cosmopolitan/third_party/python/Modules/_cryptmodule.c

75 lines
2.4 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi
Python 3
https://docs.python.org/3/license.html │
*/
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/yoink.h"
/* clang-format off */
Undiamond Python headers This change gets the Python codebase into a state where it conforms to the conventions of this codebase. It's now possible to include headers from Python, without worrying about ordering. Python has traditionally solved that problem by "diamonding" everything in Python.h, but that's problematic since it means any change to any Python header invalidates all the build artifacts. Lastly it makes tooling not work. Since it is hard to explain to Emacs when I press C-c C-h to add an import line it shouldn't add the header that actually defines the symbol, and instead do follow the nonstandard Python convention. Progress has been made on letting Python load source code from the zip executable structure via the standard C library APIs. System calss now recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME since Python uses colon as its delimiter. Some progress has been made on embedding the notice license terms into the Python object code. This is easier said than done since Python has an extremely complicated ownership story. - Some termios APIs have been added - Implement rewinddir() dirstream API - GetCpuCount() API added to Cosmopolitan Libc - More bugs in Cosmopolitan Libc have been fixed - zipobj.com now has flags for mangling the path - Fixed bug a priori with sendfile() on certain BSDs - Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms - FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes - APE now supports a hybrid solution to no-self-modify for builds - Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 07:42:14 +00:00
PYTHON_PROVIDE("_crypt");
2021-09-07 02:24:10 +00:00
PYTHON_PROVIDE("_crypt.crypt");
/* cryptmodule.c - by Steve Majewski
*/
/*[clinic input]
module crypt
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c6252cf4f2f2ae81]*/
#include "third_party/python/Modules/clinic/_cryptmodule.inc"
/*[clinic input]
crypt.crypt
word: str
salt: str
/
Hash a *word* with the given *salt* and return the hashed password.
*word* will usually be a user's password. *salt* (either a random 2 or 16
character string, possibly prefixed with $digit$ to indicate the method)
will be used to perturb the encryption algorithm and produce distinct
results for a given *word*.
[clinic start generated code]*/
static PyObject *
crypt_crypt_impl(PyObject *module, const char *word, const char *salt)
/*[clinic end generated code: output=0512284a03d2803c input=0e8edec9c364352b]*/
{
/* On some platforms (AtheOS) crypt returns NULL for an invalid
salt. Return None in that case. XXX Maybe raise an exception? */
return Py_BuildValue("s", crypt(word, salt));
}
static PyMethodDef crypt_methods[] = {
CRYPT_CRYPT_METHODDEF
{NULL, NULL} /* sentinel */
};
static struct PyModuleDef cryptmodule = {
PyModuleDef_HEAD_INIT,
"_crypt",
NULL,
-1,
crypt_methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit__crypt(void)
{
return PyModule_Create(&cryptmodule);
}