cosmopolitan/tool/plinko/lib/tree.c

261 lines
9.4 KiB
C
Raw Normal View History

2022-04-08 03:30:22 +00:00
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2022 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/log/check.h"
#include "tool/plinko/lib/index.h"
#include "tool/plinko/lib/tree.h"
int Nod(int E, int L, int R, int C) {
#ifndef NDEBUG
DCHECK_LE(L, 0);
DCHECK_LE(R, 0);
DCHECK_EQ(0, C & ~1);
#endif
return Cons(Cons(E, (L | R) ? Cons(L, R) : 0), C);
}
static void CheckTreeImpl(int N) {
int p, e, L, R;
if (N >= 0) Error("N is atom: %S", N);
if (Car(N) >= 0) Error("Car(N) is an atom: %S", N);
if (Cdr(N) & ~1) Error("Cdr(N) is non-bool: %S", N);
if ((L = Lit(N))) {
if ((p = Cmp(Key(Ent(L)), Key(Ent(N)))) != -1) {
Error("Cmp(Key(L), Key(N)) != -1%n"
"Result = %d%n"
"Key(L) = %p%n"
"Key(N) = %p",
p, Key(Ent(L)), Key(Ent(N)));
}
if (Red(N) && Red(L)) {
Error("left node and its parent are both red%n%T", N);
}
CheckTreeImpl(L);
}
if ((R = Rit(N))) {
if ((p = Cmp(Key(Ent(R)), Key(Ent(N)))) != +1) {
Error("Cmp(Key(R), Key(N)) != +1%n"
"Result = %d%n"
"Key(R) = %p%n"
"Key(N) = %p",
p, Key(Ent(R)), Key(Ent(N)));
}
if (Red(N) && Red(R)) {
Error("right node and its parent are both red%n%T", N);
}
CheckTreeImpl(R);
}
}
static int CheckTree(int N) {
#if DEBUG_TREE
if (N) {
if (Red(N)) Error("tree root is red%n%T", N);
CheckTreeImpl(N);
}
#endif
return N;
}
static int BalTree(int E, int L, int R, int C) {
// Chris Okasaki "Red-Black Trees in a Functional Setting";
// Functional Pearls, Cambridge University Press, Jan 1993.
int LL, LR, RL, RR;
if (!C) {
LL = Lit(L);
LR = Rit(L);
RL = Lit(R);
RR = Rit(R);
if (Red(L) && Red(LR)) {
// Degenerate Case No. 1
// Complete the Triforce
//
// Z
// 𝐘
// 𝐗 d
// ╲ → X Z
// a 𝐘
// ╲ a b c d
// b c
//
// ((Z ((X a (Y b . c) . t) . t) . d)) →
// ((Y ((X a . b)) (Z c . d)) . t)
L = Nod(Ent(L), LL, Lit(LR), 0);
R = Nod(E, Rit(LR), R, 0);
E = Ent(LR);
C = 1;
} else if (Red(L) && Red(LL)) {
// Degenerate Case No. 2
// Complete the Triforce
//
// Z
// 𝐘
// 𝐘 d
// ╲ → X Z
// 𝐗 c
// ╲ a b c d
// a b
//
// ((Z ((Y ((X a . b) . t) . c) . t) . d)) →
// ((Y ((X a . b)) (Z c . d)) . t)
R = Nod(E, LR, R, 0);
E = Ent(L);
L = Bkn(LL);
C = 1;
} else if (Red(R) && Red(RR)) {
// Degenerate Case No. 3
// Complete the Triforce
//
// X
// 𝐘
// a 𝐘
// ╲ → X Z
// b 𝐙
// ╲ a b c d
// c d
//
// ((X a (Y b (Z c . d) . t) . t)) →
// ((Y ((X a . b)) (Z c . d)) . t)
L = Nod(E, L, RL, 0);
E = Ent(R);
R = Bkn(RR);
C = 1;
} else if (Red(R) && Red(RL)) {
// Degenerate Case No. 4
// Complete the Triforce
//
// X
// 𝐘
// a 𝐙
// ╲ → X Z
// 𝐘 d
// ╲ a b c d
// b c
//
// ((X a (Z ((Y b . c) . t) . d) . t)) →
// ((Y ((X a . b)) (Z c . d)) . t)
L = Nod(E, L, Lit(RL), 0);
R = Nod(Ent(R), Rit(RL), RR, 0);
E = Ent(RL);
C = 1;
}
}
return Nod(E, L, R, C);
}
static int InsTree(int E, int N, int KEEP) {
int P, L, R;
if (N) {
P = Cmp(Key(E), Key(Ent(N)));
if (P < 0) {
if ((L = InsTree(E, Lit(N), KEEP)) > 0) return L; // rethrow
if (L != Lit(N)) N = BalTree(Ent(N), L, Rit(N), Tail(N));
} else if (P > 0) {
if ((R = InsTree(E, Rit(N), KEEP)) > 0) return R; // rethrow
if (R != Rit(N)) N = BalTree(Ent(N), Lit(N), R, Tail(N));
} else if (KEEP < 0 || (!KEEP && !Equal(Val(E), Val(Ent(N))))) {
N = Cons(Cons(E, Chl(N)), Red(N));
} else if (KEEP > 1) {
N = KEEP; // throw
}
} else {
N = Cons(Cons(E, 0), 1);
}
return N;
}
/**
* Inserts entry into red-black tree.
*
* DICTIONARY NODE SET NODE ATOM SET NODE
*
*
* 𝑐 𝑐 𝑐
*
*
* 𝑣
*
*
* 𝑥 𝑦 L R 𝑥 L R L R
*
*
* @param E is entry which may be
* - (𝑥 . 𝑦) where 𝑥 is the key and 𝑦 is arbitrary tag-along content
* - 𝑣 for memory-efficient sets of atoms
* @param N is red-black tree node which should look like
* - is an tree or atom set with zero elements
* - (((𝑥 ) . (𝑙 . 𝑟)) . ) is a black node a.k.a. (((𝑥 ) 𝑙 . 𝑟))
* - (((𝑥 ) . (𝑙 . 𝑟)) . ) is a red node a.k.a. (((𝑥 ) 𝑙 . 𝑟) . )
* - ((𝑣 𝑙 . 𝑟)) a memory-efficient black node for an atom set
* - ((𝑣 𝑙 . 𝑟)) is functionally equivalent to (((𝑣) 𝑙 . 𝑟))
* - ((𝑣 . )) is an atom set with a single element
* - ((𝑣)) is functionally equivalent to ((𝑣 . )) or ((𝑣 . ( . )) . )
* - 𝑣 is crash therefore ((() 𝑣)) and ((() . 𝑣)) are crash
* - (𝑣) is crash, first element must be a cons cell
* - (() . 𝑥) is crash if 𝑥 isn't or
* @param KEEP may be
* - -1 to replace existing entries always
* - 0 to replace existing entries if values are non-equal
* - 1 to return N if
* - >1 specifies arbitrary tombstone to return if key exists
* @return ((𝑒 𝑙 . 𝑟) . 𝑐) if found where 𝑒 can be 𝑣 or (𝑥 . 𝑦)
* - or KEEP if not found and KEEP > 1
* - or if not found
*/
int PutTree(int E, int N, int KEEP) {
DCHECK_LE(N, 0);
DCHECK_LE(Car(N), 0);
DCHECK_GE(KEEP, -1);
return CheckTree(Bkn(InsTree(E, N, KEEP)));
}
/**
* Finds node in binary tree.
* @return ((𝑒 𝑙 . 𝑟) . 𝑐) if found, otherwise 0
*/
int GetTree(int k, int N) {
int p, e;
while (N) {
p = Cmp(k, Key(Ent(N)));
if (p < 0) {
N = Lit(N);
} else if (p > 0) {
N = Rit(N);
} else {
break;
}
}
return N;
}
int GetTreeCount(int k, int N, int *c) {
int p, e;
while (N) {
++*c;
p = Cmp(k, Key(Ent(N)));
if (p < 0) {
N = Lit(N);
} else if (p > 0) {
N = Rit(N);
} else {
break;
}
}
return N;
}