cosmopolitan/libc/tinymath/expl.c

168 lines
6.4 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/math.h"
#include "libc/tinymath/internal.h"
asm(".ident\t\"\\n\\n\
OpenBSD libm (MIT License)\\n\
Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>\"");
asm(".ident\t\"\\n\\n\
Musl libc (MIT License)\\n\
Copyright 2005-2014 Rich Felker, et. al.\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Exponential function, long double precision
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* A Pade' form of degree 5/6 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-10000 50000 1.12e-19 2.81e-20
*
*
* Error amplification in the exponential function can be
* a serious matter. The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < MINLOG 0.0
* exp overflow x > MAXLOG MAXNUM
*
*/
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double expl(long double x)
{
return exp(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
static const long double P[3] = {
1.2617719307481059087798E-4L,
3.0299440770744196129956E-2L,
9.9999999999999999991025E-1L,
};
static const long double Q[4] = {
3.0019850513866445504159E-6L,
2.5244834034968410419224E-3L,
2.2726554820815502876593E-1L,
2.0000000000000000000897E0L,
};
static const long double
LN2HI = 6.9314575195312500000000E-1L,
LN2LO = 1.4286068203094172321215E-6L,
LOG2E = 1.4426950408889634073599E0L;
long double expl(long double x)
{
long double px, xx;
int k;
if (isnan(x))
return x;
if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
return x * 0x1p16383L;
if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
return -0x1p-16445L/x;
/* Express e**x = e**f 2**k
* = e**(f + k ln(2))
*/
px = floorl(LOG2E * x + 0.5);
k = px;
x -= px * LN2HI;
x -= px * LN2LO;
/* rational approximation of the fractional part:
* e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
*/
xx = x * x;
px = x * __polevll(xx, P, 2);
x = px/(__polevll(xx, Q, 3) - px);
x = 1.0 + 2.0 * x;
return scalbnl(x, k);
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
// TODO: broken implementation to make things compile
long double expl(long double x)
{
return exp(x);
}
#else
#error "architecture unsupported"
#endif