cosmopolitan/libc/calls/sigaction.c

519 lines
20 KiB
C
Raw Normal View History

2020-06-15 14:18:57 +00:00
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
2020-06-15 14:18:57 +00:00
Copyright 2020 Justine Alexandra Roberts Tunney
2020-12-28 01:18:44 +00:00
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
2020-06-15 14:18:57 +00:00
2020-12-28 01:18:44 +00:00
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
2020-06-15 14:18:57 +00:00
*/
2023-04-27 03:45:01 +00:00
#include "libc/calls/struct/sigaction.h"
#include "ape/sections.internal.h"
#include "libc/assert.h"
2020-06-15 14:18:57 +00:00
#include "libc/calls/calls.h"
#include "libc/calls/internal.h"
#include "libc/calls/sig.internal.h"
2022-05-23 22:06:11 +00:00
#include "libc/calls/state.internal.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/calls/struct/sigaction.internal.h"
#include "libc/calls/struct/siginfo.internal.h"
2022-05-23 22:06:11 +00:00
#include "libc/calls/syscall-sysv.internal.h"
#include "libc/calls/syscall_support-sysv.internal.h"
2020-06-15 14:18:57 +00:00
#include "libc/calls/ucontext.h"
#include "libc/dce.h"
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
#include "libc/intrin/asan.internal.h"
#include "libc/intrin/describeflags.internal.h"
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
#include "libc/intrin/dll.h"
#include "libc/intrin/strace.internal.h"
2020-06-15 14:18:57 +00:00
#include "libc/limits.h"
#include "libc/log/backtrace.internal.h"
#include "libc/log/log.h"
#include "libc/macros.internal.h"
2020-06-15 14:18:57 +00:00
#include "libc/mem/mem.h"
#include "libc/runtime/runtime.h"
2023-10-10 03:18:48 +00:00
#include "libc/runtime/syslib.internal.h"
2020-06-15 14:18:57 +00:00
#include "libc/str/str.h"
#include "libc/sysv/consts/limits.h"
2020-06-15 14:18:57 +00:00
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/errfuns.h"
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
#include "libc/thread/posixthread.internal.h"
#include "libc/thread/thread.h"
2023-09-12 18:38:34 +00:00
#include "libc/thread/tls.h"
2020-06-15 14:18:57 +00:00
Make major improvements to redbean and libraries The most exciting improvement is dynamic pages will soon be able to use the executable itself as an object store. it required a heroic technique for overcoming ETXTBSY restrictions which lets us open the executable in read/write mode, which means (1) wa can restore the APE header, and (2) we can potentially containerize redbean extension code so that modules you download for your redbean online will only impact your redbean. Here's a list of breaking changes to redbean: - Remove /tool/net/ prefix from magic ZIP paths - GetHeader() now returns NIL if header is absent Here's a list of fixes and enhancements to redbean: - Support 64-bit ZIP archives - Record User-Agent header in logs - Add twelve error handlers to accept() - Display octal st_mode on listing page - Show ZIP file comments on listing page - Restore APE MZ header on redbean startup - Track request count on redbean index page - Report server uptime on redbean index page - Don't bind server socket using SO_REUSEPORT - Fix #151 where Lua LoadAsset() could free twice - Report rusage accounting when workers exit w/ -vv - Use ZIP iattr field as text/plain vs. binary hint - Add ParseUrl() API for parsing things like a.href - Add ParseParams() API for parsing HTTP POST bodies - Add IsAcceptablePath() API for checking dots, etc. - Add IsValidHttpToken() API for validating sane ASCII - Add IsAcceptableHostPort() for validating HOST[:PORT] - Send 400 response to HTTP/1.1 requests without a Host - Send 403 response if ZIP or file isn't other readable - Add virtual hosting that tries prepending Host to path - Route requests based on Host in Request-URI if present - Host routing will attempt to remove or add the www. prefix - Sign-extend UNIX timestamps and don't adjust FileTime zone Here's some of the improvements made to Cosmopolitan Libc: - Fix ape.S indentation - Improve consts.sh magnums - Write pretty good URL parser - Improve rusage accounting apis - Bring mremap() closer to working - Added ZIP APIs which will change - Check for overflow in reallocarray() - Remove overly fancy linkage in strerror() - Fix GDB attach on crash w/ OpenBSD msyscall() - Make sigqueue() portable to most UNIX distros - Make integer serialization macros more elegant - Bring back 34x tprecode8to16() performance boost - Make malloc() more resilient to absurdly large sizes
2021-04-18 18:34:59 +00:00
#define SA_RESTORER 0x04000000
2021-02-05 17:44:54 +00:00
static void sigaction_cosmo2native(union metasigaction *sa) {
void *handler;
uint64_t flags;
void *restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
uint32_t masklo;
uint32_t maskhi;
if (!sa)
return;
flags = sa->cosmo.sa_flags;
handler = sa->cosmo.sa_handler;
restorer = sa->cosmo.sa_restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->cosmo.sa_mask;
maskhi = sa->cosmo.sa_mask >> 32;
if (IsLinux()) {
sa->linux.sa_flags = flags;
sa->linux.sa_handler = handler;
sa->linux.sa_restorer = restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->linux.sa_mask[0] = masklo;
sa->linux.sa_mask[1] = maskhi;
2023-10-10 03:18:48 +00:00
} else if (IsXnuSilicon()) {
sa->silicon.sa_flags = flags;
sa->silicon.sa_handler = handler;
sa->silicon.sa_mask[0] = masklo;
} else if (IsXnu()) {
sa->xnu_in.sa_flags = flags;
sa->xnu_in.sa_handler = handler;
sa->xnu_in.sa_restorer = restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->xnu_in.sa_mask[0] = masklo;
} else if (IsFreebsd()) {
sa->freebsd.sa_flags = flags;
sa->freebsd.sa_handler = handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->freebsd.sa_mask[0] = masklo;
sa->freebsd.sa_mask[1] = maskhi;
sa->freebsd.sa_mask[2] = 0;
sa->freebsd.sa_mask[3] = 0;
} else if (IsOpenbsd()) {
sa->openbsd.sa_flags = flags;
sa->openbsd.sa_handler = handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->openbsd.sa_mask[0] = masklo;
} else if (IsNetbsd()) {
sa->netbsd.sa_flags = flags;
sa->netbsd.sa_handler = handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->netbsd.sa_mask[0] = masklo;
sa->netbsd.sa_mask[1] = maskhi;
sa->netbsd.sa_mask[2] = 0;
sa->netbsd.sa_mask[3] = 0;
2020-06-15 14:18:57 +00:00
}
}
2021-02-05 17:44:54 +00:00
static void sigaction_native2cosmo(union metasigaction *sa) {
void *handler;
uint64_t flags;
void *restorer = 0;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
uint32_t masklo;
uint32_t maskhi = 0;
if (!sa)
return;
if (IsLinux()) {
flags = sa->linux.sa_flags;
handler = sa->linux.sa_handler;
restorer = sa->linux.sa_restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->linux.sa_mask[0];
maskhi = sa->linux.sa_mask[1];
2023-10-10 03:18:48 +00:00
} else if (IsXnu()) {
flags = sa->silicon.sa_flags;
handler = sa->silicon.sa_handler;
masklo = sa->silicon.sa_mask[0];
} else if (IsXnu()) {
flags = sa->xnu_out.sa_flags;
handler = sa->xnu_out.sa_handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->xnu_out.sa_mask[0];
} else if (IsFreebsd()) {
flags = sa->freebsd.sa_flags;
handler = sa->freebsd.sa_handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->freebsd.sa_mask[0];
maskhi = sa->freebsd.sa_mask[1];
} else if (IsOpenbsd()) {
flags = sa->openbsd.sa_flags;
handler = sa->openbsd.sa_handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->openbsd.sa_mask[0];
} else if (IsNetbsd()) {
flags = sa->netbsd.sa_flags;
handler = sa->netbsd.sa_handler;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
masklo = sa->netbsd.sa_mask[0];
maskhi = sa->netbsd.sa_mask[1];
} else {
return;
2020-06-15 14:18:57 +00:00
}
sa->cosmo.sa_flags = flags;
sa->cosmo.sa_handler = handler;
sa->cosmo.sa_restorer = restorer;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
sa->cosmo.sa_mask = masklo | (uint64_t)maskhi << 32;
2020-06-15 14:18:57 +00:00
}
static int __sigaction(int sig, const struct sigaction *act,
struct sigaction *oldact) {
_Static_assert(
(sizeof(struct sigaction) >= sizeof(struct sigaction_linux) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_xnu_in) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_xnu_out) &&
2023-10-10 03:18:48 +00:00
sizeof(struct sigaction) >= sizeof(struct sigaction_silicon) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_freebsd) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_openbsd) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_netbsd)),
"sigaction cosmo abi needs tuning");
2021-02-05 17:44:54 +00:00
int64_t arg4, arg5;
2020-06-15 14:18:57 +00:00
int rc, rva, oldrva;
sigaction_f sigenter;
2020-06-15 14:18:57 +00:00
struct sigaction *ap, copy;
if (IsMetal())
return enosys(); /* TODO: Signals on Metal */
if (!(1 <= sig && sig <= _NSIG))
return einval();
if (sig == SIGKILL || sig == SIGSTOP)
return einval();
Improve ZIP filesystem and change its prefix The ZIP filesystem has a breaking change. You now need to use /zip/ to open() / opendir() / etc. assets within the ZIP structure of your APE binary, instead of the previous convention of using zip: or zip! URIs. This is needed because Python likes to use absolute paths, and having ZIP paths encoded like URIs simply broke too many things. Many more system calls have been updated to be able to operate on ZIP files and file descriptors. In particular fcntl() and ioctl() since Python would do things like ask if a ZIP file is a terminal and get confused when the old implementation mistakenly said yes, because the fastest way to guarantee native file descriptors is to dup(2). This change also improves the async signal safety of zipos and ensures it doesn't maintain any open file descriptors beyond that which the user has opened. This change makes a lot of progress towards adding magic numbers that are specific to platforms other than Linux. The philosophy here is that, if you use an operating system like FreeBSD, then you should be able to take advantage of FreeBSD exclusive features, even if we don't polyfill them on other platforms. For example, you can now open() a file with the O_VERIFY flag. If your program runs on other platforms, then Cosmo will automatically set O_VERIFY to zero. This lets you safely use it without the need for #ifdef or ifstatements which detract from readability. One of the blindspots of the ASAN memory hardening we use to offer Rust like assurances has always been that memory passed to the kernel via system calls (e.g. writev) can't be checked automatically since the kernel wasn't built with MODE=asan. This change makes more progress ensuring that each system call will verify the soundness of memory before it's passed to the kernel. The code for doing these checks is fast, particularly for buffers, where it can verify 64 bytes a cycle. - Correct O_LOOP definition on NT - Introduce program_executable_name - Add ASAN guards to more system calls - Improve termios compatibility with BSDs - Fix bug in Windows auxiliary value encoding - Add BSD and XNU specific errnos and open flags - Add check to ensure build doesn't talk to internet
2021-08-22 08:04:18 +00:00
if (IsAsan() && ((act && !__asan_is_valid(act, sizeof(*act))) ||
(oldact && !__asan_is_valid(oldact, sizeof(*oldact))))) {
return efault();
}
2020-06-15 14:18:57 +00:00
if (!act) {
rva = (int32_t)(intptr_t)SIG_DFL;
} else if ((intptr_t)act->sa_handler < kSigactionMinRva) {
rva = (int)(intptr_t)act->sa_handler;
} else if ((intptr_t)act->sa_handler >=
(intptr_t)&__executable_start + kSigactionMinRva &&
(intptr_t)act->sa_handler <
(intptr_t)&__executable_start + INT_MAX) {
rva = (int)((uintptr_t)act->sa_handler - (uintptr_t)&__executable_start);
2020-06-15 14:18:57 +00:00
} else {
return efault();
}
if (__vforked && rva != (intptr_t)SIG_DFL && rva != (intptr_t)SIG_IGN) {
return einval();
}
2020-06-15 14:18:57 +00:00
if (!IsWindows()) {
2021-02-05 17:44:54 +00:00
if (act) {
memcpy(&copy, act, sizeof(copy));
ap = &copy;
if (IsLinux()) {
if (!(ap->sa_flags & SA_RESTORER)) {
ap->sa_flags |= SA_RESTORER;
ap->sa_restorer = &__restore_rt;
}
if (__iswsl1()) {
sigenter = __sigenter_wsl;
} else {
sigenter = ap->sa_sigaction;
}
} else if (IsXnu()) {
ap->sa_restorer = (void *)&__sigenter_xnu;
sigenter = __sigenter_xnu;
// mitigate Rosetta signal handling strangeness
// https://github.com/jart/cosmopolitan/issues/455
ap->sa_flags |= SA_SIGINFO;
2023-10-10 03:18:48 +00:00
} else if (IsXnu()) {
sigenter = __sigenter_xnu;
ap->sa_flags |= SA_SIGINFO; // couldn't hurt
2021-02-05 17:44:54 +00:00
} else if (IsNetbsd()) {
sigenter = __sigenter_netbsd;
} else if (IsFreebsd()) {
sigenter = __sigenter_freebsd;
} else if (IsOpenbsd()) {
sigenter = __sigenter_openbsd;
} else {
return enosys();
2021-02-05 17:44:54 +00:00
}
if (rva < kSigactionMinRva) {
ap->sa_sigaction = (void *)(intptr_t)rva;
} else {
ap->sa_sigaction = sigenter;
}
2021-02-05 17:44:54 +00:00
sigaction_cosmo2native((union metasigaction *)ap);
} else {
ap = NULL;
}
if (IsXnu()) {
arg4 = (int64_t)(intptr_t)oldact; /* from go code */
arg5 = 0;
} else if (IsNetbsd()) {
/* int __sigaction_sigtramp(int signum,
const struct sigaction *nsa,
struct sigaction *osa,
const void *tramp,
int vers); */
2021-02-05 17:44:54 +00:00
if (ap) {
arg4 = (int64_t)(intptr_t)&__restore_rt_netbsd;
arg5 = 2; /* netbsd/lib/libc/arch/x86_64/sys/__sigtramp2.S */
} else {
2021-02-05 17:44:54 +00:00
arg4 = 0;
arg5 = 0; /* netbsd/lib/libc/arch/x86_64/sys/__sigtramp2.S */
2020-06-15 14:18:57 +00:00
}
} else {
2021-02-05 17:44:54 +00:00
arg4 = 8; /* or linux whines */
arg5 = 0;
}
2023-10-10 03:18:48 +00:00
if (!IsXnuSilicon()) {
rc = sys_sigaction(sig, ap, oldact, arg4, arg5);
} else {
rc = _sysret(__syslib->__sigaction(sig, ap, oldact));
}
if (rc != -1) {
2021-02-05 17:44:54 +00:00
sigaction_native2cosmo((union metasigaction *)oldact);
if (oldact && //
oldact->sa_handler != SIG_DFL && //
oldact->sa_handler != SIG_IGN && //
(IsFreebsd() || IsOpenbsd() || IsNetbsd() || IsXnu())) {
oldact->sa_handler =
(sighandler_t)((uintptr_t)__executable_start + __sighandrvas[sig]);
}
2020-06-15 14:18:57 +00:00
}
} else {
if (oldact) {
Make numerous improvements - Python static hello world now 1.8mb - Python static fully loaded now 10mb - Python HTTPS client now uses MbedTLS - Python REPL now completes import stmts - Increase stack size for Python for now - Begin synthesizing posixpath and ntpath - Restore Python \N{UNICODE NAME} support - Restore Python NFKD symbol normalization - Add optimized code path for Intel SHA-NI - Get more Python unit tests passing faster - Get Python help() pagination working on NT - Python hashlib now supports MbedTLS PBKDF2 - Make memcpy/memmove/memcmp/bcmp/etc. faster - Add Mersenne Twister and Vigna to LIBC_RAND - Provide privileged __printf() for error code - Fix zipos opendir() so that it reports ENOTDIR - Add basic chmod() implementation for Windows NT - Add Cosmo's best functions to Python cosmo module - Pin function trace indent depth to that of caller - Show memory diagram on invalid access in MODE=dbg - Differentiate stack overflow on crash in MODE=dbg - Add stb_truetype and tools for analyzing font files - Upgrade to UNICODE 13 and reduce its binary footprint - COMPILE.COM now logs resource usage of build commands - Start implementing basic poll() support on bare metal - Set getauxval(AT_EXECFN) to GetModuleFileName() on NT - Add descriptions to strerror() in non-TINY build modes - Add COUNTBRANCH() macro to help with micro-optimizations - Make error / backtrace / asan / memory code more unbreakable - Add fast perfect C implementation of μ-Law and a-Law audio codecs - Make strtol() functions consistent with other libc implementations - Improve Linenoise implementation (see also github.com/jart/bestline) - COMPILE.COM now suppresses stdout/stderr of successful build commands
2021-09-28 05:58:51 +00:00
bzero(oldact, sizeof(*oldact));
oldrva = __sighandrvas[sig];
oldact->sa_mask = __sighandmask[sig];
Make improvements - Every unit test now passes on Apple Silicon. The final piece of this puzzle was porting our POSIX threads cancelation support, since that works differently on ARM64 XNU vs. AMD64. Our semaphore support on Apple Silicon is also superior now compared to AMD64, thanks to the grand central dispatch library which lets *NSYNC locks go faster. - The Cosmopolitan runtime is now more stable, particularly on Windows. To do this, thread local storage is mandatory at all runtime levels, and the innermost packages of the C library is no longer being built using ASAN. TLS is being bootstrapped with a 128-byte TIB during the process startup phase, and then later on the runtime re-allocates it either statically or dynamically to support code using _Thread_local. fork() and execve() now do a better job cooperating with threads. We can now check how much stack memory is left in the process or thread when functions like kprintf() / execve() etc. call alloca(), so that ENOMEM can be raised, reduce a buffer size, or just print a warning. - POSIX signal emulation is now implemented the same way kernels do it with pthread_kill() and raise(). Any thread can interrupt any other thread, regardless of what it's doing. If it's blocked on read/write then the killer thread will cancel its i/o operation so that EINTR can be returned in the mark thread immediately. If it's doing a tight CPU bound operation, then that's also interrupted by the signal delivery. Signal delivery works now by suspending a thread and pushing context data structures onto its stack, and redirecting its execution to a trampoline function, which calls SetThreadContext(GetCurrentThread()) when it's done. - We're now doing a better job managing locks and handles. On NetBSD we now close semaphore file descriptors in forked children. Semaphores on Windows can now be canceled immediately, which means mutexes/condition variables will now go faster. Apple Silicon semaphores can be canceled too. We're now using Apple's pthread_yield() funciton. Apple _nocancel syscalls are now used on XNU when appropriate to ensure pthread_cancel requests aren't lost. The MbedTLS library has been updated to support POSIX thread cancelations. See tool/build/runitd.c for an example of how it can be used for production multi-threaded tls servers. Handles on Windows now leak less often across processes. All i/o operations on Windows are now overlapped, which means file pointers can no longer be inherited across dup() and fork() for the time being. - We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4() which means, for example, that posix_spawn() now goes 3x faster. POSIX spawn is also now more correct. Like Musl, it's now able to report the failure code of execve() via a pipe although our approach favors using shared memory to do that on systems that have a true vfork() function. - We now spawn a thread to deliver SIGALRM to threads when setitimer() is used. This enables the most precise wakeups the OS makes possible. - The Cosmopolitan runtime now uses less memory. On NetBSD for example, it turned out the kernel would actually commit the PT_GNU_STACK size which caused RSS to be 6mb for every process. Now it's down to ~4kb. On Apple Silicon, we reduce the mandatory upstream thread size to the smallest possible size to reduce the memory overhead of Cosmo threads. The examples directory has a program called greenbean which can spawn a web server on Linux with 10,000 worker threads and have the memory usage of the process be ~77mb. The 1024 byte overhead of POSIX-style thread-local storage is now optional; it won't be allocated until the pthread_setspecific/getspecific functions are called. On Windows, the threads that get spawned which are internal to the libc implementation use reserve rather than commit memory, which shaves a few hundred kb. - sigaltstack() is now supported on Windows, however it's currently not able to be used to handle stack overflows, since crash signals are still generated by WIN32. However the crash handler will still switch to the alt stack, which is helpful in environments with tiny threads. - Test binaries are now smaller. Many of the mandatory dependencies of the test runner have been removed. This ensures many programs can do a better job only linking the the thing they're testing. This caused the test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb - long double is no longer used in the implementation details of libc, except in the APIs that define it. The old code that used long double for time (instead of struct timespec) has now been thoroughly removed. - ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing backtraces itself, it'll just print a command you can run on the shell using our new `cosmoaddr2line` program to view the backtrace. - Crash report signal handling now works in a much better way. Instead of terminating the process, it now relies on SA_RESETHAND so that the default SIG_IGN behavior can terminate the process if necessary. - Our pledge() functionality has now been fully ported to AARCH64 Linux.
2023-09-19 03:44:45 +00:00
oldact->sa_flags = __sighandflags[sig];
2023-04-27 03:45:01 +00:00
oldact->sa_sigaction =
(sigaction_f)(oldrva < kSigactionMinRva
? oldrva
: (uintptr_t)&__executable_start + oldrva);
2020-06-15 14:18:57 +00:00
}
Make improvements - Every unit test now passes on Apple Silicon. The final piece of this puzzle was porting our POSIX threads cancelation support, since that works differently on ARM64 XNU vs. AMD64. Our semaphore support on Apple Silicon is also superior now compared to AMD64, thanks to the grand central dispatch library which lets *NSYNC locks go faster. - The Cosmopolitan runtime is now more stable, particularly on Windows. To do this, thread local storage is mandatory at all runtime levels, and the innermost packages of the C library is no longer being built using ASAN. TLS is being bootstrapped with a 128-byte TIB during the process startup phase, and then later on the runtime re-allocates it either statically or dynamically to support code using _Thread_local. fork() and execve() now do a better job cooperating with threads. We can now check how much stack memory is left in the process or thread when functions like kprintf() / execve() etc. call alloca(), so that ENOMEM can be raised, reduce a buffer size, or just print a warning. - POSIX signal emulation is now implemented the same way kernels do it with pthread_kill() and raise(). Any thread can interrupt any other thread, regardless of what it's doing. If it's blocked on read/write then the killer thread will cancel its i/o operation so that EINTR can be returned in the mark thread immediately. If it's doing a tight CPU bound operation, then that's also interrupted by the signal delivery. Signal delivery works now by suspending a thread and pushing context data structures onto its stack, and redirecting its execution to a trampoline function, which calls SetThreadContext(GetCurrentThread()) when it's done. - We're now doing a better job managing locks and handles. On NetBSD we now close semaphore file descriptors in forked children. Semaphores on Windows can now be canceled immediately, which means mutexes/condition variables will now go faster. Apple Silicon semaphores can be canceled too. We're now using Apple's pthread_yield() funciton. Apple _nocancel syscalls are now used on XNU when appropriate to ensure pthread_cancel requests aren't lost. The MbedTLS library has been updated to support POSIX thread cancelations. See tool/build/runitd.c for an example of how it can be used for production multi-threaded tls servers. Handles on Windows now leak less often across processes. All i/o operations on Windows are now overlapped, which means file pointers can no longer be inherited across dup() and fork() for the time being. - We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4() which means, for example, that posix_spawn() now goes 3x faster. POSIX spawn is also now more correct. Like Musl, it's now able to report the failure code of execve() via a pipe although our approach favors using shared memory to do that on systems that have a true vfork() function. - We now spawn a thread to deliver SIGALRM to threads when setitimer() is used. This enables the most precise wakeups the OS makes possible. - The Cosmopolitan runtime now uses less memory. On NetBSD for example, it turned out the kernel would actually commit the PT_GNU_STACK size which caused RSS to be 6mb for every process. Now it's down to ~4kb. On Apple Silicon, we reduce the mandatory upstream thread size to the smallest possible size to reduce the memory overhead of Cosmo threads. The examples directory has a program called greenbean which can spawn a web server on Linux with 10,000 worker threads and have the memory usage of the process be ~77mb. The 1024 byte overhead of POSIX-style thread-local storage is now optional; it won't be allocated until the pthread_setspecific/getspecific functions are called. On Windows, the threads that get spawned which are internal to the libc implementation use reserve rather than commit memory, which shaves a few hundred kb. - sigaltstack() is now supported on Windows, however it's currently not able to be used to handle stack overflows, since crash signals are still generated by WIN32. However the crash handler will still switch to the alt stack, which is helpful in environments with tiny threads. - Test binaries are now smaller. Many of the mandatory dependencies of the test runner have been removed. This ensures many programs can do a better job only linking the the thing they're testing. This caused the test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb - long double is no longer used in the implementation details of libc, except in the APIs that define it. The old code that used long double for time (instead of struct timespec) has now been thoroughly removed. - ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing backtraces itself, it'll just print a command you can run on the shell using our new `cosmoaddr2line` program to view the backtrace. - Crash report signal handling now works in a much better way. Instead of terminating the process, it now relies on SA_RESETHAND so that the default SIG_IGN behavior can terminate the process if necessary. - Our pledge() functionality has now been fully ported to AARCH64 Linux.
2023-09-19 03:44:45 +00:00
rc = 0;
}
if (rc != -1 && !__vforked) {
2020-06-15 14:18:57 +00:00
if (act) {
__sighandrvas[sig] = rva;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
__sighandmask[sig] = act->sa_mask;
__sighandflags[sig] = act->sa_flags;
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
if (IsWindows() && __sig_ignored(sig)) {
__sig_delete(sig);
}
2020-06-15 14:18:57 +00:00
}
}
return rc;
}
/**
* Installs handler for kernel interrupt to thread, e.g.:
*
Make improvements - Every unit test now passes on Apple Silicon. The final piece of this puzzle was porting our POSIX threads cancelation support, since that works differently on ARM64 XNU vs. AMD64. Our semaphore support on Apple Silicon is also superior now compared to AMD64, thanks to the grand central dispatch library which lets *NSYNC locks go faster. - The Cosmopolitan runtime is now more stable, particularly on Windows. To do this, thread local storage is mandatory at all runtime levels, and the innermost packages of the C library is no longer being built using ASAN. TLS is being bootstrapped with a 128-byte TIB during the process startup phase, and then later on the runtime re-allocates it either statically or dynamically to support code using _Thread_local. fork() and execve() now do a better job cooperating with threads. We can now check how much stack memory is left in the process or thread when functions like kprintf() / execve() etc. call alloca(), so that ENOMEM can be raised, reduce a buffer size, or just print a warning. - POSIX signal emulation is now implemented the same way kernels do it with pthread_kill() and raise(). Any thread can interrupt any other thread, regardless of what it's doing. If it's blocked on read/write then the killer thread will cancel its i/o operation so that EINTR can be returned in the mark thread immediately. If it's doing a tight CPU bound operation, then that's also interrupted by the signal delivery. Signal delivery works now by suspending a thread and pushing context data structures onto its stack, and redirecting its execution to a trampoline function, which calls SetThreadContext(GetCurrentThread()) when it's done. - We're now doing a better job managing locks and handles. On NetBSD we now close semaphore file descriptors in forked children. Semaphores on Windows can now be canceled immediately, which means mutexes/condition variables will now go faster. Apple Silicon semaphores can be canceled too. We're now using Apple's pthread_yield() funciton. Apple _nocancel syscalls are now used on XNU when appropriate to ensure pthread_cancel requests aren't lost. The MbedTLS library has been updated to support POSIX thread cancelations. See tool/build/runitd.c for an example of how it can be used for production multi-threaded tls servers. Handles on Windows now leak less often across processes. All i/o operations on Windows are now overlapped, which means file pointers can no longer be inherited across dup() and fork() for the time being. - We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4() which means, for example, that posix_spawn() now goes 3x faster. POSIX spawn is also now more correct. Like Musl, it's now able to report the failure code of execve() via a pipe although our approach favors using shared memory to do that on systems that have a true vfork() function. - We now spawn a thread to deliver SIGALRM to threads when setitimer() is used. This enables the most precise wakeups the OS makes possible. - The Cosmopolitan runtime now uses less memory. On NetBSD for example, it turned out the kernel would actually commit the PT_GNU_STACK size which caused RSS to be 6mb for every process. Now it's down to ~4kb. On Apple Silicon, we reduce the mandatory upstream thread size to the smallest possible size to reduce the memory overhead of Cosmo threads. The examples directory has a program called greenbean which can spawn a web server on Linux with 10,000 worker threads and have the memory usage of the process be ~77mb. The 1024 byte overhead of POSIX-style thread-local storage is now optional; it won't be allocated until the pthread_setspecific/getspecific functions are called. On Windows, the threads that get spawned which are internal to the libc implementation use reserve rather than commit memory, which shaves a few hundred kb. - sigaltstack() is now supported on Windows, however it's currently not able to be used to handle stack overflows, since crash signals are still generated by WIN32. However the crash handler will still switch to the alt stack, which is helpful in environments with tiny threads. - Test binaries are now smaller. Many of the mandatory dependencies of the test runner have been removed. This ensures many programs can do a better job only linking the the thing they're testing. This caused the test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb - long double is no longer used in the implementation details of libc, except in the APIs that define it. The old code that used long double for time (instead of struct timespec) has now been thoroughly removed. - ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing backtraces itself, it'll just print a command you can run on the shell using our new `cosmoaddr2line` program to view the backtrace. - Crash report signal handling now works in a much better way. Instead of terminating the process, it now relies on SA_RESETHAND so that the default SIG_IGN behavior can terminate the process if necessary. - Our pledge() functionality has now been fully ported to AARCH64 Linux.
2023-09-19 03:44:45 +00:00
* void GotCtrlC(int sig, siginfo_t *si, void *arg) {
* ucontext_t *ctx = arg;
* }
* struct sigaction sa = {.sa_sigaction = GotCtrlC,
* .sa_flags = SA_RESETHAND|SA_RESTART|SA_SIGINFO};
* CHECK_NE(-1, sigaction(SIGINT, &sa, NULL));
*
* The following flags are supported across platforms:
*
* - `SA_SIGINFO`: Causes the `siginfo_t` and `ucontext_t` parameters to
* be passed. `void *ctx` actually refers to `struct ucontext *`.
* This not only gives you more information about the signal, but also
* allows your signal handler to change the CPU registers. That's
* useful for recovering from crashes. If you don't use this attribute,
* then signal delivery will go a little faster.
*
* - `SA_RESTART`: Enables BSD signal handling semantics. Normally i/o
* entrypoints check for pending signals to deliver. If one gets
* delivered during an i/o call, the normal behavior is to cancel the
* i/o operation and return -1 with EINTR in errno. If you use the
* `SA_RESTART` flag then that behavior changes, so that any function
* that's been annotated with @restartable will not return `EINTR` and
* will instead resume the i/o operation. This makes coding easier but
* it can be an anti-pattern if not used carefully, since poor usage
* can easily result in latency issues. It also requires one to do
* more work in signal handlers, so special care needs to be given to
* which C library functions are @asyncsignalsafe.
*
* - `SA_RESETHAND`: Causes signal handler to be single-shot. This means
* that, upon entry of delivery to a signal handler, it's reset to the
* `SIG_DFL` handler automatically. You may use the alias `SA_ONESHOT`
* for this flag, which means the same thing.
*
* - `SA_NODEFER`: Disables the reentrancy safety check on your signal
* handler. Normally that's a good thing, since for instance if your
* `SIGSEGV` signal handler happens to segfault, you're going to want
* your process to just crash rather than looping endlessly. But in
* some cases it's desirable to use `SA_NODEFER` instead, such as at
* times when you wish to `longjmp()` out of your signal handler and
* back into your program. This is only safe to do across platforms
* for non-crashing signals such as `SIGCHLD` and `SIGINT`. Crash
* handlers should use Xed instead to recover execution, because on
* Windows a `SIGSEGV` or `SIGTRAP` crash handler might happen on a
* separate stack and/or a separate thread. You may use the alias
* `SA_NOMASK` for this flag, which means the same thing.
*
* - `SA_NOCLDWAIT`: Changes `SIGCHLD` so the zombie is gone and you
* can't call `wait()` anymore; similar but may
* still deliver the SIGCHLD.
*
* - `SA_NOCLDSTOP`: Lets you set `SIGCHLD` handler that's only notified
* on exit/termination and not notified on `SIGSTOP`, `SIGTSTP`,
* `SIGTTIN`, `SIGTTOU`, or `SIGCONT`.
*
* Here's an example of the most professional way to handle signals in
* an i/o event loop. It's generally a best practice to have signal
* handlers do the fewest number of things possible. The trick is to
* have your signals work hand-in-glove with the EINTR errno. This
* obfuscates the need for having to worry about @asyncsignalsafe.
*
* static volatile bool gotctrlc;
*
* void OnCtrlC(int sig) {
* gotctrlc = true;
* }
*
* int main() {
* size_t got;
* ssize_t rc;
* char buf[1];
* struct sigaction oldint;
* struct sigaction saint = {.sa_handler = GotCtrlC};
* if (sigaction(SIGINT, &saint, &oldint) == -1) {
* perror("sigaction");
* exit(1);
* }
* for (;;) {
* rc = read(0, buf, sizeof(buf));
* if (rc == -1) {
* if (errno == EINTR) {
* if (gotctrlc) {
* break;
* }
* } else {
* perror("read");
* exit(2);
* }
* }
* if (!(got = rc)) {
* break;
* }
* for (;;) {
* rc = write(1, buf, got);
* if (rc != -1) {
* assert(rc == 1);
* break;
* } else if (errno != EINTR) {
* perror("write");
* exit(3);
* }
* }
* }
* sigaction(SIGINT, &oldint, 0);
* }
*
* Please note that you can't do the above if you use SA_RESTART. Since
* the purpose of SA_RESTART is to restart i/o operations whose docs say
* that they're @restartable and read() is one such function. Here's
* some even better news: if you don't install any signal handlers at
* all, then your i/o calls will never be interrupted!
*
* Here's an example of the most professional way to recover from
* `SIGSEGV`, `SIGFPE`, and `SIGILL`.
*
* void ContinueOnCrash(void);
*
* void SkipOverFaultingInstruction(struct ucontext *ctx) {
* struct XedDecodedInst xedd;
* xed_decoded_inst_zero_set_mode(&xedd, XED_MACHINE_MODE_LONG_64);
* xed_instruction_length_decode(&xedd, (void *)ctx->uc_mcontext.rip, 15);
* ctx->uc_mcontext.rip += xedd.length;
* }
*
* void OnCrash(int sig, struct siginfo *si, void *vctx) {
* struct ucontext *ctx = vctx;
* SkipOverFaultingInstruction(ctx);
* ContinueOnCrash(); // reinstall here in case *rip faults
* }
*
* void ContinueOnCrash(void) {
* struct sigaction sa = {.sa_handler = OnSigSegv,
* .sa_flags = SA_SIGINFO | SA_RESETHAND};
* sigaction(SIGSEGV, &sa, 0);
* sigaction(SIGFPE, &sa, 0);
* sigaction(SIGILL, &sa, 0);
* }
*
* int main() {
* ContinueOnCrash();
* // ...
* }
*
* You may also edit any other CPU registers during the handler. For
* example, you can use the above technique so that division by zero
* becomes defined to a specific value of your choosing!
*
* Please note that Xed isn't needed to recover from `SIGTRAP` which can
* be raised at any time by embedding `DebugBreak()` or `asm("int3")` in
* your program code. Your signal handler will automatically skip over
* the interrupt instruction, assuming your signal handler returns.
*
* The important signals supported across all platforms are:
*
* - `SIGINT`: When you press Ctrl-C this signal gets broadcasted to
* your process session group. This is the normal way to terminate
* console applications.
*
* - `SIGQUIT`: When you press CTRL-\ this signal gets broadcasted to
* your process session group. This is the irregular way to kill an
* application in cases where maybe your `SIGINT` handler is broken
* although, Cosmopolitan Libc ShowCrashReports() should program it
* such as to attach a debugger to the process if possible, or else
* show a crash report. Also note that in New Technology you should
* press CTRL+BREAK rather than CTRL+\ to get this signal.
*
* - `SIGHUP`: This gets sent to your non-daemon processes when you
* close your terminal session.
*
* - `SIGTERM` is what the `kill` command sends by default. It's the
* choice signal for terminating daemons.
*
* - `SIGUSR1` and `SIGUSR2` can be anything you want. Their default
* action is to kill the process. By convention `SIGUSR1` is usually
* used by daemons to reload the config file.
*
* - `SIGCHLD` is sent when a process terminates and it takes a certain
* degree of UNIX mastery to address sanely.
*
* - `SIGALRM` is invoked by `setitimer()` and `alarm()`. It can be
* useful for interrupting i/o operations like `connect()`.
*
* - `SIGTRAP`: This happens when an INT3 instruction is encountered.
*
* - `SIGILL` happens on illegal instructions, e.g. `UD2`.
*
* - `SIGABRT` happens when you call `abort()`.
*
* - `SIGFPE` happens when you divide ints by zero, among other things.
*
* - `SIGSEGV` and `SIGBUS` indicate memory access errors and they have
* inconsistent semantics across platforms like FreeBSD.
*
* - `SIGWINCH` is sent when your terminal window is resized.
*
* - `SIGXCPU` and `SIGXFSZ` may be raised if you run out of resources,
* which can happen if your process, or the parent process that
* spawned your process, happened to call `setrlimit()`. Doing this is
* a wonderful idea.
*
2023-07-30 11:26:34 +00:00
* Signal handlers should avoid clobbering global variables like `errno`
* because most signals are asynchronous, i.e. the signal handler might
* be called at any assembly instruction. If something like a `SIGCHLD`
* handler doesn't save / restore the `errno` global when calling wait,
* then any i/o logic in the main program that checks `errno` will most
* likely break. This is rare in practice, since systems usually design
Make improvements - We now serialize the file descriptor table when spawning / executing processes on Windows. This means you can now inherit more stuff than just standard i/o. It's needed by bash, which duplicates the console to file descriptor #255. We also now do a better job serializing the environment variables, so you're less likely to encounter E2BIG when using your bash shell. We also no longer coerce environ to uppercase - execve() on Windows now remotely controls its parent process to make them spawn a replacement for itself. Then it'll be able to terminate immediately once the spawn succeeds, without having to linger around for the lifetime as a shell process for proxying the exit code. When process worker thread running in the parent sees the child die, it's given a handle to the new child, to replace it in the process table. - execve() and posix_spawn() on Windows will now provide CreateProcess an explicit handle list. This allows us to remove handle locks which enables better fork/spawn concurrency, with seriously correct thread safety. Other codebases like Go use the same technique. On the other hand fork() still favors the conventional WIN32 inheritence approach which can be a little bit messy, but is *controlled* by guaranteeing perfectly clean slates at both the spawning and execution boundaries - sigset_t is now 64 bits. Having it be 128 bits was a mistake because there's no reason to use that and it's only supported by FreeBSD. By using the system word size, signal mask manipulation on Windows goes very fast. Furthermore @asyncsignalsafe funcs have been rewritten on Windows to take advantage of signal masking, now that it's much more pleasant to use. - All the overlapped i/o code on Windows has been rewritten for pretty good signal and cancelation safety. We're now able to ensure overlap data structures are cleaned up so long as you don't longjmp() out of out of a signal handler that interrupted an i/o operation. Latencies are also improved thanks to the removal of lots of "busy wait" code. Waits should be optimal for everything except poll(), which shall be the last and final demon we slay in the win32 i/o horror show. - getrusage() on Windows is now able to report RUSAGE_CHILDREN as well as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 12:36:18 +00:00
* signals to favor delivery from cancelation points before they block
2023-07-30 11:26:34 +00:00
* however that's not guaranteed.
*
* @return 0 on success or -1 w/ errno
* @see xsigaction() for a much better api
* @asyncsignalsafe
* @vforksafe
*/
int sigaction(int sig, const struct sigaction *act, struct sigaction *oldact) {
int rc;
if (sig == SIGKILL || sig == SIGSTOP) {
rc = einval();
} else {
rc = __sigaction(sig, act, oldact);
}
STRACE("sigaction(%G, %s, [%s]) → %d% m", sig, DescribeSigaction(0, act),
DescribeSigaction(rc, oldact), rc);
return rc;
}