cosmopolitan/libc/tinymath/magicu.c

69 lines
3.4 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set noet ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2023 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/tinymath/magicu.h"
#include "libc/assert.h"
/**
* Precomputes magic numbers for unsigned division by constant.
*
* The returned divisor may be passed to __magic_div() to perform
* unsigned integer division way faster than normal division e.g.
*
* assert(77 / 7 == __magicu_div(77, __magicu_get(7)));
*
* @param d is intended divisor, which must not be zero
* @return magic divisor (never zero)
*/
struct magicu __magicu_get(uint32_t d) {
// From Hacker's Delight by Henry S. Warren Jr., 9780321842688
// Figure 103. Simplified algorithm for magic number unsigned
int a, p;
struct magicu magu;
uint32_t p32, q, r, delta;
npassert(d); // Can't divide by zero.
p32 = 0; // Avoid compiler warning.
a = 0; // Initialize "add" indicator.
p = 31; // Initialize p.
q = 0x7FFFFFFF / d; // Initialize q = (2**p - 1)/d.
r = 0x7FFFFFFF - q * d; // Init. r = rem(2**p - 1, d).
do {
p = p + 1;
if (p == 32) {
p32 = 1; // Set p32 = 2**(p-32).
} else {
p32 = 2 * p32;
}
if (r + 1 >= d - r) {
if (q >= 0x7FFFFFFF) a = 1;
q = 2 * q + 1; // Update q.
r = 2 * r + 1 - d; // Update r.
} else {
if (q >= 0x80000000) a = 1;
q = 2 * q;
r = 2 * r + 1;
}
delta = d - 1 - r;
} while (p < 64 && p32 < delta);
magu.M = q + 1; // Magic number and
magu.s = p - 32; // Shift amount to return
if (a) magu.s |= 64; // Sets "add" indicator
npassert(magu.M || magu.s); // Never returns zero.
return magu;
}