cosmopolitan/dsp/core/getintegercoefficients.c

113 lines
4.4 KiB
C
Raw Normal View History

2020-06-15 14:18:57 +00:00
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2020 Justine Alexandra Roberts Tunney
2020-12-28 01:18:44 +00:00
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
2020-06-15 14:18:57 +00:00
2020-12-28 01:18:44 +00:00
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
2020-06-15 14:18:57 +00:00
*/
#include "dsp/core/q.h"
#include "libc/assert.h"
#include "libc/dce.h"
#include "libc/limits.h"
#include "libc/macros.internal.h"
2020-06-15 14:18:57 +00:00
#include "libc/math.h"
#include "libc/str/str.h"
/**
* Precomputes integers that can replace floating-point operands.
*
* G-d made the integers, all else is the work of man.
* Leopold Kronecker
*
* This function shifts the decimal point to the left:
*
* 𝑛 ROUND[𝑐 × 2] + φ
*
* With extra effort to compute φ which is normally all zeroes but gives
* us better rounding when it isn't. It's assumed optimized coefficients
* will be used like this:
*
* (Σ𝑥𝑛 + 2¹) / 2 where 𝑥[𝐿,𝐻] and 𝑖[0,6)
*
* Intended to compute this
*
* ROUND[Σ𝑥𝑐]
*
* As accurately or approximately as you want it to be. Popular scaling
* factors are 7, 15, 16, 22, and 31. Building this code under MODE=tiny
* will DCE the math.
*
* @param N receives optimized integers
* @param C provides ideal coefficients
* @param M is log scaling factor, e.g. 7
* @param L is minimum input data size, e.g. 0
* @param H is maximum input data size, e.g. 255
* @return sum of errors for all inputs
* @see en.wikipedia.org/wiki/Binary_scaling
* @see o/tool/build/coefficients.com
* @cost ~300ns
*/
long GetIntegerCoefficients(long N[static 6], const double C[static 6], long M,
long L, long H) {
int i;
int j[6], J[6];
int O[6] = {0};
int S[3] = {0, -1, +1};
double R[6], K[6], D[6], HM, HL, least, error;
least = 1;
HM = 1L << M;
HL = H - L + 1;
assert(H >= L);
assert(HL <= HM);
for (i = 0; i < 6; ++i) {
least *= HL;
if (fabs(C[i]) > DBL_MIN) {
J[i] = ARRAYLEN(S);
R[i] = C[i] * HM;
K[i] = rint(R[i]);
N[i] = K[i];
} else {
J[i] = 1;
R[i] = 0;
K[i] = 0;
N[i] = 0;
}
}
if (!NoDebug() && least > 1) {
2020-06-15 14:18:57 +00:00
for (j[0] = 0; j[0] < J[0]; ++j[0]) {
for (j[1] = 0; j[1] < J[1]; ++j[1]) {
for (j[2] = 0; j[2] < J[2]; ++j[2]) {
for (j[3] = 0; j[3] < J[3]; ++j[3]) {
for (j[4] = 0; j[4] < J[4]; ++j[4]) {
for (j[5] = 0; j[5] < J[5]; ++j[5]) {
for (i = 0; i < ARRAYLEN(J); ++i) {
D[i] = S[j[i]] + K[i] - R[i];
}
if ((error = DifferSumSq(D, L, H) / HM) < least) {
least = error;
memcpy(O, j, sizeof(j));
}
}
}
}
}
}
}
for (i = 0; i < 6; ++i) {
N[i] += S[O[i]];
}
}
return lround(least);
}