cosmopolitan/libc/tinymath/jn.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

316 lines
9.8 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/math.h"
#include "libc/tinymath/complex.internal.h"
Release Cosmopolitan v3.3 This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker appears to have changed things so that only a single de-duplicated str table is present in the binary, and it gets placed wherever the linker wants, regardless of what the linker script says. To cope with that we need to stop using .ident to embed licenses. As such, this change does significant work to revamp how third party licenses are defined in the codebase, using `.section .notice,"aR",@progbits`. This new GCC 12.3 toolchain has support for GNU indirect functions. It lets us support __target_clones__ for the first time. This is used for optimizing the performance of libc string functions such as strlen and friends so far on x86, by ensuring AVX systems favor a second codepath that uses VEX encoding. It shaves some latency off certain operations. It's a useful feature to have for scientific computing for the reasons explained by the test/libcxx/openmp_test.cc example which compiles for fifteen different microarchitectures. Thanks to the upgrades, it's now also possible to use newer instruction sets, such as AVX512FP16, VNNI. Cosmo now uses the %gs register on x86 by default for TLS. Doing it is helpful for any program that links `cosmo_dlopen()`. Such programs had to recompile their binaries at startup to change the TLS instructions. That's not great, since it means every page in the executable needs to be faulted. The work of rewriting TLS-related x86 opcodes, is moved to fixupobj.com instead. This is great news for MacOS x86 users, since we previously needed to morph the binary every time for that platform but now that's no longer necessary. The only platforms where we need fixup of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the kernels do not allow us to specify a value for the %gs register. OpenBSD users are now required to use APE Loader to run Cosmo binaries and assimilation is no longer possible. OpenBSD kernel needs to change to allow programs to specify a value for the %gs register, or it needs to stop marking executable pages loaded by the kernel as mimmutable(). This release fixes __constructor__, .ctor, .init_array, and lastly the .preinit_array so they behave the exact same way as glibc. We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 19:12:09 +00:00
__static_yoink("freebsd_libm_notice");
__static_yoink("fdlibm_notice");
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* jn(n, x), yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<=x, forward recursion is used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*/
static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
/**
* Returns Bessel function of 𝑥 of first kind of order 𝑛.
*/
double jn(int n, double x)
{
uint32_t ix, lx;
int nm1, i, sign;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
if (n == 0)
return j0(x);
if (n < 0) {
nm1 = -(n+1);
x = -x;
sign ^= 1;
} else
nm1 = n-1;
if (nm1 == 0)
return j1(x);
sign &= n; /* even n: 0, odd n: signbit(x) */
x = fabs(x);
if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
b = 0.0;
else if (nm1 < x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -cos(x)+sin(x); break;
case 1: temp = -cos(x)-sin(x); break;
case 2: temp = cos(x)-sin(x); break;
default:
case 3: temp = cos(x)+sin(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = j0(x);
b = j1(x);
for (i=0; i<nm1; ) {
i++;
temp = b;
b = b*(2.0*i/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if (ix < 0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (nm1 > 32) /* underflow */
b = 0.0;
else {
temp = x*0.5;
b = temp;
a = 1.0;
for (i=2; i<=nm1+1; i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,q0,q1,w,h,z,tmp,nf;
int k;
nf = nm1 + 1.0;
w = 2*nf/x;
h = 2/x;
z = w+h;
q0 = w;
q1 = w*z - 1.0;
k = 1;
while (q1 < 1.0e9) {
k += 1;
z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
for (t=0.0, i=k; i>=0; i--)
t = 1/(2*(i+nf)/x - t);
a = t;
b = 1.0;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf*log(fabs(w));
if (tmp < 7.09782712893383973096e+02) {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
}
} else {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
/* scale b to avoid spurious overflow */
if (b > 0x1p500) {
a /= b;
t /= b;
b = 1.0;
}
}
}
z = j0(x);
w = j1(x);
if (fabs(z) >= fabs(w))
b = t*z/b;
else
b = t*w/a;
}
}
return sign ? -b : b;
}
/**
* Returns Bessel function of 𝑥 of second kind of order 𝑛.
*/
double yn(int n, double x)
{
uint32_t ix, lx, ib;
int nm1, sign, i;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
if (sign && (ix|lx)!=0) /* x < 0 */
return 0/0.0;
if (ix == 0x7ff00000)
return 0.0;
if (n == 0)
return y0(x);
if (n < 0) {
nm1 = -(n+1);
sign = n&1;
} else {
nm1 = n-1;
sign = 0;
}
if (nm1 == 0)
return sign ? -y1(x) : y1(x);
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -sin(x)-cos(x); break;
case 1: temp = -sin(x)+cos(x); break;
case 2: temp = sin(x)+cos(x); break;
default:
case 3: temp = sin(x)-cos(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = y0(x);
b = y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(ib, b);
for (i=0; i<nm1 && ib!=0xfff00000; ){
i++;
temp = b;
b = (2.0*i/x)*b - a;
GET_HIGH_WORD(ib, b);
a = temp;
}
}
return sign ? -b : b;
}