cosmopolitan/libc/tinymath/log.c

152 lines
5.8 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/bits/likely.h"
#include "libc/math.h"
#include "libc/tinymath/internal.h"
#include "libc/tinymath/log_data.internal.h"
#ifndef TINY
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
/* clang-format off */
/*
* Double-precision log(x) function.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#define T __log_data.tab
#define T2 __log_data.tab2
#define B __log_data.poly1
#define A __log_data.poly
#define Ln2hi __log_data.ln2hi
#define Ln2lo __log_data.ln2lo
#define N (1 << LOG_TABLE_BITS)
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t top16(double x)
{
return asuint64(x) >> 48;
}
/**
* Returns natural logarithm of 𝑥.
*/
double log(double x)
{
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
uint64_t ix, iz, tmp;
uint32_t top;
int k, i;
ix = asuint64(x);
top = top16(x);
#define LO asuint64(1.0 - 0x1p-4)
#define HI asuint64(1.0 + 0x1.09p-4)
if (UNLIKELY(ix - LO < HI - LO)) {
/* Handle close to 1.0 inputs separately. */
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && UNLIKELY(ix == asuint64(1.0)))
return 0;
r = x - 1.0;
r2 = r * r;
r3 = r * r2;
y = r3 *
(B[1] + r * B[2] + r2 * B[3] +
r3 * (B[4] + r * B[5] + r2 * B[6] +
r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
/* Worst-case error is around 0.507 ULP. */
w = r * 0x1p27;
double_t rhi = r + w - w;
double_t rlo = r - rhi;
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
hi = r + w;
lo = r - hi + w;
lo += B[0] * rlo * (rhi + r);
y += lo;
y += hi;
return eval_as_double(y);
}
if (UNLIKELY(top - 0x0010 >= 0x7ff0 - 0x0010)) {
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0)
return __math_divzero(1);
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
return x;
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
return __math_invalid(x);
/* x is subnormal, normalize it. */
ix = asuint64(x * 0x1p52);
ix -= 52ULL << 52;
}
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble(iz);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
#if __FP_FAST_FMA
/* rounding error: 0x1p-55/N. */
r = __builtin_fma(z, invc, -1.0);
#else
/* rounding error: 0x1p-55/N + 0x1p-66. */
r = (z - T2[i].chi - T2[i].clo) * invc;
#endif
kd = (double_t)k;
/* hi + lo = r + log(c) + k*Ln2. */
w = kd * Ln2hi + logc;
hi = w + r;
lo = w - hi + r + kd * Ln2lo;
/* log(x) = lo + (log1p(r) - r) + hi. */
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
/* Worst case error if |y| > 0x1p-5:
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
Worst case error if |y| > 0x1p-4:
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
y = lo + r2 * A[0] +
r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
return eval_as_double(y);
}
#endif /* !TINY */