
|
|
|
│ distribution of the software without specific, written prior │
|
|
|
|
│ permission. │
|
|
|
|
│ │
|
|
|
|
│ LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, │
|
|
|
|
│ INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. │
|
|
|
|
│ IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY │
|
|
|
|
│ SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES │
|
|
|
|
│ WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER │
|
|
|
|
│ IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, │
|
|
|
|
│ ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF │
|
|
|
|
│ THIS SOFTWARE. │
|
|
|
|
│ │
|
|
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
|
|
#include "libc/runtime/fenv.h"
|
2020-12-05 20:20:41 +00:00
|
|
|
#include "third_party/gdtoa/gdtoa.internal.h"
|
2020-12-01 11:43:40 +00:00
|
|
|
/* clang-format off */
|
|
|
|
|
|
|
|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
|
|
*
|
|
|
|
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
|
|
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
|
|
|
|
*
|
|
|
|
* Modifications:
|
|
|
|
* 1. Rather than iterating, we use a simple numeric overestimate
|
|
|
|
* to determine k = floor(log10(d)). We scale relevant
|
2021-10-14 00:27:13 +00:00
|
|
|
* quantities using O(log2(k)) rather than O(k) __gdtoa_multiplications.
|
2020-12-01 11:43:40 +00:00
|
|
|
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
|
|
* try to generate digits strictly left to right. Instead, we
|
|
|
|
* compute with fewer bits and propagate the carry if necessary
|
|
|
|
* when rounding the final digit up. This is often faster.
|
2021-10-14 00:27:13 +00:00
|
|
|
* 3. Under the as__gdtoa_sumption that input will be rounded nearest,
|
2020-12-01 11:43:40 +00:00
|
|
|
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
|
|
* That is, we allow equality in stopping tests when the
|
|
|
|
* round-nearest rule will give the same floating-point value
|
|
|
|
* as would satisfaction of the stopping test with strict
|
|
|
|
* inequality.
|
|
|
|
* 4. We remove common factors of powers of 2 from relevant
|
|
|
|
* quantities.
|
|
|
|
* 5. When converting floating-point integers less than 1e16,
|
|
|
|
* we use floating-point arithmetic rather than resorting
|
2021-10-14 00:27:13 +00:00
|
|
|
* to __gdtoa_multiple-precision integers.
|
2020-12-01 11:43:40 +00:00
|
|
|
* 6. When asked to produce fewer than 15 digits, we first try
|
|
|
|
* to get by with floating-point arithmetic; we resort to
|
2021-10-14 00:27:13 +00:00
|
|
|
* __gdtoa_multiple-precision integer arithmetic only if we cannot
|
2020-12-01 11:43:40 +00:00
|
|
|
* guarantee that the floating-point calculation has given
|
|
|
|
* the correctly rounded result. For k requested digits and
|
|
|
|
* "uniformly" distributed input, the probability is
|
|
|
|
* something like 10^(k-15) that we must resort to the Long
|
|
|
|
* calculation.
|
|
|
|
*/
|
|
|
|
|
2020-12-27 15:02:35 +00:00
|
|
|
char *
|
|
|
|
dtoa(double d0, int mode, int ndigits, int *decpt, int *sign, char **rve)
|
2020-12-01 11:43:40 +00:00
|
|
|
{
|
2021-08-19 13:07:37 +00:00
|
|
|
/* Arguments ndigits, decpt, sign are similar to those
|
|
|
|
of ecvt and fcvt; trailing zeros are suppressed from
|
|
|
|
the returned string. If not null, *rve is set to point
|
|
|
|
to the end of the return value. If d is +-Infinity or NaN,
|
|
|
|
then *decpt is set to 9999.
|
2020-12-01 11:43:40 +00:00
|
|
|
|
2021-08-19 13:07:37 +00:00
|
|
|
mode:
|
2020-12-01 11:43:40 +00:00
|
|
|
0 ==> shortest string that yields d when read in
|
2021-08-19 13:07:37 +00:00
|
|
|
and rounded to nearest.
|
2020-12-01 11:43:40 +00:00
|
|
|
1 ==> like 0, but with Steele & White stopping rule;
|
2021-08-19 13:07:37 +00:00
|
|
|
e.g. with IEEE P754 arithmetic , mode 0 gives
|
|
|
|
1e23 whereas mode 1 gives 9.999999999999999e22.
|
2020-12-01 11:43:40 +00:00
|
|
|
2 ==> max(1,ndigits) significant digits. This gives a
|
2021-08-19 13:07:37 +00:00
|
|
|
return value similar to that of ecvt, except
|
|
|
|
that trailing zeros are suppressed.
|
2020-12-01 11:43:40 +00:00
|
|
|
3 ==> through ndigits past the decimal point. This
|
2021-08-19 13:07:37 +00:00
|
|
|
gives a return value similar to that from fcvt,
|
|
|
|
except that trailing zeros are suppressed, and
|
|
|
|
ndigits can be negative.
|
2020-12-01 11:43:40 +00:00
|
|
|
4,5 ==> similar to 2 and 3, respectively, but (in
|
2021-08-19 13:07:37 +00:00
|
|
|
round-nearest mode) with the tests of mode 0 to
|
|
|
|
possibly return a shorter string that rounds to d.
|
|
|
|
With IEEE arithmetic and compilation with
|
|
|
|
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
|
|
|
|
as modes 2 and 3 when FLT_ROUNDS != 1.
|
2020-12-01 11:43:40 +00:00
|
|
|
6-9 ==> Debugging modes similar to mode - 4: don't try
|
2021-08-19 13:07:37 +00:00
|
|
|
fast floating-point estimate (if applicable).
|
2020-12-01 11:43:40 +00:00
|
|
|
|
|
|
|
Values of mode other than 0-9 are treated as mode 0.
|
|
|
|
|
|
|
|
Sufficient space is allocated to the return value
|
|
|
|
to hold the suppressed trailing zeros.
|
|
|
|
*/
|
|
|
|
int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
|
|
|
|
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
|
|
|
spec_case, try_quick;
|
|
|
|
Long L;
|
|
|
|
int denorm;
|
|
|
|
ULong x;
|
|
|
|
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
|
|
|
U d, d2, eps, eps1;
|
|
|
|
double ds;
|
|
|
|
char *s, *s0;
|
|
|
|
int Rounding;
|
2021-08-19 13:07:37 +00:00
|
|
|
Rounding = FLT_ROUNDS;
|
2020-12-01 11:43:40 +00:00
|
|
|
d.d = d0;
|
|
|
|
if (word0(&d) & Sign_bit) {
|
|
|
|
/* set sign for everything, including 0's and NaNs */
|
|
|
|
*sign = 1;
|
|
|
|
word0(&d) &= ~Sign_bit; /* clear sign bit */
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else
|
|
|
|
*sign = 0;
|
|
|
|
if ((word0(&d) & Exp_mask) == Exp_mask)
|
2021-08-19 13:07:37 +00:00
|
|
|
{
|
2020-12-01 11:43:40 +00:00
|
|
|
/* Infinity or NaN */
|
|
|
|
*decpt = 9999;
|
|
|
|
if (!word1(&d) && !(word0(&d) & 0xfffff))
|
2021-10-14 00:27:13 +00:00
|
|
|
return __gdtoa_nrv_alloc("Infinity", rve, 8);
|
|
|
|
return __gdtoa_nrv_alloc("NaN", rve, 3);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (!dval(&d)) {
|
|
|
|
*decpt = 1;
|
2021-10-14 00:27:13 +00:00
|
|
|
return __gdtoa_nrv_alloc("0", rve, 1);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (Rounding >= 2) {
|
|
|
|
if (*sign)
|
|
|
|
Rounding = Rounding == 2 ? 0 : 2;
|
|
|
|
else
|
|
|
|
if (Rounding != 2)
|
|
|
|
Rounding = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_d2b(dval(&d), &be, &bbits);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (( i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
|
|
|
|
dval(&d2) = dval(&d);
|
|
|
|
word0(&d2) &= Frac_mask1;
|
|
|
|
word0(&d2) |= Exp_11;
|
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
|
|
|
* log10(x) = log(x) / log(10)
|
|
|
|
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
|
|
|
* log10(&d) = (i-Bias)*log(2)/log(10) + log10(&d2)
|
|
|
|
*
|
|
|
|
* This suggests computing an approximation k to log10(&d) by
|
|
|
|
*
|
|
|
|
* k = (i - Bias)*0.301029995663981
|
|
|
|
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
|
|
|
*
|
|
|
|
* We want k to be too large rather than too small.
|
|
|
|
* The error in the first-order Taylor series approximation
|
|
|
|
* is in our favor, so we just round up the constant enough
|
2021-10-14 00:27:13 +00:00
|
|
|
* to compensate for any error in the __gdtoa_multiplication of
|
2020-12-01 11:43:40 +00:00
|
|
|
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
|
|
|
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
|
|
|
* adding 1e-13 to the constant term more than suffices.
|
|
|
|
* Hence we adjust the constant term to 0.1760912590558.
|
|
|
|
* (We could get a more accurate k by invoking log10,
|
|
|
|
* but this is probably not worthwhile.)
|
|
|
|
*/
|
|
|
|
i -= Bias;
|
|
|
|
denorm = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
|
|
|
/* d is denormalized */
|
|
|
|
i = bbits + be + (Bias + (P-1) - 1);
|
|
|
|
x = i > 32 ? word0(&d) << (64 - i) | word1(&d) >> (i - 32)
|
2021-08-19 13:07:37 +00:00
|
|
|
: word1(&d) << (32 - i);
|
2020-12-01 11:43:40 +00:00
|
|
|
dval(&d2) = x;
|
|
|
|
word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
|
|
|
|
i -= (Bias + (P-1) - 1) + 1;
|
|
|
|
denorm = 1;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
|
|
|
k = (int)ds;
|
|
|
|
if (ds < 0. && ds != k)
|
|
|
|
k--; /* want k = floor(ds) */
|
|
|
|
k_check = 1;
|
|
|
|
if (k >= 0 && k <= Ten_pmax) {
|
2021-10-14 00:27:13 +00:00
|
|
|
if (dval(&d) < __gdtoa_tens[k])
|
2020-12-01 11:43:40 +00:00
|
|
|
k--;
|
|
|
|
k_check = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
j = bbits - i - 1;
|
|
|
|
if (j >= 0) {
|
|
|
|
b2 = 0;
|
|
|
|
s2 = j;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
|
|
|
b2 = -j;
|
|
|
|
s2 = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (k >= 0) {
|
|
|
|
b5 = 0;
|
|
|
|
s5 = k;
|
|
|
|
s2 += k;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
|
|
|
b2 -= k;
|
|
|
|
b5 = -k;
|
|
|
|
s5 = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (mode < 0 || mode > 9)
|
|
|
|
mode = 0;
|
|
|
|
try_quick = Rounding == 1;
|
|
|
|
if (mode > 5) {
|
|
|
|
mode -= 4;
|
|
|
|
try_quick = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
|
2020-12-01 11:43:40 +00:00
|
|
|
leftright = 1;
|
|
|
|
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
|
|
|
|
/* silence erroneous "gcc -Wall" warning. */
|
|
|
|
switch(mode) {
|
2021-08-19 13:07:37 +00:00
|
|
|
case 0:
|
|
|
|
case 1:
|
|
|
|
i = 18;
|
|
|
|
ndigits = 0;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
leftright = 0;
|
|
|
|
/* no break */
|
|
|
|
case 4:
|
|
|
|
if (ndigits <= 0)
|
|
|
|
ndigits = 1;
|
|
|
|
ilim = ilim1 = i = ndigits;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
leftright = 0;
|
|
|
|
/* no break */
|
|
|
|
case 5:
|
|
|
|
i = ndigits + k + 1;
|
|
|
|
ilim = i;
|
|
|
|
ilim1 = i - 1;
|
|
|
|
if (i <= 0)
|
|
|
|
i = 1;
|
|
|
|
}
|
2021-10-14 00:27:13 +00:00
|
|
|
s = s0 = __gdtoa_rv_alloc(i);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (mode > 1 && Rounding != 1)
|
|
|
|
leftright = 0;
|
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
|
|
|
/* Try to get by with floating-point arithmetic. */
|
|
|
|
i = 0;
|
|
|
|
j1 = 0;
|
|
|
|
dval(&d2) = dval(&d);
|
|
|
|
k0 = k;
|
|
|
|
ilim0 = ilim;
|
|
|
|
ieps = 2; /* conservative */
|
|
|
|
if (k > 0) {
|
2021-10-14 00:27:13 +00:00
|
|
|
ds = __gdtoa_tens[k&0xf];
|
2020-12-01 11:43:40 +00:00
|
|
|
j = k >> 4;
|
|
|
|
if (j & Bletch) {
|
|
|
|
/* prevent overflows */
|
|
|
|
j &= Bletch - 1;
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&d) /= __gdtoa_bigtens[n___gdtoa_bigtens-1];
|
2020-12-01 11:43:40 +00:00
|
|
|
ieps++;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
for(; j; j >>= 1, i++)
|
|
|
|
if (j & 1) {
|
|
|
|
ieps++;
|
2021-10-14 00:27:13 +00:00
|
|
|
ds *= __gdtoa_bigtens[i];
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
dval(&d) /= ds;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else if (( j1 = -k )!=0) {
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&d) *= __gdtoa_tens[j1 & 0xf];
|
2020-12-01 11:43:40 +00:00
|
|
|
for(j = j1 >> 4; j; j >>= 1, i++)
|
|
|
|
if (j & 1) {
|
|
|
|
ieps++;
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&d) *= __gdtoa_bigtens[i];
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (k_check && dval(&d) < 1. && ilim > 0) {
|
|
|
|
if (ilim1 <= 0)
|
|
|
|
goto fast_failed;
|
|
|
|
ilim = ilim1;
|
|
|
|
k--;
|
|
|
|
dval(&d) *= 10.;
|
|
|
|
ieps++;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
dval(&eps) = ieps*dval(&d) + 7.;
|
|
|
|
word0(&eps) -= (P-1)*Exp_msk1;
|
|
|
|
if (ilim == 0) {
|
|
|
|
S = mhi = 0;
|
|
|
|
dval(&d) -= 5.;
|
|
|
|
if (dval(&d) > dval(&eps))
|
|
|
|
goto one_digit;
|
|
|
|
if (dval(&d) < -dval(&eps))
|
|
|
|
goto no_digits;
|
|
|
|
goto fast_failed;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (leftright) {
|
|
|
|
/* Use Steele & White method of only
|
|
|
|
* generating digits needed.
|
|
|
|
*/
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&eps) = 0.5/__gdtoa_tens[ilim-1] - dval(&eps);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (k0 < 0 && j1 >= 307) {
|
|
|
|
eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
|
|
|
|
word0(&eps1) -= Exp_msk1 * (Bias+P-1);
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&eps1) *= __gdtoa_tens[j1 & 0xf];
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
|
|
|
|
if (j & 1)
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&eps1) *= __gdtoa_bigtens[i];
|
2020-12-01 11:43:40 +00:00
|
|
|
if (eps.d < eps1.d)
|
|
|
|
eps.d = eps1.d;
|
|
|
|
if (10. - d.d < 10.*eps.d && eps.d < 1.) {
|
|
|
|
/* eps.d < 1. excludes trouble with the tiniest denormal */
|
|
|
|
*s++ = '1';
|
|
|
|
++k;
|
|
|
|
goto ret1;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 0;;) {
|
|
|
|
L = dval(&d);
|
|
|
|
dval(&d) -= L;
|
|
|
|
*s++ = '0' + (int)L;
|
|
|
|
if (dval(&d) < dval(&eps))
|
|
|
|
goto retc;
|
|
|
|
if (1. - dval(&d) < dval(&eps))
|
|
|
|
goto bump_up;
|
|
|
|
if (++i >= ilim)
|
|
|
|
break;
|
|
|
|
dval(&eps) *= 10.;
|
|
|
|
dval(&d) *= 10.;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
|
|
|
/* Generate ilim digits, then fix them up. */
|
2021-10-14 00:27:13 +00:00
|
|
|
dval(&eps) *= __gdtoa_tens[ilim-1];
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 1;; i++, dval(&d) *= 10.) {
|
|
|
|
L = (Long)(dval(&d));
|
|
|
|
if (!(dval(&d) -= L))
|
|
|
|
ilim = i;
|
|
|
|
*s++ = '0' + (int)L;
|
|
|
|
if (i == ilim) {
|
|
|
|
if (dval(&d) > 0.5 + dval(&eps))
|
|
|
|
goto bump_up;
|
|
|
|
else if (dval(&d) < 0.5 - dval(&eps))
|
|
|
|
goto retc;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
fast_failed:
|
2020-12-01 11:43:40 +00:00
|
|
|
s = s0;
|
|
|
|
dval(&d) = dval(&d2);
|
|
|
|
k = k0;
|
|
|
|
ilim = ilim0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
|
|
|
|
/* Do we have a "small" integer? */
|
|
|
|
if (be >= 0 && k <= Int_max) {
|
|
|
|
/* Yes. */
|
2021-10-14 00:27:13 +00:00
|
|
|
ds = __gdtoa_tens[k];
|
2020-12-01 11:43:40 +00:00
|
|
|
if (ndigits < 0 && ilim <= 0) {
|
|
|
|
S = mhi = 0;
|
|
|
|
if (ilim < 0 || dval(&d) <= 5*ds)
|
|
|
|
goto no_digits;
|
|
|
|
goto one_digit;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 1;; i++, dval(&d) *= 10.) {
|
|
|
|
L = (Long)(dval(&d) / ds);
|
|
|
|
dval(&d) -= L*ds;
|
|
|
|
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
|
|
|
if (dval(&d) < 0) {
|
|
|
|
L--;
|
|
|
|
dval(&d) += ds;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = '0' + (int)L;
|
|
|
|
if (!dval(&d)) {
|
|
|
|
break;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (i == ilim) {
|
|
|
|
if (mode > 1)
|
2021-08-19 13:07:37 +00:00
|
|
|
switch(Rounding) {
|
|
|
|
case 0: goto retc;
|
|
|
|
case 2: goto bump_up;
|
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
dval(&d) += dval(&d);
|
2021-08-19 13:07:37 +00:00
|
|
|
if (dval(&d) > ds || (dval(&d) == ds && L & 1)) {
|
|
|
|
bump_up:
|
2020-12-01 11:43:40 +00:00
|
|
|
while(*--s == '9')
|
|
|
|
if (s == s0) {
|
|
|
|
k++;
|
|
|
|
*s = '0';
|
|
|
|
break;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
++*s++;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
break;
|
2020-12-01 11:43:40 +00:00
|
|
|
}
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
goto retc;
|
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
m2 = b2;
|
|
|
|
m5 = b5;
|
|
|
|
mhi = mlo = 0;
|
|
|
|
if (leftright) {
|
2021-08-19 13:07:37 +00:00
|
|
|
i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits;
|
2020-12-01 11:43:40 +00:00
|
|
|
b2 += i;
|
|
|
|
s2 += i;
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_i2b(1);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (m2 > 0 && s2 > 0) {
|
|
|
|
i = m2 < s2 ? m2 : s2;
|
|
|
|
b2 -= i;
|
|
|
|
m2 -= i;
|
|
|
|
s2 -= i;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (b5 > 0) {
|
|
|
|
if (leftright) {
|
|
|
|
if (m5 > 0) {
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_pow5mult(mhi, m5);
|
|
|
|
b1 = __gdtoa_mult(mhi, b);
|
|
|
|
__gdtoa_Bfree(b);
|
2020-12-01 11:43:40 +00:00
|
|
|
b = b1;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
if (( j = b5 - m5 )!=0)
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_pow5mult(b, j);
|
2020-12-01 11:43:40 +00:00
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
else
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_pow5mult(b, b5);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2021-10-14 00:27:13 +00:00
|
|
|
S = __gdtoa_i2b(1);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (s5 > 0)
|
2021-10-14 00:27:13 +00:00
|
|
|
S = __gdtoa_pow5mult(S, s5);
|
2020-12-01 11:43:40 +00:00
|
|
|
|
|
|
|
/* Check for special case that d is a normalized power of 2. */
|
|
|
|
spec_case = 0;
|
2021-08-19 13:07:37 +00:00
|
|
|
if ((mode < 2 || leftright) && Rounding == 1) {
|
|
|
|
if (!word1(&d) && !(word0(&d) & Bndry_mask) &&
|
|
|
|
word0(&d) & (Exp_mask & ~Exp_msk1)) {
|
2020-12-01 11:43:40 +00:00
|
|
|
/* The special case */
|
|
|
|
b2 += Log2P;
|
|
|
|
s2 += Log2P;
|
|
|
|
spec_case = 1;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
|
|
|
|
/* Arrange for convenient computation of quotients:
|
|
|
|
* shift left if necessary so divisor has 4 leading 0 bits.
|
|
|
|
*
|
|
|
|
* Perhaps we should just compute leading 28 bits of S once
|
2021-10-14 00:27:13 +00:00
|
|
|
* and for all and pass them and a shift to __gdtoa_quorem, so it
|
2020-12-01 11:43:40 +00:00
|
|
|
* can do shifts and ors to compute the numerator for q.
|
|
|
|
*/
|
|
|
|
if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
|
|
|
|
i = 32 - i;
|
|
|
|
if (i > 4) {
|
|
|
|
i -= 4;
|
|
|
|
b2 += i;
|
|
|
|
m2 += i;
|
|
|
|
s2 += i;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else if (i < 4) {
|
|
|
|
i += 28;
|
|
|
|
b2 += i;
|
|
|
|
m2 += i;
|
|
|
|
s2 += i;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (b2 > 0)
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_lshift(b, b2);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (s2 > 0)
|
2021-10-14 00:27:13 +00:00
|
|
|
S = __gdtoa_lshift(S, s2);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (k_check) {
|
2021-10-14 00:27:13 +00:00
|
|
|
if (__gdtoa_cmp(b,S) < 0) {
|
2020-12-01 11:43:40 +00:00
|
|
|
k--;
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_multadd(b, 10, 0); /* we botched the k estimate */
|
2020-12-01 11:43:40 +00:00
|
|
|
if (leftright)
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_multadd(mhi, 10, 0);
|
2020-12-01 11:43:40 +00:00
|
|
|
ilim = ilim1;
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (ilim <= 0 && (mode == 3 || mode == 5)) {
|
2021-10-14 00:27:13 +00:00
|
|
|
if (ilim < 0 || __gdtoa_cmp(b,S = __gdtoa_multadd(S,5,0)) <= 0) {
|
2020-12-01 11:43:40 +00:00
|
|
|
/* no digits, fcvt style */
|
2021-08-19 13:07:37 +00:00
|
|
|
no_digits:
|
2020-12-01 11:43:40 +00:00
|
|
|
k = -1 - ndigits;
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
one_digit:
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = '1';
|
|
|
|
k++;
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (leftright) {
|
|
|
|
if (m2 > 0)
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_lshift(mhi, m2);
|
2020-12-01 11:43:40 +00:00
|
|
|
/* Compute mlo -- check for special case
|
|
|
|
* that d is a normalized power of 2.
|
|
|
|
*/
|
|
|
|
mlo = mhi;
|
|
|
|
if (spec_case) {
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_Balloc(mhi->k);
|
2020-12-01 11:43:40 +00:00
|
|
|
Bcopy(mhi, mlo);
|
2021-10-14 00:27:13 +00:00
|
|
|
mhi = __gdtoa_lshift(mhi, Log2P);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 1;;i++) {
|
2021-10-14 00:27:13 +00:00
|
|
|
dig = __gdtoa_quorem(b,S) + '0';
|
2020-12-01 11:43:40 +00:00
|
|
|
/* Do we yet have the shortest decimal string
|
|
|
|
* that will round to d?
|
|
|
|
*/
|
2021-10-14 00:27:13 +00:00
|
|
|
j = __gdtoa_cmp(b, mlo);
|
|
|
|
delta = __gdtoa_diff(S, mhi);
|
|
|
|
j1 = delta->sign ? 1 : __gdtoa_cmp(b, delta);
|
|
|
|
__gdtoa_Bfree(delta);
|
2021-08-19 13:07:37 +00:00
|
|
|
if (j1 == 0 && mode != 1 && !(word1(&d) & 1) && Rounding >= 1) {
|
2020-12-01 11:43:40 +00:00
|
|
|
if (dig == '9')
|
|
|
|
goto round_9_up;
|
|
|
|
if (j > 0)
|
|
|
|
dig++;
|
|
|
|
*s++ = dig;
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
if (j < 0 || (j == 0 && mode != 1 && !(word1(&d) & 1)
|
|
|
|
)) {
|
2020-12-01 11:43:40 +00:00
|
|
|
if (!b->x[0] && b->wds <= 1) {
|
|
|
|
goto accept_dig;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (mode > 1)
|
2021-08-19 13:07:37 +00:00
|
|
|
switch(Rounding) {
|
|
|
|
case 0: goto accept_dig;
|
|
|
|
case 2: goto keep_dig;
|
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (j1 > 0) {
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_lshift(b, 1);
|
|
|
|
j1 = __gdtoa_cmp(b, S);
|
2020-12-01 11:43:40 +00:00
|
|
|
if ((j1 > 0 || (j1 == 0 && dig & 1))
|
2021-08-19 13:07:37 +00:00
|
|
|
&& dig++ == '9')
|
2020-12-01 11:43:40 +00:00
|
|
|
goto round_9_up;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
accept_dig:
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = dig;
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (j1 > 0) {
|
|
|
|
if (!Rounding && mode > 1)
|
|
|
|
goto accept_dig;
|
|
|
|
if (dig == '9') { /* possible if i == 1 */
|
2021-08-19 13:07:37 +00:00
|
|
|
round_9_up:
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = '9';
|
|
|
|
goto roundoff;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = dig + 1;
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
keep_dig:
|
2020-12-01 11:43:40 +00:00
|
|
|
*s++ = dig;
|
|
|
|
if (i == ilim)
|
|
|
|
break;
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_multadd(b, 10, 0);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (mlo == mhi)
|
2021-10-14 00:27:13 +00:00
|
|
|
mlo = mhi = __gdtoa_multadd(mhi, 10, 0);
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
2021-10-14 00:27:13 +00:00
|
|
|
mlo = __gdtoa_multadd(mlo, 10, 0);
|
|
|
|
mhi = __gdtoa_multadd(mhi, 10, 0);
|
2020-12-01 11:43:40 +00:00
|
|
|
}
|
|
|
|
}
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
else {
|
2020-12-01 11:43:40 +00:00
|
|
|
for(i = 1;; i++) {
|
2021-10-14 00:27:13 +00:00
|
|
|
*s++ = dig = __gdtoa_quorem(b,S) + '0';
|
2020-12-01 11:43:40 +00:00
|
|
|
if (!b->x[0] && b->wds <= 1) {
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
if (i >= ilim)
|
|
|
|
break;
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_multadd(b, 10, 0);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
|
|
|
|
/* Round off last digit */
|
|
|
|
switch(Rounding) {
|
2021-08-19 13:07:37 +00:00
|
|
|
case 0: goto trimzeros;
|
|
|
|
case 2: goto roundoff;
|
|
|
|
}
|
2021-10-14 00:27:13 +00:00
|
|
|
b = __gdtoa_lshift(b, 1);
|
|
|
|
j = __gdtoa_cmp(b, S);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (j > 0 || (j == 0 && dig & 1))
|
2021-08-19 13:07:37 +00:00
|
|
|
{
|
|
|
|
roundoff:
|
2020-12-01 11:43:40 +00:00
|
|
|
while(*--s == '9')
|
|
|
|
if (s == s0) {
|
|
|
|
k++;
|
|
|
|
*s++ = '1';
|
|
|
|
goto ret;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
++*s++;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
2020-12-01 11:43:40 +00:00
|
|
|
else {
|
2021-08-19 13:07:37 +00:00
|
|
|
trimzeros:
|
2020-12-01 11:43:40 +00:00
|
|
|
while(*--s == '0');
|
|
|
|
s++;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
ret:
|
2021-10-14 00:27:13 +00:00
|
|
|
__gdtoa_Bfree(S);
|
2020-12-01 11:43:40 +00:00
|
|
|
if (mhi) {
|
|
|
|
if (mlo && mlo != mhi)
|
2021-10-14 00:27:13 +00:00
|
|
|
__gdtoa_Bfree(mlo);
|
|
|
|
__gdtoa_Bfree(mhi);
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|
|
|
|
retc:
|
2020-12-01 11:43:40 +00:00
|
|
|
while(s > s0 && s[-1] == '0')
|
|
|
|
--s;
|
2021-08-19 13:07:37 +00:00
|
|
|
ret1:
|
2021-10-14 00:27:13 +00:00
|
|
|
__gdtoa_Bfree(b);
|
2020-12-01 11:43:40 +00:00
|
|
|
*s = 0;
|
|
|
|
*decpt = k + 1;
|
|
|
|
if (rve)
|
|
|
|
*rve = s;
|
|
|
|
return s0;
|
2021-08-19 13:07:37 +00:00
|
|
|
}
|