cosmopolitan/libc/tinymath/catrigf.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

378 lines
10 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi
FreeBSD lib/msun/src/catrigf.c
Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
*/
#include "libc/tinymath/freebsd.internal.h"
__static_yoink("freebsd_complex_notice");
#undef isinf
#define isinf(x) (fabsf(x) == INFINITY)
#undef isnan
#define isnan(x) ((x) != (x))
#define raise_inexact() do { volatile float _j = 1 + tiny; (void)_j; } while(0)
#undef signbit
#define signbit(x) (__builtin_signbitf(x))
static const float
A_crossover = 10,
B_crossover = 0.6417,
FOUR_SQRT_MIN = 0x1p-61,
QUARTER_SQRT_MAX = 0x1p61,
m_e = 2.7182818285e0, /* 0xadf854.0p-22 */
m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */
pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */
RECIP_EPSILON = 1 / FLT_EPSILON,
SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */
SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */
SQRT_MIN = 0x1p-63;
static const volatile float
pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */
tiny = 0x1p-100;
static float complex clog_for_large_values(float complex z);
static inline float
f(float a, float b, float hypot_a_b)
{
if (b < 0)
return ((hypot_a_b - b) / 2);
if (b == 0)
return (a / 2);
return (a * a / (hypot_a_b + b) / 2);
}
static inline void
do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
float *sqrt_A2my2, float *new_y)
{
float R, S, A;
float Am1, Amy;
R = hypotf(x, y + 1);
S = hypotf(x, y - 1);
A = (R + S) / 2;
if (A < 1)
A = 1;
if (A < A_crossover) {
if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
*rx = sqrtf(x);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
} else if (y < 1) {
*rx = x / sqrtf((1 - y) * (1 + y));
} else {
*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
}
} else {
*rx = logf(A + sqrtf(A * A - 1));
}
*new_y = y;
if (y < FOUR_SQRT_MIN) {
*B_is_usable = 0;
*sqrt_A2my2 = A * (2 / FLT_EPSILON);
*new_y = y * (2 / FLT_EPSILON);
return;
}
*B = y / A;
*B_is_usable = 1;
if (*B > B_crossover) {
*B_is_usable = 0;
if (y == 1 && x < FLT_EPSILON / 128) {
*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Amy = f(x, y + 1, R) + f(x, y - 1, S);
*sqrt_A2my2 = sqrtf(Amy * (A + y));
} else if (y > 1) {
*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
sqrtf((y + 1) * (y - 1));
*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
} else {
*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
}
}
}
float complex
casinhf(float complex z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
int B_is_usable;
float complex w;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXF(x, y + y));
if (isinf(y))
return (CMPLXF(y, x + x));
if (y == 0)
return (CMPLXF(x + x, y));
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
if (signbit(x) == 0)
w = clog_for_large_values(z) + m_ln2;
else
w = clog_for_large_values(-z) + m_ln2;
return (CMPLXF(copysignf(crealf(w), x),
copysignf(cimagf(w), y)));
}
if (x == 0 && y == 0)
return (z);
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (z);
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
if (B_is_usable)
ry = asinf(B);
else
ry = atan2f(new_y, sqrt_A2my2);
return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
}
float complex
casinf(float complex z)
{
float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
return (CMPLXF(cimagf(w), crealf(w)));
}
float complex
cacosf(float complex z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
int sx, sy;
int B_is_usable;
float complex w;
x = crealf(z);
y = cimagf(z);
sx = signbit(x);
sy = signbit(y);
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXF(y + y, -INFINITY));
if (isinf(y))
return (CMPLXF(x + x, -y));
if (x == 0)
return (CMPLXF(pio2_hi + pio2_lo, y + y));
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
w = clog_for_large_values(z);
rx = fabsf(cimagf(w));
ry = crealf(w) + m_ln2;
if (sy == 0)
ry = -ry;
return (CMPLXF(rx, ry));
}
if (x == 1 && y == 0)
return (CMPLXF(0, -y));
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
if (B_is_usable) {
if (sx == 0)
rx = acosf(B);
else
rx = acosf(-B);
} else {
if (sx == 0)
rx = atan2f(sqrt_A2mx2, new_x);
else
rx = atan2f(sqrt_A2mx2, -new_x);
}
if (sy == 0)
ry = -ry;
return (CMPLXF(rx, ry));
}
float complex
cacoshf(float complex z)
{
float complex w;
float rx, ry;
w = cacosf(z);
rx = crealf(w);
ry = cimagf(w);
if (isnan(rx) && isnan(ry))
return (CMPLXF(ry, rx));
if (isnan(rx))
return (CMPLXF(fabsf(ry), rx));
if (isnan(ry))
return (CMPLXF(ry, ry));
return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
}
static float complex
clog_for_large_values(float complex z)
{
float x, y;
float ax, ay, t;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (ax < ay) {
t = ax;
ax = ay;
ay = t;
}
if (ax > FLT_MAX / 2)
return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
atan2f(y, x)));
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
}
static inline float
sum_squares(float x, float y)
{
if (y < SQRT_MIN)
return (x * x);
return (x * x + y * y);
}
static inline float
real_part_reciprocal(float x, float y)
{
float scale;
uint32_t hx, hy;
int32_t ix, iy;
GET_FLOAT_WORD(hx, x);
ix = hx & 0x7f800000;
GET_FLOAT_WORD(hy, y);
iy = hy & 0x7f800000;
#undef BIAS
#define BIAS (FLT_MAX_EXP - 1)
#define CUTOFF (FLT_MANT_DIG / 2 + 1)
if (ix - iy >= CUTOFF << 23 || isinf(x))
return (1 / x);
if (iy - ix >= CUTOFF << 23)
return (x / y / y);
if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
return (x / (x * x + y * y));
SET_FLOAT_WORD(scale, 0x7f800000 - ix);
x *= scale;
y *= scale;
return (x / (x * x + y * y) * scale);
}
float complex
catanhf(float complex z)
{
float x, y, ax, ay, rx, ry;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (y == 0 && ax <= 1)
return (CMPLXF(atanhf(x), y));
if (x == 0)
return (CMPLXF(x, atanf(y)));
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXF(copysignf(0, x), y + y));
if (isinf(y))
return (CMPLXF(copysignf(0, x),
copysignf(pio2_hi + pio2_lo, y)));
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
return (CMPLXF(real_part_reciprocal(x, y),
copysignf(pio2_hi + pio2_lo, y)));
if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
raise_inexact();
return (z);
}
if (ax == 1 && ay < FLT_EPSILON)
rx = (m_ln2 - logf(ay)) / 2;
else
rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
if (ax == 1)
ry = atan2f(2, -ay) / 2;
else if (ay < FLT_EPSILON)
ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
else
ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
}
float complex
catanf(float complex z)
{
float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
return (CMPLXF(cimagf(w), crealf(w)));
}