2024-01-08 16:45:10 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "third_party/libcxxabi/fallback_malloc.h"
|
2024-07-23 10:16:17 +00:00
|
|
|
#include "third_party/libcxx/__thread/support.h"
|
2024-01-08 16:45:10 +00:00
|
|
|
|
|
|
|
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
|
|
|
#if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
|
|
|
|
#pragma comment(lib, "pthread")
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "third_party/libcxxabi/libcxx/include/__memory/aligned_alloc.h"
|
|
|
|
#include "libc/isystem/assert.h"
|
|
|
|
#include "libc/isystem/stdlib.h" // for malloc, calloc, free
|
|
|
|
#include "libc/isystem/string.h" // for memset
|
|
|
|
|
|
|
|
// A small, simple heap manager based (loosely) on
|
|
|
|
// the startup heap manager from FreeBSD, optimized for space.
|
|
|
|
//
|
|
|
|
// Manages a fixed-size memory pool, supports malloc and free only.
|
|
|
|
// No support for realloc.
|
|
|
|
//
|
|
|
|
// Allocates chunks in multiples of four bytes, with a four byte header
|
|
|
|
// for each chunk. The overhead of each chunk is kept low by keeping pointers
|
|
|
|
// as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// When POSIX threads are not available, make the mutex operations a nop
|
|
|
|
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
|
|
|
static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER;
|
|
|
|
#else
|
|
|
|
static _LIBCPP_CONSTINIT void* heap_mutex = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
class mutexor {
|
|
|
|
public:
|
|
|
|
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
|
|
|
mutexor(std::__libcpp_mutex_t* m) : mtx_(m) {
|
|
|
|
std::__libcpp_mutex_lock(mtx_);
|
|
|
|
}
|
|
|
|
~mutexor() { std::__libcpp_mutex_unlock(mtx_); }
|
|
|
|
#else
|
|
|
|
mutexor(void*) {}
|
|
|
|
~mutexor() {}
|
|
|
|
#endif
|
|
|
|
private:
|
|
|
|
mutexor(const mutexor& rhs);
|
|
|
|
mutexor& operator=(const mutexor& rhs);
|
|
|
|
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
|
|
|
std::__libcpp_mutex_t* mtx_;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
static const size_t HEAP_SIZE = 512;
|
|
|
|
char heap[HEAP_SIZE] __attribute__((aligned));
|
|
|
|
|
|
|
|
typedef unsigned short heap_offset;
|
|
|
|
typedef unsigned short heap_size;
|
|
|
|
|
|
|
|
// On both 64 and 32 bit targets heap_node should have the following properties
|
|
|
|
// Size: 4
|
|
|
|
// Alignment: 2
|
|
|
|
struct heap_node {
|
|
|
|
heap_offset next_node; // offset into heap
|
|
|
|
heap_size len; // size in units of "sizeof(heap_node)"
|
|
|
|
};
|
|
|
|
|
|
|
|
// All pointers returned by fallback_malloc must be at least aligned
|
|
|
|
// as RequiredAligned. Note that RequiredAlignment can be greater than
|
|
|
|
// alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
|
|
|
|
struct FallbackMaxAlignType {
|
|
|
|
} __attribute__((aligned));
|
|
|
|
const size_t RequiredAlignment = alignof(FallbackMaxAlignType);
|
|
|
|
|
|
|
|
static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0,
|
|
|
|
"The required alignment must be evenly divisible by the sizeof(heap_node)");
|
|
|
|
|
|
|
|
// The number of heap_node's that can fit in a chunk of memory with the size
|
|
|
|
// of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
|
|
|
|
const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node);
|
|
|
|
|
|
|
|
static const heap_node* list_end =
|
|
|
|
(heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap
|
|
|
|
static heap_node* freelist = NULL;
|
|
|
|
|
|
|
|
heap_node* node_from_offset(const heap_offset offset) {
|
|
|
|
return (heap_node*)(heap + (offset * sizeof(heap_node)));
|
|
|
|
}
|
|
|
|
|
|
|
|
heap_offset offset_from_node(const heap_node* ptr) {
|
|
|
|
return static_cast<heap_offset>(
|
|
|
|
static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) /
|
|
|
|
sizeof(heap_node));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return a pointer to the first address, 'A', in `heap` that can actually be
|
|
|
|
// used to represent a heap_node. 'A' must be aligned so that
|
|
|
|
// '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
|
|
|
|
// address should be 12 bytes after the first 16 byte boundary.
|
|
|
|
heap_node* getFirstAlignedNodeInHeap() {
|
|
|
|
heap_node* node = (heap_node*)heap;
|
|
|
|
const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node);
|
|
|
|
size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment;
|
|
|
|
size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset;
|
|
|
|
size_t NElemOffset = requiredOffset / sizeof(heap_node);
|
|
|
|
return node + NElemOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
void init_heap() {
|
|
|
|
freelist = getFirstAlignedNodeInHeap();
|
|
|
|
freelist->next_node = offset_from_node(list_end);
|
|
|
|
freelist->len = static_cast<heap_size>(list_end - freelist);
|
|
|
|
}
|
|
|
|
|
|
|
|
// How big a chunk we allocate
|
|
|
|
size_t alloc_size(size_t len) {
|
|
|
|
return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_fallback_ptr(void* ptr) {
|
|
|
|
return ptr >= heap && ptr < (heap + HEAP_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* fallback_malloc(size_t len) {
|
|
|
|
heap_node *p, *prev;
|
|
|
|
const size_t nelems = alloc_size(len);
|
|
|
|
mutexor mtx(&heap_mutex);
|
|
|
|
|
|
|
|
if (NULL == freelist)
|
|
|
|
init_heap();
|
|
|
|
|
|
|
|
// Walk the free list, looking for a "big enough" chunk
|
|
|
|
for (p = freelist, prev = 0; p && p != list_end;
|
|
|
|
prev = p, p = node_from_offset(p->next_node)) {
|
|
|
|
|
|
|
|
// Check the invariant that all heap_nodes pointers 'p' are aligned
|
|
|
|
// so that 'p + 1' has an alignment of at least RequiredAlignment
|
|
|
|
assert(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0);
|
|
|
|
|
|
|
|
// Calculate the number of extra padding elements needed in order
|
|
|
|
// to split 'p' and create a properly aligned heap_node from the tail
|
|
|
|
// of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
|
|
|
|
// will be a multiple of NodesPerAlignment.
|
|
|
|
size_t aligned_nelems = nelems;
|
|
|
|
if (p->len > nelems) {
|
|
|
|
heap_size remaining_len = static_cast<heap_size>(p->len - nelems);
|
|
|
|
aligned_nelems += remaining_len % NodesPerAlignment;
|
|
|
|
}
|
|
|
|
|
|
|
|
// chunk is larger and we can create a properly aligned heap_node
|
|
|
|
// from the tail. In this case we shorten 'p' and return the tail.
|
|
|
|
if (p->len > aligned_nelems) {
|
|
|
|
heap_node* q;
|
|
|
|
p->len = static_cast<heap_size>(p->len - aligned_nelems);
|
|
|
|
q = p + p->len;
|
|
|
|
q->next_node = 0;
|
|
|
|
q->len = static_cast<heap_size>(aligned_nelems);
|
|
|
|
void* ptr = q + 1;
|
|
|
|
assert(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The chunk is the exact size or the chunk is larger but not large
|
|
|
|
// enough to split due to alignment constraints.
|
|
|
|
if (p->len >= nelems) {
|
|
|
|
if (prev == 0)
|
|
|
|
freelist = node_from_offset(p->next_node);
|
|
|
|
else
|
|
|
|
prev->next_node = p->next_node;
|
|
|
|
p->next_node = 0;
|
|
|
|
void* ptr = p + 1;
|
|
|
|
assert(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL; // couldn't find a spot big enough
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the start of the next block
|
|
|
|
heap_node* after(struct heap_node* p) { return p + p->len; }
|
|
|
|
|
|
|
|
void fallback_free(void* ptr) {
|
|
|
|
struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk
|
|
|
|
struct heap_node *p, *prev;
|
|
|
|
|
|
|
|
mutexor mtx(&heap_mutex);
|
|
|
|
|
|
|
|
#ifdef DEBUG_FALLBACK_MALLOC
|
|
|
|
std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (p = freelist, prev = 0; p && p != list_end;
|
|
|
|
prev = p, p = node_from_offset(p->next_node)) {
|
|
|
|
#ifdef DEBUG_FALLBACK_MALLOC
|
|
|
|
std::printf(" p=%d, cp=%d, after(p)=%d, after(cp)=%d\n",
|
|
|
|
offset_from_node(p), offset_from_node(cp),
|
|
|
|
offset_from_node(after(p)), offset_from_node(after(cp)));
|
|
|
|
#endif
|
|
|
|
if (after(p) == cp) {
|
|
|
|
#ifdef DEBUG_FALLBACK_MALLOC
|
|
|
|
std::printf(" Appending onto chunk at %d\n", offset_from_node(p));
|
|
|
|
#endif
|
|
|
|
p->len = static_cast<heap_size>(
|
|
|
|
p->len + cp->len); // make the free heap_node larger
|
|
|
|
return;
|
|
|
|
} else if (after(cp) == p) { // there's a free heap_node right after
|
|
|
|
#ifdef DEBUG_FALLBACK_MALLOC
|
|
|
|
std::printf(" Appending free chunk at %d\n", offset_from_node(p));
|
|
|
|
#endif
|
|
|
|
cp->len = static_cast<heap_size>(cp->len + p->len);
|
|
|
|
if (prev == 0) {
|
|
|
|
freelist = cp;
|
|
|
|
cp->next_node = p->next_node;
|
|
|
|
} else
|
|
|
|
prev->next_node = offset_from_node(cp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Nothing to merge with, add it to the start of the free list
|
|
|
|
#ifdef DEBUG_FALLBACK_MALLOC
|
|
|
|
std::printf(" Making new free list entry %d\n", offset_from_node(cp));
|
|
|
|
#endif
|
|
|
|
cp->next_node = offset_from_node(freelist);
|
|
|
|
freelist = cp;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef INSTRUMENT_FALLBACK_MALLOC
|
|
|
|
size_t print_free_list() {
|
|
|
|
struct heap_node *p, *prev;
|
|
|
|
heap_size total_free = 0;
|
|
|
|
if (NULL == freelist)
|
|
|
|
init_heap();
|
|
|
|
|
|
|
|
for (p = freelist, prev = 0; p && p != list_end;
|
|
|
|
prev = p, p = node_from_offset(p->next_node)) {
|
|
|
|
std::printf("%sOffset: %d\tsize: %d Next: %d\n",
|
|
|
|
(prev == 0 ? "" : " "), offset_from_node(p), p->len, p->next_node);
|
|
|
|
total_free += p->len;
|
|
|
|
}
|
|
|
|
std::printf("Total Free space: %d\n", total_free);
|
|
|
|
return total_free;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} // end unnamed namespace
|
|
|
|
|
|
|
|
namespace __cxxabiv1 {
|
|
|
|
|
|
|
|
struct __attribute__((aligned)) __aligned_type {};
|
|
|
|
|
|
|
|
void* __aligned_malloc_with_fallback(size_t size) {
|
|
|
|
#if defined(_WIN32)
|
|
|
|
if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size))
|
|
|
|
return dest;
|
|
|
|
#elif defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
|
|
|
|
if (void* dest = ::malloc(size))
|
|
|
|
return dest;
|
|
|
|
#else
|
|
|
|
if (size == 0)
|
|
|
|
size = 1;
|
|
|
|
if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size))
|
|
|
|
return dest;
|
|
|
|
#endif
|
|
|
|
return fallback_malloc(size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* __calloc_with_fallback(size_t count, size_t size) {
|
|
|
|
void* ptr = ::calloc(count, size);
|
|
|
|
if (NULL != ptr)
|
|
|
|
return ptr;
|
|
|
|
// if calloc fails, fall back to emergency stash
|
|
|
|
ptr = fallback_malloc(size * count);
|
|
|
|
if (NULL != ptr)
|
|
|
|
::memset(ptr, 0, size * count);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __aligned_free_with_fallback(void* ptr) {
|
|
|
|
if (is_fallback_ptr(ptr))
|
|
|
|
fallback_free(ptr);
|
|
|
|
else {
|
|
|
|
#if defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
|
|
|
|
::free(ptr);
|
|
|
|
#else
|
|
|
|
std::__libcpp_aligned_free(ptr);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void __free_with_fallback(void* ptr) {
|
|
|
|
if (is_fallback_ptr(ptr))
|
|
|
|
fallback_free(ptr);
|
|
|
|
else
|
|
|
|
::free(ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace __cxxabiv1
|