cosmopolitan/third_party/dlmalloc/threaded.inc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

216 lines
6.7 KiB
PHP
Raw Normal View History

Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-
vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
╞══════════════════════════════════════════════════════════════════════════════╡
Copyright 2024 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/dce.h"
#include "libc/intrin/magicu.h"
#include "libc/intrin/strace.h"
#include "libc/intrin/weaken.h"
#include "libc/macros.h"
#include "libc/nexgen32e/rdtscp.h"
#include "libc/nexgen32e/x86feature.h"
#include "libc/runtime/runtime.h"
#include "libc/thread/thread.h"
#include "libc/runtime/runtime.h"
#include "libc/intrin/weaken.h"
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
#include "third_party/dlmalloc/dlmalloc.h"
#if !FOOTERS || !MSPACES
#error "threaded dlmalloc needs footers and mspaces"
#endif
static struct magicu magiu;
static unsigned g_heapslen;
2024-06-22 16:55:02 +00:00
static mstate g_heaps[128];
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
void dlfree(void *p) {
return mspace_free(0, p);
}
size_t dlmalloc_usable_size(void* mem) {
return mspace_usable_size(mem);
}
void* dlrealloc_in_place(void *p, size_t n) {
return mspace_realloc_in_place(0, p, n);
}
int dlmallopt(int param_number, int value) {
return mspace_mallopt(param_number, value);
}
int dlmalloc_trim(size_t pad) {
int got_some = 0;
for (unsigned i = 0; i < g_heapslen; ++i)
2024-06-22 16:55:02 +00:00
got_some |= mspace_trim(g_heaps[i], pad);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
return got_some;
}
size_t dlbulk_free(void *array[], size_t nelem) {
for (size_t i = 0; i < nelem; ++i)
mspace_free(0, array[i]);
return 0;
}
struct ThreadedMallocVisitor {
mstate heap;
void (*handler)(void *start, void *end,
size_t used_bytes, void *arg);
void *arg;
};
static void threaded_malloc_visitor(void *start, void *end,
size_t used_bytes, void *arg) {
struct ThreadedMallocVisitor *tmv = arg;
if (start == tmv->heap)
return;
tmv->handler(start, end, used_bytes, tmv->arg);
}
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
void dlmalloc_inspect_all(void handler(void *start, void *end,
size_t used_bytes, void *arg),
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
void *arg) {
for (unsigned i = 0; i < g_heapslen; ++i) {
struct ThreadedMallocVisitor tmv = {g_heaps[i], handler, arg};
mspace_inspect_all(g_heaps[i], threaded_malloc_visitor, &tmv);
}
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
forceinline mstate get_arena(void) {
unsigned cpu;
#ifdef __x86_64__
unsigned tsc_aux;
rdtscp(&tsc_aux);
cpu = TSC_AUX_CORE(tsc_aux);
#else
long tpidr_el0;
asm("mrs\t%0,tpidr_el0" : "=r"(tpidr_el0));
cpu = tpidr_el0 & 255;
#endif
2024-06-22 16:55:02 +00:00
return g_heaps[__magicu_div(cpu, magiu) % g_heapslen];
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void *dlmalloc_single(size_t n) {
2024-06-22 16:55:02 +00:00
return mspace_malloc(g_heaps[0], n);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void *dlmalloc_threaded(size_t n) {
return mspace_malloc(get_arena(), n);
}
static void *dlcalloc_single(size_t n, size_t z) {
2024-06-22 16:55:02 +00:00
return mspace_calloc(g_heaps[0], n, z);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void *dlcalloc_threaded(size_t n, size_t z) {
return mspace_calloc(get_arena(), n, z);
}
static void *dlrealloc_single(void *p, size_t n) {
2024-06-22 16:55:02 +00:00
return mspace_realloc(g_heaps[0], p, n);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void *dlrealloc_threaded(void *p, size_t n) {
if (p)
return mspace_realloc(0, p, n);
else
return mspace_malloc(get_arena(), n);
}
static void *dlmemalign_single(size_t a, size_t n) {
2024-06-22 16:55:02 +00:00
return mspace_memalign(g_heaps[0], a, n);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void *dlmemalign_threaded(size_t a, size_t n) {
return mspace_memalign(get_arena(), a, n);
}
static struct mallinfo dlmallinfo_single(void) {
2024-06-22 16:55:02 +00:00
return mspace_mallinfo(g_heaps[0]);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static struct mallinfo dlmallinfo_threaded(void) {
return mspace_mallinfo(get_arena());
}
static int dlmalloc_atoi(const char *s) {
int c, x = 0;
while ((c = *s++)) {
x *= 10;
x += c - '0';
}
return x;
}
static void use_single_heap(bool uses_locks) {
g_heapslen = 1;
dlmalloc = dlmalloc_single;
dlcalloc = dlcalloc_single;
dlrealloc = dlrealloc_single;
dlmemalign = dlmemalign_single;
dlmallinfo = dlmallinfo_single;
2024-06-22 16:55:02 +00:00
if (!(g_heaps[0] = create_mspace(0, uses_locks)))
__builtin_trap();
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}
static void threaded_dlmalloc(void) {
int heaps, cpus;
const char *var;
if (!_weaken(pthread_create))
return use_single_heap(false);
if (!IsAarch64() && !X86_HAVE(RDTSCP))
return use_single_heap(true);
// determine how many independent heaps we should install
// by default we do an approximation of one heap per core
// this code makes the c++ stl go 164x faster on my ryzen
cpus = __get_cpu_count();
if (cpus == -1)
heaps = 1;
else if ((var = getenv("COSMOPOLITAN_HEAP_COUNT")))
heaps = dlmalloc_atoi(var);
else
heaps = cpus >> 1;
if (heaps <= 1)
return use_single_heap(true);
if (heaps > ARRAYLEN(g_heaps))
heaps = ARRAYLEN(g_heaps);
// find 𝑑 such that sched_getcpu() / 𝑑 is within [0,heaps)
// turn 𝑑 into a fast magic that can divide by multiplying
magiu = __magicu_get(cpus / heaps);
// we need this too due to linux's cpu count affinity hack
g_heapslen = heaps;
2024-06-22 16:55:02 +00:00
// create the arenas
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
for (size_t i = 0; i < g_heapslen; ++i)
2024-06-22 16:55:02 +00:00
if (!(g_heaps[i] = create_mspace(0, true)))
__builtin_trap();
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
// install function pointers
dlmalloc = dlmalloc_threaded;
dlcalloc = dlcalloc_threaded;
dlrealloc = dlrealloc_threaded;
dlmemalign = dlmemalign_threaded;
dlmallinfo = dlmallinfo_threaded;
2024-06-22 16:55:02 +00:00
STRACE("created %d dlmalloc arenas for %d cpus", heaps, cpus);
Make malloc() go 200x faster If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
2024-06-05 08:31:21 +00:00
}