cosmopolitan/libc/nexgen32e/sha512.S

708 lines
22 KiB
ArmAsm
Raw Normal View History

2021-06-26 07:11:12 +00:00
/////////////////////////////////////////////////////////////////////////
// Implement fast SHA-512 with AVX2 instructions. (x86_64)
//
// Copyright (C) 2013 Intel Corporation.
//
// Authors:
// James Guilford <james.guilford@intel.com>
// Kirk Yap <kirk.s.yap@intel.com>
// David Cote <david.m.cote@intel.com>
// Tim Chen <tim.c.chen@linux.intel.com>
//
// This software is available to you under a choice of one of two
// licenses. You may choose to be licensed under the terms of the GNU
// General Public License (GPL) Version 2, available from the file
// COPYING in the main directory of this source tree, or the
// OpenIB.org BSD license below:
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// - Redistributions of source code must retain the above
// copyright notice, this list of conditions and the following
// disclaimer.
//
// - Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
/////////////////////////////////////////////////////////////////////////
//
// This code is described in an Intel White-Paper:
// "Fast SHA-512 Implementations on Intel Architecture Processors"
//
// To find it, surf to http://www.intel.com/p/en_US/embedded
// and search for that title.
//
/////////////////////////////////////////////////////////////////////////
// This code schedules 1 blocks at a time, with 4 lanes per block
/////////////////////////////////////////////////////////////////////////
#include "libc/macros.internal.h"
Release Cosmopolitan v3.3 This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker appears to have changed things so that only a single de-duplicated str table is present in the binary, and it gets placed wherever the linker wants, regardless of what the linker script says. To cope with that we need to stop using .ident to embed licenses. As such, this change does significant work to revamp how third party licenses are defined in the codebase, using `.section .notice,"aR",@progbits`. This new GCC 12.3 toolchain has support for GNU indirect functions. It lets us support __target_clones__ for the first time. This is used for optimizing the performance of libc string functions such as strlen and friends so far on x86, by ensuring AVX systems favor a second codepath that uses VEX encoding. It shaves some latency off certain operations. It's a useful feature to have for scientific computing for the reasons explained by the test/libcxx/openmp_test.cc example which compiles for fifteen different microarchitectures. Thanks to the upgrades, it's now also possible to use newer instruction sets, such as AVX512FP16, VNNI. Cosmo now uses the %gs register on x86 by default for TLS. Doing it is helpful for any program that links `cosmo_dlopen()`. Such programs had to recompile their binaries at startup to change the TLS instructions. That's not great, since it means every page in the executable needs to be faulted. The work of rewriting TLS-related x86 opcodes, is moved to fixupobj.com instead. This is great news for MacOS x86 users, since we previously needed to morph the binary every time for that platform but now that's no longer necessary. The only platforms where we need fixup of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the kernels do not allow us to specify a value for the %gs register. OpenBSD users are now required to use APE Loader to run Cosmo binaries and assimilation is no longer possible. OpenBSD kernel needs to change to allow programs to specify a value for the %gs register, or it needs to stop marking executable pages loaded by the kernel as mimmutable(). This release fixes __constructor__, .ctor, .init_array, and lastly the .preinit_array so they behave the exact same way as glibc. We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 19:12:09 +00:00
.section .notice,"aR",@progbits
.asciz "\n\n\
AVX2 SHA512 (BSD-2 License)\n\
Copyright 2013 Intel Corporation"
.previous
2021-06-26 07:11:12 +00:00
# Virtual Registers
Y_0 = %ymm4
Y_1 = %ymm5
Y_2 = %ymm6
Y_3 = %ymm7
YTMP0 = %ymm0
YTMP1 = %ymm1
YTMP2 = %ymm2
YTMP3 = %ymm3
YTMP4 = %ymm8
XFER = YTMP0
BYTE_FLIP_MASK = %ymm9
# 1st arg is %rdi, which is saved to the stack and accessed later via %r12
CTX1 = %rdi
CTX2 = %r12
# 2nd arg
INP = %rsi
# 3rd arg
NUM_BLKS = %rdx
c = %rcx
d = %r8
e = %rdx
y3 = %rsi
TBL = %rdi # clobbers CTX1
a = %rax
b = %rbx
f = %r9
g = %r10
h = %r11
old_h = %r11
T1 = %r12 # clobbers CTX2
y0 = %r13
y1 = %r14
y2 = %r15
# Local variables (stack frame)
XFER_SIZE = 4*8
SRND_SIZE = 1*8
INP_SIZE = 1*8
INPEND_SIZE = 1*8
CTX_SIZE = 1*8
RSPSAVE_SIZE = 1*8
GPRSAVE_SIZE = 5*8
frame_XFER = 0
frame_SRND = frame_XFER + XFER_SIZE
frame_INP = frame_SRND + SRND_SIZE
frame_INPEND = frame_INP + INP_SIZE
frame_CTX = frame_INPEND + INPEND_SIZE
frame_RSPSAVE = frame_CTX + CTX_SIZE
frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
frame_size = frame_GPRSAVE + GPRSAVE_SIZE
## assume buffers not aligned
#define VMOVDQ vmovdqu
# addm [mem], reg
# Add reg to mem using reg-mem add and store
.macro addm p1 p2
add \p1, \p2
mov \p2, \p1
.endm
# COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
# Load ymm with mem and byte swap each dword
.macro COPY_YMM_AND_BSWAP p1 p2 p3
VMOVDQ \p2, \p1
vpshufb \p3, \p1, \p1
.endm
# rotate_Ys
# Rotate values of symbols Y0...Y3
.macro rotate_Ys
Y_ = Y_0
Y_0 = Y_1
Y_1 = Y_2
Y_2 = Y_3
Y_3 = Y_
.endm
# RotateState
.macro RotateState
# Rotate symbols a..h right
old_h = h
TMP_ = h
h = g
g = f
f = e
e = d
d = c
c = b
b = a
a = TMP_
.endm
# macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
# YDST = {YSRC1, YSRC2} >> RVAL*8
.macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
.endm
.macro FOUR_ROUNDS_AND_SCHED
################################### RND N + 0 #########################################
# Extract w[t-7]
MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
# Calculate w[t-16] + w[t-7]
vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
# Extract w[t-15]
MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
# Calculate sigma0
# Calculate w[t-15] ror 1
vpsrlq $1, YTMP1, YTMP2
vpsllq $(64-1), YTMP1, YTMP3
vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
# Calculate w[t-15] shr 7
vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
mov a, y3 # y3 = a # MAJA
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
add frame_XFER(%rsp),h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
mov f, y2 # y2 = f # CH
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
xor g, y2 # y2 = f^g # CH
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $39, a, y1 # y1 = a >> 39 # S0A
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
RotateState
################################### RND N + 1 #########################################
# Calculate w[t-15] ror 8
vpsrlq $8, YTMP1, YTMP2
vpsllq $(64-8), YTMP1, YTMP1
vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
# XOR the three components
vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
# Add three components, w[t-16], w[t-7] and sigma0
vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
# Move to appropriate lanes for calculating w[16] and w[17]
vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
# Move to appropriate lanes for calculating w[18] and w[19]
vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
# Calculate w[16] and w[17] in both 128 bit lanes
# Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
mov a, y3 # y3 = a # MAJA
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
mov f, y2 # y2 = f # CH
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
xor g, y2 # y2 = f^g # CH
rorx $14, e, y1 # y1 = (e >> 14) # S1
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $39, a, y1 # y1 = a >> 39 # S0A
and e, y2 # y2 = (f^g)&e # CH
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
RotateState
################################### RND N + 2 #########################################
vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
# (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
# Add sigma1 to the other compunents to get w[16] and w[17]
vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
# Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
mov a, y3 # y3 = a # MAJA
rorx $41, e, y0 # y0 = e >> 41 # S1A
add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
rorx $18, e, y1 # y1 = e >> 18 # S1B
or c, y3 # y3 = a|c # MAJA
mov f, y2 # y2 = f # CH
xor g, y2 # y2 = f^g # CH
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
and e, y2 # y2 = (f^g)&e # CH
rorx $14, e, y1 # y1 = (e >> 14) # S1
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $39, a, y1 # y1 = a >> 39 # S0A
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
RotateState
################################### RND N + 3 #########################################
vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
# (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
# Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
# to newly calculated sigma1 to get w[18] and w[19]
vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
# Form w[19, w[18], w17], w[16]
vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
mov a, y3 # y3 = a # MAJA
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
mov f, y2 # y2 = f # CH
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
xor g, y2 # y2 = f^g # CH
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
add h, d # d = k + w + h + d # --
and b, y3 # y3 = (a|c)&b # MAJA
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $39, a, y1 # y1 = a >> 39 # S0A
add y0, y2 # y2 = S1 + CH # --
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
rorx $28, a, T1 # T1 = (a >> 28) # S0
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and c, T1 # T1 = a&c # MAJB
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
RotateState
rotate_Ys
.endm
.macro DO_4ROUNDS
################################### RND N + 0 #########################################
mov f, y2 # y2 = f # CH
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $39, a, y1 # y1 = a >> 39 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
add frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
RotateState
################################### RND N + 1 #########################################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $39, a, y1 # y1 = a >> 39 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
RotateState
################################### RND N + 2 #########################################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $39, a, y1 # y1 = a >> 39 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
RotateState
################################### RND N + 3 #########################################
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
mov f, y2 # y2 = f # CH
rorx $41, e, y0 # y0 = e >> 41 # S1A
rorx $18, e, y1 # y1 = e >> 18 # S1B
xor g, y2 # y2 = f^g # CH
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
rorx $14, e, y1 # y1 = (e >> 14) # S1
and e, y2 # y2 = (f^g)&e # CH
add y3, old_h # h = t1 + S0 + MAJ # --
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
rorx $34, a, T1 # T1 = a >> 34 # S0B
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
rorx $39, a, y1 # y1 = a >> 39 # S0A
mov a, y3 # y3 = a # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
rorx $28, a, T1 # T1 = (a >> 28) # S0
add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
or c, y3 # y3 = a|c # MAJA
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
mov a, T1 # T1 = a # MAJB
and b, y3 # y3 = (a|c)&b # MAJA
and c, T1 # T1 = a&c # MAJB
add y0, y2 # y2 = S1 + CH # --
add h, d # d = k + w + h + d # --
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
add y1, h # h = k + w + h + S0 # --
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
add y3, h # h = t1 + S0 + MAJ # --
RotateState
.endm
########################################################################
# void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks)
# Purpose: Updates the SHA512 digest stored at "state" with the message
# stored in "data".
# The size of the message pointed to by "data" must be an integer multiple
# of SHA512 message blocks.
# "blocks" is the message length in SHA512 blocks
########################################################################
.ftrace1
2021-06-26 07:11:12 +00:00
sha512_transform_rorx:
.ftrace2
push %rbp
mov %rsp,%rbp
2021-06-26 07:11:12 +00:00
# Allocate Stack Space
mov %rsp, %rax
sub $frame_size, %rsp
and $~(0x20 - 1), %rsp
mov %rax, frame_RSPSAVE(%rsp)
# Save GPRs
mov %rbx, 8*0+frame_GPRSAVE(%rsp)
mov %r12, 8*1+frame_GPRSAVE(%rsp)
mov %r13, 8*2+frame_GPRSAVE(%rsp)
mov %r14, 8*3+frame_GPRSAVE(%rsp)
mov %r15, 8*4+frame_GPRSAVE(%rsp)
shl $7, NUM_BLKS # convert to bytes
jz .Ldone_hash
add INP, NUM_BLKS # pointer to end of data
mov NUM_BLKS, frame_INPEND(%rsp)
## load initial digest
mov 8*0(CTX1), a
mov 8*1(CTX1), b
mov 8*2(CTX1), c
mov 8*3(CTX1), d
mov 8*4(CTX1), e
mov 8*5(CTX1), f
mov 8*6(CTX1), g
mov 8*7(CTX1), h
# save %rdi (CTX) before it gets clobbered
mov %rdi, frame_CTX(%rsp)
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
.Loop0:
lea kSha512(%rip), TBL
2021-06-26 07:11:12 +00:00
## byte swap first 16 dwords
COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
mov INP, frame_INP(%rsp)
## schedule 64 input dwords, by doing 12 rounds of 4 each
movq $4, frame_SRND(%rsp)
2023-05-02 02:43:59 +00:00
.balign 16
2021-06-26 07:11:12 +00:00
.Loop1:
vpaddq (TBL), Y_0, XFER
vmovdqa XFER, frame_XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddq 1*32(TBL), Y_0, XFER
vmovdqa XFER, frame_XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddq 2*32(TBL), Y_0, XFER
vmovdqa XFER, frame_XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddq 3*32(TBL), Y_0, XFER
vmovdqa XFER, frame_XFER(%rsp)
add $(4*32), TBL
FOUR_ROUNDS_AND_SCHED
subq $1, frame_SRND(%rsp)
jne .Loop1
movq $2, frame_SRND(%rsp)
.Loop2:
vpaddq (TBL), Y_0, XFER
vmovdqa XFER, frame_XFER(%rsp)
DO_4ROUNDS
vpaddq 1*32(TBL), Y_1, XFER
vmovdqa XFER, frame_XFER(%rsp)
add $(2*32), TBL
DO_4ROUNDS
vmovdqa Y_2, Y_0
vmovdqa Y_3, Y_1
subq $1, frame_SRND(%rsp)
jne .Loop2
mov frame_CTX(%rsp), CTX2
addm 8*0(CTX2), a
addm 8*1(CTX2), b
addm 8*2(CTX2), c
addm 8*3(CTX2), d
addm 8*4(CTX2), e
addm 8*5(CTX2), f
addm 8*6(CTX2), g
addm 8*7(CTX2), h
mov frame_INP(%rsp), INP
add $128, INP
cmp frame_INPEND(%rsp), INP
jne .Loop0
.Ldone_hash:
# Restore GPRs
mov 8*0+frame_GPRSAVE(%rsp), %rbx
mov 8*1+frame_GPRSAVE(%rsp), %r12
mov 8*2+frame_GPRSAVE(%rsp), %r13
mov 8*3+frame_GPRSAVE(%rsp), %r14
mov 8*4+frame_GPRSAVE(%rsp), %r15
# Restore Stack Pointer
mov frame_RSPSAVE(%rsp), %rsp
pop %rbp
2021-06-26 07:11:12 +00:00
ret
.endfn sha512_transform_rorx,globl
########################################################################
### Binary Data
.rodata.cst32
# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
PSHUFFLE_BYTE_FLIP_MASK:
.octa 0x08090a0b0c0d0e0f0001020304050607
.octa 0x18191a1b1c1d1e1f1011121314151617
.rodata.cst32
MASK_YMM_LO:
.octa 0x00000000000000000000000000000000
.octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF