cosmopolitan/libc/tinymath/powl.c

631 lines
16 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
2020-06-15 14:18:57 +00:00
Copyright 2021 Justine Alexandra Roberts Tunney
2020-06-15 14:18:57 +00:00
2020-12-28 01:18:44 +00:00
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
2020-06-15 14:18:57 +00:00
2020-12-28 01:18:44 +00:00
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
2020-06-15 14:18:57 +00:00
*/
#include "libc/errno.h"
#include "libc/math.h"
#include "libc/tinymath/internal.h"
#ifdef __x86_64__
2020-06-15 14:18:57 +00:00
/**
* Returns 𝑥^𝑦.
2022-07-12 22:49:11 +00:00
* @note should take ~56ns
*/
long double powl(long double x, long double y) {
long double t, u;
if (!isunordered(x, y)) {
if (!isinf(y)) {
if (!isinf(x)) {
if (x) {
if (y) {
if (x < 0 && y != truncl(y)) {
#ifndef __NO_MATH_ERRNO__
errno = EDOM;
#endif
return NAN;
}
asm("fyl2x" : "=t"(u) : "0"(fabsl(x)), "u"(y) : "st(1)");
asm("fprem" : "=t"(t) : "0"(u), "u"(1.L));
asm("f2xm1" : "=t"(t) : "0"(t));
asm("fscale" : "=t"(t) : "0"(t + 1), "u"(u));
if (signbit(x)) {
if (y != truncl(y)) return -NAN;
if ((int64_t)y & 1) t = -t;
}
return t;
} else {
return 1;
2021-03-04 14:13:32 +00:00
}
} else if (y > 0) {
if (signbit(x) && y == truncl(y) && ((int64_t)y & 1)) {
return -0.;
} else {
return 0;
}
} else if (!y) {
return 1;
} else {
#ifndef __NO_MATH_ERRNO__
errno = ERANGE;
#endif
if (y == truncl(y) && ((int64_t)y & 1)) {
return copysignl(INFINITY, x);
} else {
return INFINITY;
}
}
} else if (signbit(x)) {
if (!y) return 1;
x = y < 0 ? 0 : INFINITY;
if (y == truncl(y) && ((int64_t)y & 1)) x = -x;
return x;
} else if (y < 0) {
return 0;
} else if (y > 0) {
return INFINITY;
} else {
return 1;
}
} else {
x = fabsl(x);
if (x < 1) return signbit(y) ? INFINITY : 0;
if (x > 1) return signbit(y) ? 0 : INFINITY;
return 1;
}
} else if (!y || x == 1) {
return 1;
} else {
return NAN;
}
}
2023-05-02 20:38:16 +00:00
#else
asm(".ident\t\"\\n\\n\
OpenBSD libm (MIT License)\\n\
Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>\"");
asm(".ident\t\"\\n\\n\
Musl libc (MIT License)\\n\
Copyright 2005-2014 Rich Felker, et. al.\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* powl.c
*
* Power function, long double precision
*
*
* SYNOPSIS:
*
* long double x, y, z, powl();
*
* z = powl( x, y );
*
*
* DESCRIPTION:
*
* Computes x raised to the yth power. Analytically,
*
* x**y = exp( y log(x) ).
*
* Following Cody and Waite, this program uses a lookup table
* of 2**-i/32 and pseudo extended precision arithmetic to
* obtain several extra bits of accuracy in both the logarithm
* and the exponential.
*
*
* ACCURACY:
*
* The relative error of pow(x,y) can be estimated
* by y dl ln(2), where dl is the absolute error of
* the internally computed base 2 logarithm. At the ends
* of the approximation interval the logarithm equal 1/32
* and its relative error is about 1 lsb = 1.1e-19. Hence
* the predicted relative error in the result is 2.3e-21 y .
*
* Relative error:
* arithmetic domain # trials peak rms
*
* IEEE +-1000 40000 2.8e-18 3.7e-19
* .001 < x < 1000, with log(x) uniformly distributed.
* -1000 < y < 1000, y uniformly distributed.
*
* IEEE 0,8700 60000 6.5e-18 1.0e-18
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* pow overflow x**y > MAXNUM INFINITY
* pow underflow x**y < 1/MAXNUM 0.0
* pow domain x<0 and y noninteger 0.0
*
*/
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double powl(long double x, long double y)
{
return pow(x, y);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
/* Table size */
#define NXT 32
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
*/
static const long double P[] = {
8.3319510773868690346226E-4L,
4.9000050881978028599627E-1L,
1.7500123722550302671919E0L,
1.4000100839971580279335E0L,
};
static const long double Q[] = {
/* 1.0000000000000000000000E0L,*/
5.2500282295834889175431E0L,
8.4000598057587009834666E0L,
4.2000302519914740834728E0L,
};
/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
* If i is even, A[i] + B[i/2] gives additional accuracy.
*/
static const long double A[33] = {
1.0000000000000000000000E0L,
9.7857206208770013448287E-1L,
9.5760328069857364691013E-1L,
9.3708381705514995065011E-1L,
9.1700404320467123175367E-1L,
8.9735453750155359320742E-1L,
8.7812608018664974155474E-1L,
8.5930964906123895780165E-1L,
8.4089641525371454301892E-1L,
8.2287773907698242225554E-1L,
8.0524516597462715409607E-1L,
7.8799042255394324325455E-1L,
7.7110541270397041179298E-1L,
7.5458221379671136985669E-1L,
7.3841307296974965571198E-1L,
7.2259040348852331001267E-1L,
7.0710678118654752438189E-1L,
6.9195494098191597746178E-1L,
6.7712777346844636413344E-1L,
6.6261832157987064729696E-1L,
6.4841977732550483296079E-1L,
6.3452547859586661129850E-1L,
6.2092890603674202431705E-1L,
6.0762367999023443907803E-1L,
5.9460355750136053334378E-1L,
5.8186242938878875689693E-1L,
5.6939431737834582684856E-1L,
5.5719337129794626814472E-1L,
5.4525386633262882960438E-1L,
5.3357020033841180906486E-1L,
5.2213689121370692017331E-1L,
5.1094857432705833910408E-1L,
5.0000000000000000000000E-1L,
};
static const long double B[17] = {
0.0000000000000000000000E0L,
2.6176170809902549338711E-20L,
-1.0126791927256478897086E-20L,
1.3438228172316276937655E-21L,
1.2207982955417546912101E-20L,
-6.3084814358060867200133E-21L,
1.3164426894366316434230E-20L,
-1.8527916071632873716786E-20L,
1.8950325588932570796551E-20L,
1.5564775779538780478155E-20L,
6.0859793637556860974380E-21L,
-2.0208749253662532228949E-20L,
1.4966292219224761844552E-20L,
3.3540909728056476875639E-21L,
-8.6987564101742849540743E-22L,
-1.2327176863327626135542E-20L,
0.0000000000000000000000E0L,
};
/* 2^x = 1 + x P(x),
* on the interval -1/32 <= x <= 0
*/
static const long double R[] = {
1.5089970579127659901157E-5L,
1.5402715328927013076125E-4L,
1.3333556028915671091390E-3L,
9.6181291046036762031786E-3L,
5.5504108664798463044015E-2L,
2.4022650695910062854352E-1L,
6.9314718055994530931447E-1L,
};
#define MEXP (NXT*16384.0L)
/* The following if denormal numbers are supported, else -MEXP: */
#define MNEXP (-NXT*(16384.0L+64.0L))
/* log2(e) - 1 */
#define LOG2EA 0.44269504088896340735992L
#define F W
#define Fa Wa
#define Fb Wb
#define G W
#define Ga Wa
#define Gb u
#define H W
#define Ha Wb
#define Hb Wb
static const long double MAXLOGL = 1.1356523406294143949492E4L;
static const long double MINLOGL = -1.13994985314888605586758E4L;
static const long double LOGE2L = 6.9314718055994530941723E-1L;
static const long double huge = 0x1p10000L;
/* XXX Prevent gcc from erroneously constant folding this. */
static const volatile long double twom10000 = 0x1p-10000L;
static long double reducl(long double);
static long double powil(long double, int);
long double powl(long double x, long double y)
{
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
int i, nflg, iyflg, yoddint;
long e;
volatile long double z=0;
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
/* make sure no invalid exception is raised by nan comparision */
if (isnan(x)) {
if (!isnan(y) && y == 0.0)
return 1.0;
return x;
}
if (isnan(y)) {
if (x == 1.0)
return 1.0;
return y;
}
if (x == 1.0)
return 1.0; /* 1**y = 1, even if y is nan */
if (x == -1.0 && !isfinite(y))
return 1.0; /* -1**inf = 1 */
if (y == 0.0)
return 1.0; /* x**0 = 1, even if x is nan */
if (y == 1.0)
return x;
if (y >= LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return INFINITY;
if (x != 0.0)
return 0.0;
}
if (y <= -LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return 0.0;
if (x != 0.0 || y == -INFINITY)
return INFINITY;
}
if (x >= LDBL_MAX) {
if (y > 0.0)
return INFINITY;
return 0.0;
}
w = floorl(y);
/* Set iyflg to 1 if y is an integer. */
iyflg = 0;
if (w == y)
iyflg = 1;
/* Test for odd integer y. */
yoddint = 0;
if (iyflg) {
ya = fabsl(y);
ya = floorl(0.5 * ya);
yb = 0.5 * fabsl(w);
if( ya != yb )
yoddint = 1;
}
if (x <= -LDBL_MAX) {
if (y > 0.0) {
if (yoddint)
return -INFINITY;
return INFINITY;
}
if (y < 0.0) {
if (yoddint)
return -0.0;
return 0.0;
}
}
nflg = 0; /* (x<0)**(odd int) */
if (x <= 0.0) {
if (x == 0.0) {
if (y < 0.0) {
if (signbit(x) && yoddint)
/* (-0.0)**(-odd int) = -inf, divbyzero */
return -1.0/0.0;
/* (+-0.0)**(negative) = inf, divbyzero */
return 1.0/0.0;
}
if (signbit(x) && yoddint)
return -0.0;
return 0.0;
}
if (iyflg == 0)
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
/* (x<0)**(integer) */
if (yoddint)
nflg = 1; /* negate result */
x = -x;
}
/* (+integer)**(integer) */
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y);
return nflg ? -w : w;
}
/* separate significand from exponent */
x = frexpl(x, &i);
e = i;
/* find significand in antilog table A[] */
i = 1;
if (x <= A[17])
i = 17;
if (x <= A[i+8])
i += 8;
if (x <= A[i+4])
i += 4;
if (x <= A[i+2])
i += 2;
if (x >= A[1])
i = -1;
i += 1;
/* Find (x - A[i])/A[i]
* in order to compute log(x/A[i]):
*
* log(x) = log( a x/a ) = log(a) + log(x/a)
*
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
*/
x -= A[i];
x -= B[i/2];
x /= A[i];
/* rational approximation for log(1+v):
*
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
*/
z = x*x;
w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
w = w - 0.5*z;
/* Convert to base 2 logarithm:
* multiply by log2(e) = 1 + LOG2EA
*/
z = LOG2EA * w;
z += w;
z += LOG2EA * x;
z += x;
/* Compute exponent term of the base 2 logarithm. */
w = -i;
w /= NXT;
w += e;
/* Now base 2 log of x is w + z. */
/* Multiply base 2 log by y, in extended precision. */
/* separate y into large part ya
* and small part yb less than 1/NXT
*/
ya = reducl(y);
yb = y - ya;
/* (w+z)(ya+yb)
* = w*ya + w*yb + z*y
*/
F = z * y + w * yb;
Fa = reducl(F);
Fb = F - Fa;
G = Fa + w * ya;
Ga = reducl(G);
Gb = G - Ga;
H = Fb + Gb;
Ha = reducl(H);
w = (Ga + Ha) * NXT;
/* Test the power of 2 for overflow */
if (w > MEXP)
return huge * huge; /* overflow */
if (w < MNEXP)
return twom10000 * twom10000; /* underflow */
e = w;
Hb = H - Ha;
if (Hb > 0.0) {
e += 1;
Hb -= 1.0/NXT; /*0.0625L;*/
}
/* Now the product y * log2(x) = Hb + e/NXT.
*
* Compute base 2 exponential of Hb,
* where -0.0625 <= Hb <= 0.
*/
z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
* Find lookup table entry for the fractional power of 2.
*/
if (e < 0)
i = 0;
else
i = 1;
i = e/NXT + i;
e = NXT*i - e;
w = A[e];
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
z = z + w;
z = scalbnl(z, i); /* multiply by integer power of 2 */
if (nflg)
z = -z;
return z;
}
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
static long double reducl(long double x)
{
long double t;
t = x * NXT;
t = floorl(t);
t = t / NXT;
return t;
}
/*
* Positive real raised to integer power, long double precision
*
*
* SYNOPSIS:
*
* long double x, y, powil();
* int n;
*
* y = powil( x, n );
*
*
* DESCRIPTION:
*
* Returns argument x>0 raised to the nth power.
* The routine efficiently decomposes n as a sum of powers of
* two. The desired power is a product of two-to-the-kth
* powers of x. Thus to compute the 32767 power of x requires
* 28 multiplications instead of 32767 multiplications.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic x domain n domain # trials peak rms
* IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
* IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
* IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
*
* Returns MAXNUM on overflow, zero on underflow.
*/
static long double powil(long double x, int nn)
{
long double ww, y;
long double s;
int n, e, sign, lx;
if (nn == 0)
return 1.0;
if (nn < 0) {
sign = -1;
n = -nn;
} else {
sign = 1;
n = nn;
}
/* Overflow detection */
/* Calculate approximate logarithm of answer */
s = x;
s = frexpl( s, &lx);
e = (lx - 1)*n;
if ((e == 0) || (e > 64) || (e < -64)) {
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
} else {
s = LOGE2L * e;
}
if (s > MAXLOGL)
return huge * huge; /* overflow */
if (s < MINLOGL)
return twom10000 * twom10000; /* underflow */
/* Handle tiny denormal answer, but with less accuracy
* since roundoff error in 1.0/x will be amplified.
* The precise demarcation should be the gradual underflow threshold.
*/
if (s < -MAXLOGL+2.0) {
x = 1.0/x;
sign = -sign;
}
/* First bit of the power */
if (n & 1)
y = x;
else
y = 1.0;
ww = x;
n >>= 1;
while (n) {
ww = ww * ww; /* arg to the 2-to-the-kth power */
if (n & 1) /* if that bit is set, then include in product */
y *= ww;
n >>= 1;
}
if (sign < 0)
y = 1.0/y;
return y;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
// TODO: broken implementation to make things compile
long double powl(long double x, long double y)
{
return pow(x, y);
}
#else
#error "architecture unsupported"
#endif
#endif /* __x86_64__ */