cosmopolitan/libc/tinymath/jnf.c

242 lines
7.3 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/math.h"
#include "libc/tinymath/complex.internal.h"
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/**
* Returns Bessel function of 𝑥 of first kind of order 𝑛.
*/
float jnf(int n, float x)
{
uint32_t ix;
int nm1, sign, i;
float a, b, temp;
GET_FLOAT_WORD(ix, x);
sign = ix>>31;
ix &= 0x7fffffff;
if (ix > 0x7f800000) /* nan */
return x;
/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
if (n == 0)
return j0f(x);
if (n < 0) {
nm1 = -(n+1);
x = -x;
sign ^= 1;
} else
nm1 = n-1;
if (nm1 == 0)
return j1f(x);
sign &= n; /* even n: 0, odd n: signbit(x) */
x = fabsf(x);
if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
b = 0.0f;
else if (nm1 < x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = j0f(x);
b = j1f(x);
for (i=0; i<nm1; ){
i++;
temp = b;
b = b*(2.0f*i/x) - a;
a = temp;
}
} else {
if (ix < 0x35800000) { /* x < 2**-20 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (nm1 > 8) /* underflow */
nm1 = 8;
temp = 0.5f * x;
b = temp;
a = 1.0f;
for (i=2; i<=nm1+1; i++) {
a *= (float)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t,q0,q1,w,h,z,tmp,nf;
int k;
nf = nm1+1.0f;
w = 2*nf/x;
h = 2/x;
z = w+h;
q0 = w;
q1 = w*z - 1.0f;
k = 1;
while (q1 < 1.0e4f) {
k += 1;
z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
for (t=0.0f, i=k; i>=0; i--)
t = 1.0f/(2*(i+nf)/x-t);
a = t;
b = 1.0f;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf*logf(fabsf(w));
if (tmp < 88.721679688f) {
for (i=nm1; i>0; i--) {
temp = b;
b = 2.0f*i*b/x - a;
a = temp;
}
} else {
for (i=nm1; i>0; i--){
temp = b;
b = 2.0f*i*b/x - a;
a = temp;
/* scale b to avoid spurious overflow */
if (b > 0x1p60f) {
a /= b;
t /= b;
b = 1.0f;
}
}
}
z = j0f(x);
w = j1f(x);
if (fabsf(z) >= fabsf(w))
b = t*z/b;
else
b = t*w/a;
}
}
return sign ? -b : b;
}
/**
* Returns Bessel function of 𝑥 of second kind of order 𝑛.
*/
float ynf(int n, float x)
{
uint32_t ix, ib;
int nm1, sign, i;
float a, b, temp;
GET_FLOAT_WORD(ix, x);
sign = ix>>31;
ix &= 0x7fffffff;
if (ix > 0x7f800000) /* nan */
return x;
if (sign && ix != 0) /* x < 0 */
return 0/0.0f;
if (ix == 0x7f800000)
return 0.0f;
if (n == 0)
return y0f(x);
if (n < 0) {
nm1 = -(n+1);
sign = n&1;
} else {
nm1 = n-1;
sign = 0;
}
if (nm1 == 0)
return sign ? -y1f(x) : y1f(x);
a = y0f(x);
b = y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for (i = 0; i < nm1 && ib != 0xff800000; ) {
i++;
temp = b;
b = (2.0f*i/x)*b - a;
GET_FLOAT_WORD(ib, b);
a = temp;
}
return sign ? -b : b;
}