mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
112 lines
4.6 KiB
C
112 lines
4.6 KiB
C
|
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
|||
|
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
|
|||
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|||
|
│ │
|
|||
|
│ Musl Libc │
|
|||
|
│ Copyright © 2005-2014 Rich Felker, et al. │
|
|||
|
│ │
|
|||
|
│ Permission is hereby granted, free of charge, to any person obtaining │
|
|||
|
│ a copy of this software and associated documentation files (the │
|
|||
|
│ "Software"), to deal in the Software without restriction, including │
|
|||
|
│ without limitation the rights to use, copy, modify, merge, publish, │
|
|||
|
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
|||
|
│ permit persons to whom the Software is furnished to do so, subject to │
|
|||
|
│ the following conditions: │
|
|||
|
│ │
|
|||
|
│ The above copyright notice and this permission notice shall be │
|
|||
|
│ included in all copies or substantial portions of the Software. │
|
|||
|
│ │
|
|||
|
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
|||
|
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
|||
|
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
|||
|
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
|||
|
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
|||
|
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
|||
|
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
|||
|
│ │
|
|||
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|||
|
#include "libc/math.h"
|
|||
|
#include "libc/tinymath/invtrigl.internal.h"
|
|||
|
#include "libc/tinymath/ldshape.internal.h"
|
|||
|
|
|||
|
asm(".ident\t\"\\n\\n\
|
|||
|
fdlibm (fdlibm license)\\n\
|
|||
|
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\"");
|
|||
|
asm(".ident\t\"\\n\\n\
|
|||
|
Musl libc (MIT License)\\n\
|
|||
|
Copyright 2005-2014 Rich Felker, et. al.\"");
|
|||
|
asm(".include \"libc/disclaimer.inc\"");
|
|||
|
/* clang-format off */
|
|||
|
|
|||
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
|
|||
|
/*
|
|||
|
* ====================================================
|
|||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|||
|
*
|
|||
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|||
|
* Permission to use, copy, modify, and distribute this
|
|||
|
* software is freely granted, provided that this notice
|
|||
|
* is preserved.
|
|||
|
* ====================================================
|
|||
|
*/
|
|||
|
/*
|
|||
|
* See comments in acos.c.
|
|||
|
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
|||
|
*/
|
|||
|
|
|||
|
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
|||
|
long double acosl(long double x)
|
|||
|
{
|
|||
|
return acos(x);
|
|||
|
}
|
|||
|
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
|||
|
#if LDBL_MANT_DIG == 64
|
|||
|
#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
|
|||
|
#elif LDBL_MANT_DIG == 113
|
|||
|
#define CLEARBOTTOM(u) (u.i.lo = 0)
|
|||
|
#endif
|
|||
|
|
|||
|
/**
|
|||
|
* Returns arc cosine of 𝑥.
|
|||
|
*
|
|||
|
* @define atan2(fabs(sqrt((1-𝑥)*(1+𝑥))),𝑥)
|
|||
|
* @domain -1 ≤ 𝑥 ≤ 1
|
|||
|
*/
|
|||
|
long double acosl(long double x)
|
|||
|
{
|
|||
|
union ldshape u = {x};
|
|||
|
long double z, s, c, f;
|
|||
|
uint16_t e = u.i.se & 0x7fff;
|
|||
|
|
|||
|
/* |x| >= 1 or nan */
|
|||
|
if (e >= 0x3fff) {
|
|||
|
if (x == 1)
|
|||
|
return 0;
|
|||
|
if (x == -1)
|
|||
|
return 2*pio2_hi + 0x1p-120f;
|
|||
|
return 0/(x-x);
|
|||
|
}
|
|||
|
/* |x| < 0.5 */
|
|||
|
if (e < 0x3fff - 1) {
|
|||
|
if (e < 0x3fff - LDBL_MANT_DIG - 1)
|
|||
|
return pio2_hi + 0x1p-120f;
|
|||
|
return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
|
|||
|
}
|
|||
|
/* x < -0.5 */
|
|||
|
if (u.i.se >> 15) {
|
|||
|
z = (1 + x)*0.5;
|
|||
|
s = sqrtl(z);
|
|||
|
return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
|
|||
|
}
|
|||
|
/* x > 0.5 */
|
|||
|
z = (1 - x)*0.5;
|
|||
|
s = sqrtl(z);
|
|||
|
u.f = s;
|
|||
|
CLEARBOTTOM(u);
|
|||
|
f = u.f;
|
|||
|
c = (z - f*f)/(s + f);
|
|||
|
return 2*(__invtrigl_R(z)*s + c + f);
|
|||
|
}
|
|||
|
|
|||
|
#endif
|