cosmopolitan/libc/tinymath/sqrtf.c

148 lines
5.1 KiB
C
Raw Normal View History

2023-05-03 07:00:09 +00:00
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi
2023-05-03 07:00:09 +00:00
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/intrin/likely.h"
#include "libc/math.h"
#include "libc/tinymath/internal.h"
asm(".ident\t\"\\n\\n\
Musl libc (MIT License)\\n\
Copyright 2005-2014 Rich Felker, et. al.\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
#define FENV_SUPPORT 1
static inline uint32_t mul32(uint32_t a, uint32_t b)
{
return (uint64_t)a*b >> 32;
}
/* see sqrt.c for more detailed comments. */
/**
* Returns square root of 𝑥.
*/
2023-05-03 07:00:09 +00:00
float sqrtf(float x)
{
#ifdef __SSE2__
2023-05-03 07:00:09 +00:00
asm("sqrtss\t%1,%0" : "=x"(x) : "x"(x));
return x;
#elif defined(__aarch64__)
asm("fsqrt\t%s0,%s1" : "=w"(x) : "w"(x));
return x;
#elif defined(__powerpc64__)
asm("fsqrts\t%0,%1" : "=f"(x) : "f"(x));
return x;
#elif defined(__riscv) && __riscv_flen >= 32
asm("fsqrt.s\t%0,%1" : "=f"(x) : "f"(x));
return x;
#elif defined(__s390x__) && (defined(__HTM__) || __ARCH__ >= 9)
asm("sqebr\t%0,%1" : "=f"(x) : "f"(x));
return x;
2023-05-03 07:00:09 +00:00
#else
uint32_t ix, m, m1, m0, even, ey;
ix = asuint(x);
if (UNLIKELY(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
/* x < 0x1p-126 or inf or nan. */
if (ix * 2 == 0)
return x;
if (ix == 0x7f800000)
return x;
if (ix > 0x7f800000)
return __math_invalidf(x);
/* x is subnormal, normalize it. */
ix = asuint(x * 0x1p23f);
ix -= 23 << 23;
}
/* x = 4^e m; with int e and m in [1, 4). */
even = ix & 0x00800000;
m1 = (ix << 8) | 0x80000000;
m0 = (ix << 7) & 0x7fffffff;
m = even ? m0 : m1;
/* 2^e is the exponent part of the return value. */
ey = ix >> 1;
ey += 0x3f800000 >> 1;
ey &= 0x7f800000;
/* compute r ~ 1/sqrt(m), s ~ sqrt(m) with 2 goldschmidt iterations. */
static const uint32_t three = 0xc0000000;
uint32_t r, s, d, u, i;
i = (ix >> 17) % 128;
r = (uint32_t)__rsqrt_tab[i] << 16;
/* |r*sqrt(m) - 1| < 0x1p-8 */
s = mul32(m, r);
/* |s/sqrt(m) - 1| < 0x1p-8 */
d = mul32(s, r);
u = three - d;
r = mul32(r, u) << 1;
/* |r*sqrt(m) - 1| < 0x1.7bp-16 */
s = mul32(s, u) << 1;
/* |s/sqrt(m) - 1| < 0x1.7bp-16 */
d = mul32(s, r);
u = three - d;
s = mul32(s, u);
/* -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 */
s = (s - 1)>>6;
/* s < sqrt(m) < s + 0x1.08p-23 */
/* compute nearest rounded result. */
uint32_t d0, d1, d2;
float y, t;
d0 = (m << 16) - s*s;
d1 = s - d0;
d2 = d1 + s + 1;
s += d1 >> 31;
s &= 0x007fffff;
s |= ey;
y = asfloat(s);
if (FENV_SUPPORT) {
/* handle rounding and inexact exception. */
uint32_t tiny = UNLIKELY(d2==0) ? 0 : 0x01000000;
tiny |= (d1^d2) & 0x80000000;
t = asfloat(tiny);
y = eval_as_float(y + t);
}
return y;
#endif /* __SSE2__ */
2023-05-03 07:00:09 +00:00
}