cosmopolitan/libc/tinymath/erff.c

124 lines
5.1 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
2021-03-18 03:05:12 +00:00
Optimized Routines
Copyright (c) 2018-2024, Arm Limited.
2021-03-18 03:05:12 +00:00
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/tinymath/arm.internal.h"
__static_yoink("arm_optimized_routines_notice");
2021-08-16 22:26:31 +00:00
#define TwoOverSqrtPiMinusOne 0x1.06eba8p-3f
#define A __erff_data.erff_poly_A
#define B __erff_data.erff_poly_B
2021-03-18 03:05:12 +00:00
/* Top 12 bits of a float. */
static inline uint32_t
top12 (float x)
2021-03-18 03:05:12 +00:00
{
return asuint (x) >> 20;
2021-03-18 03:05:12 +00:00
}
/* Efficient implementation of erff
using either a pure polynomial approximation or
the exponential of a polynomial.
Worst-case error is 1.09ulps at 0x1.c111acp-1. */
float
erff (float x)
2021-03-18 03:05:12 +00:00
{
float r, x2, u;
/* Get top word. */
uint32_t ix = asuint (x);
uint32_t sign = ix >> 31;
uint32_t ia12 = top12 (x) & 0x7ff;
2021-03-18 03:05:12 +00:00
/* Limit of both intervals is 0.875 for performance reasons but coefficients
computed on [0.0, 0.921875] and [0.921875, 4.0], which brought accuracy
from 0.94 to 1.1ulps. */
if (ia12 < 0x3f6)
{ /* a = |x| < 0.875. */
2021-03-18 03:05:12 +00:00
/* Tiny and subnormal cases. */
if (unlikely (ia12 < 0x318))
{ /* |x| < 2^(-28). */
if (unlikely (ia12 < 0x040))
{ /* |x| < 2^(-119). */
float y = fmaf (TwoOverSqrtPiMinusOne, x, x);
return check_uflowf (y);
}
return x + TwoOverSqrtPiMinusOne * x;
2021-03-18 03:05:12 +00:00
}
x2 = x * x;
2021-03-18 03:05:12 +00:00
/* Normalized cases (|x| < 0.921875). Use Horner scheme for x+x*P(x^2). */
r = A[5];
r = fmaf (r, x2, A[4]);
r = fmaf (r, x2, A[3]);
r = fmaf (r, x2, A[2]);
r = fmaf (r, x2, A[1]);
r = fmaf (r, x2, A[0]);
r = fmaf (r, x, x);
}
else if (ia12 < 0x408)
{ /* |x| < 4.0 - Use a custom Estrin scheme. */
2021-03-18 03:05:12 +00:00
float a = fabsf (x);
/* Start with Estrin scheme on high order (small magnitude) coefficients. */
r = fmaf (B[6], a, B[5]);
u = fmaf (B[4], a, B[3]);
x2 = x * x;
r = fmaf (r, x2, u);
/* Then switch to pure Horner scheme. */
r = fmaf (r, a, B[2]);
r = fmaf (r, a, B[1]);
r = fmaf (r, a, B[0]);
r = fmaf (r, a, a);
/* Single precision exponential with ~0.5ulps,
ensures erff has max. rel. error
< 1ulp on [0.921875, 4.0],
< 1.1ulps on [0.875, 4.0]. */
r = expf (-r);
/* Explicit copysign (calling copysignf increases latency). */
if (sign)
r = -1.0f + r;
else
r = 1.0f - r;
}
else
{ /* |x| >= 4.0. */
2021-03-18 03:05:12 +00:00
/* Special cases : erff(nan)=nan, erff(+inf)=+1 and erff(-inf)=-1. */
if (unlikely (ia12 >= 0x7f8))
return (1.f - (float) ((ix >> 31) << 1)) + 1.f / x;
2021-03-18 03:05:12 +00:00
/* Explicit copysign (calling copysignf increases latency). */
if (sign)
r = -1.0f;
else
r = 1.0f;
}
return r;
2021-03-18 03:05:12 +00:00
}