cosmopolitan/tool/build/lib/xlat.c

1003 lines
24 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2022 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/errno.h"
2022-08-19 00:41:32 +00:00
#include "libc/str/str.h"
#include "libc/sysv/consts/af.h"
#include "libc/sysv/consts/at.h"
#include "libc/sysv/consts/clock.h"
#include "libc/sysv/consts/f.h"
#include "libc/sysv/consts/fd.h"
#include "libc/sysv/consts/ip.h"
#include "libc/sysv/consts/ipproto.h"
#include "libc/sysv/consts/lock.h"
#include "libc/sysv/consts/madv.h"
#include "libc/sysv/consts/map.h"
#include "libc/sysv/consts/msync.h"
#include "libc/sysv/consts/o.h"
#include "libc/sysv/consts/ok.h"
#include "libc/sysv/consts/rusage.h"
#include "libc/sysv/consts/sicode.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/consts/so.h"
#include "libc/sysv/consts/sock.h"
#include "libc/sysv/consts/sol.h"
#include "libc/sysv/consts/tcp.h"
#include "libc/sysv/consts/termios.h"
#include "libc/sysv/consts/w.h"
#include "libc/sysv/errfuns.h"
#include "tool/build/lib/case.h"
#include "tool/build/lib/endian.h"
#include "tool/build/lib/xlat.h"
#define XLAT(x, y) CASE(x, return y)
int XlatSignal(int x) {
switch (x) {
XLAT(1, SIGHUP);
XLAT(2, SIGINT);
XLAT(3, SIGQUIT);
XLAT(4, SIGILL);
XLAT(5, SIGTRAP);
XLAT(6, SIGABRT);
XLAT(7, SIGBUS);
XLAT(8, SIGFPE);
XLAT(9, SIGKILL);
XLAT(10, SIGUSR1);
XLAT(11, SIGSEGV);
XLAT(12, SIGUSR2);
XLAT(13, SIGPIPE);
XLAT(14, SIGALRM);
XLAT(15, SIGTERM);
XLAT(17, SIGCHLD);
XLAT(18, SIGCONT);
XLAT(21, SIGTTIN);
XLAT(22, SIGTTOU);
XLAT(24, SIGXCPU);
XLAT(25, SIGXFSZ);
XLAT(26, SIGVTALRM);
XLAT(27, SIGPROF);
XLAT(28, SIGWINCH);
XLAT(29, SIGIO);
XLAT(19, SIGSTOP);
XLAT(31, SIGSYS);
XLAT(20, SIGTSTP);
XLAT(23, SIGURG);
default:
return einval();
}
}
int UnXlatSignal(int x) {
if (x == SIGHUP) return 1;
if (x == SIGINT) return 2;
if (x == SIGQUIT) return 3;
if (x == SIGILL) return 4;
if (x == SIGTRAP) return 5;
if (x == SIGABRT) return 6;
if (x == SIGBUS) return 7;
if (x == SIGFPE) return 8;
if (x == SIGKILL) return 9;
if (x == SIGUSR1) return 10;
if (x == SIGSEGV) return 11;
if (x == SIGUSR2) return 12;
if (x == SIGPIPE) return 13;
if (x == SIGALRM) return 14;
if (x == SIGTERM) return 15;
if (x == SIGCHLD) return 17;
if (x == SIGCONT) return 18;
if (x == SIGTTIN) return 21;
if (x == SIGTTOU) return 22;
if (x == SIGXCPU) return 24;
if (x == SIGXFSZ) return 25;
if (x == SIGVTALRM) return 26;
if (x == SIGPROF) return 27;
if (x == SIGWINCH) return 28;
if (x == SIGIO) return 29;
if (x == SIGSTOP) return 19;
if (x == SIGSYS) return 31;
if (x == SIGTSTP) return 20;
if (x == SIGURG) return 23;
return 15;
}
int UnXlatSicode(int sig, int code) {
if (code == SI_USER) return 0;
if (code == SI_QUEUE) return -1;
if (code == SI_TIMER) return -2;
if (code == SI_TKILL) return -6;
if (code == SI_MESGQ) return -3;
if (code == SI_ASYNCIO) return -4;
if (code == SI_ASYNCNL) return -60;
if (code == SI_KERNEL) return 0x80;
if (sig == SIGCHLD) {
if (code == CLD_EXITED) return 1;
if (code == CLD_KILLED) return 2;
if (code == CLD_DUMPED) return 3;
if (code == CLD_TRAPPED) return 4;
if (code == CLD_STOPPED) return 5;
if (code == CLD_CONTINUED) return 6;
return -1;
}
if (sig == SIGTRAP) {
if (code == TRAP_BRKPT) return 1;
if (code == TRAP_TRACE) return 2;
return -1;
}
if (sig == SIGSEGV) {
if (code == SEGV_MAPERR) return 1;
if (code == SEGV_ACCERR) return 2;
return -1;
}
if (sig == SIGFPE) {
if (code == FPE_INTDIV) return 1;
if (code == FPE_INTOVF) return 2;
if (code == FPE_FLTDIV) return 3;
if (code == FPE_FLTOVF) return 4;
if (code == FPE_FLTUND) return 5;
if (code == FPE_FLTRES) return 6;
if (code == FPE_FLTINV) return 7;
if (code == FPE_FLTSUB) return 8;
return -1;
}
if (sig == SIGILL) {
if (code == ILL_ILLOPC) return 1;
if (code == ILL_ILLOPN) return 2;
if (code == ILL_ILLADR) return 3;
if (code == ILL_ILLTRP) return 4;
if (code == ILL_PRVOPC) return 5;
if (code == ILL_PRVREG) return 6;
if (code == ILL_COPROC) return 7;
if (code == ILL_BADSTK) return 8;
return -1;
}
if (sig == SIGBUS) {
if (code == BUS_ADRALN) return 1;
if (code == BUS_ADRERR) return 2;
if (code == BUS_OBJERR) return 3;
if (code == BUS_MCEERR_AR) return 4;
if (code == BUS_MCEERR_AO) return 5;
return -1;
}
if (sig == SIGIO) {
if (code == POLL_IN) return 1;
if (code == POLL_OUT) return 2;
if (code == POLL_MSG) return 3;
if (code == POLL_ERR) return 4;
if (code == POLL_PRI) return 5;
if (code == POLL_HUP) return 6;
return -1;
}
return -1;
}
int XlatSig(int x) {
switch (x) {
XLAT(0, SIG_BLOCK);
XLAT(1, SIG_UNBLOCK);
XLAT(2, SIG_SETMASK);
default:
return einval();
}
}
int XlatRusage(int x) {
switch (x) {
XLAT(0, RUSAGE_SELF);
XLAT(-1, RUSAGE_CHILDREN);
XLAT(1, RUSAGE_THREAD);
default:
return einval();
}
}
int XlatSocketFamily(int x) {
switch (x) {
XLAT(0, AF_UNSPEC);
XLAT(1, AF_UNIX);
XLAT(2, AF_INET);
default:
errno = EPFNOSUPPORT;
return -1;
}
}
int UnXlatSocketFamily(int x) {
switch (x) {
XLAT(AF_UNSPEC, 0);
XLAT(AF_UNIX, 1);
XLAT(AF_INET, 2);
default:
return x;
}
}
int XlatSocketType(int x) {
switch (x) {
XLAT(1, SOCK_STREAM);
XLAT(2, SOCK_DGRAM);
default:
return einval();
}
}
int XlatSocketFlags(int flags) {
unsigned res = 0;
if (flags & 0x080000) res |= SOCK_CLOEXEC;
if (flags & 0x000800) res |= SOCK_NONBLOCK;
return res;
}
int XlatSocketProtocol(int x) {
switch (x) {
XLAT(0, 0);
XLAT(6, IPPROTO_TCP);
XLAT(17, IPPROTO_UDP);
default:
return einval();
}
}
int XlatSocketLevel(int level) {
switch (level) {
XLAT(0, SOL_IP);
XLAT(1, SOL_SOCKET);
XLAT(6, SOL_TCP);
XLAT(17, SOL_UDP);
default:
return einval();
}
}
int XlatSocketOptname(int level, int optname) {
if (level == SOL_SOCKET) {
switch (optname) {
XLAT(1, SO_DEBUG);
XLAT(2, SO_REUSEADDR);
XLAT(3, SO_TYPE);
XLAT(4, SO_ERROR);
XLAT(5, SO_DONTROUTE);
XLAT(6, SO_BROADCAST);
XLAT(7, SO_SNDBUF);
XLAT(8, SO_RCVBUF);
XLAT(9, SO_KEEPALIVE);
XLAT(13, SO_LINGER);
XLAT(15, SO_REUSEPORT);
XLAT(18, SO_RCVLOWAT);
XLAT(19, SO_SNDLOWAT);
XLAT(30, SO_ACCEPTCONN);
default:
return einval();
}
}
if (level == SOL_TCP) {
switch (optname) {
XLAT(1, TCP_NODELAY);
XLAT(2, TCP_MAXSEG);
#if defined(TCP_CORK)
XLAT(3, TCP_CORK);
#elif defined(TCP_NOPUSH)
XLAT(3, TCP_NOPUSH);
#endif
#ifdef TCP_KEEPIDLE
XLAT(4, TCP_KEEPIDLE);
#endif
#ifdef TCP_KEEPINTVL
XLAT(5, TCP_KEEPINTVL);
#endif
#ifdef TCP_KEEPCNT
XLAT(6, TCP_KEEPCNT);
#endif
#ifdef TCP_SYNCNT
XLAT(7, TCP_SYNCNT);
#endif
#ifdef TCP_WINDOW_CLAMP
XLAT(10, TCP_WINDOW_CLAMP);
#endif
#ifdef TCP_FASTOPEN
XLAT(23, TCP_FASTOPEN);
#endif
#ifdef TCP_QUICKACK
XLAT(12, TCP_QUICKACK);
#endif
#ifdef TCP_NOTSENT_LOWAT
XLAT(25, TCP_NOTSENT_LOWAT);
#endif
#ifdef TCP_SAVE_SYN
XLAT(27, TCP_SAVE_SYN);
#endif
#ifdef TCP_FASTOPEN_CONNECT
XLAT(30, TCP_FASTOPEN_CONNECT);
#endif
default:
return einval();
}
}
if (level == SOL_IP) {
switch (optname) {
XLAT(1, IP_TOS);
XLAT(2, IP_TTL);
XLAT(3, IP_HDRINCL);
XLAT(14, IP_MTU);
default:
return einval();
}
}
return einval();
}
int XlatAccess(int x) {
int r = F_OK;
if (x & 1) r |= X_OK;
if (x & 2) r |= W_OK;
if (x & 4) r |= R_OK;
return r;
}
int XlatLock(int x) {
int r = 0;
if (x & 1) r |= LOCK_SH;
if (x & 2) r |= LOCK_EX;
if (x & 4) r |= LOCK_NB;
if (x & 8) r |= LOCK_UN;
return r;
}
int XlatWait(int x) {
int r = 0;
if (x & 1) r |= WNOHANG;
if (x & 2) r |= WUNTRACED;
if (x & 8) r |= WCONTINUED;
return r;
}
int XlatMapFlags(int x) {
int r = 0;
if (x & 1) r |= MAP_SHARED;
if (x & 2) r |= MAP_PRIVATE;
if (x & 16) r |= MAP_FIXED;
if (x & 32) r |= MAP_ANONYMOUS;
return r;
}
int XlatMsyncFlags(int x) {
unsigned res = 0;
if (x & 1) res |= MS_ASYNC;
if (x & 2) res |= MS_INVALIDATE;
if (x & 4) res |= MS_SYNC;
return res;
}
int XlatClock(int x) {
switch (x) {
XLAT(0, CLOCK_REALTIME);
XLAT(1, CLOCK_MONOTONIC);
XLAT(2, CLOCK_PROCESS_CPUTIME_ID);
#ifdef CLOCK_MONOTONIC_RAW
XLAT(4, CLOCK_MONOTONIC_RAW);
#endif
default:
return x;
}
}
int XlatAtf(int x) {
int res = 0;
if (x & 0x0100) res |= AT_SYMLINK_NOFOLLOW;
if (x & 0x0200) res |= AT_REMOVEDIR;
if (x & 0x0400) res |= AT_SYMLINK_FOLLOW;
if (x & 0x1000) res |= AT_EMPTY_PATH;
return res;
}
int XlatOpenMode(int flags) {
switch (flags & 3) {
case 0:
return O_RDONLY;
case 1:
return O_WRONLY;
case 2:
return O_RDWR;
default:
for (;;) (void)0;
}
}
int XlatOpenFlags(int flags) {
int res;
res = XlatOpenMode(flags);
if (flags & 0x00400) res |= O_APPEND;
if (flags & 0x00040) res |= O_CREAT;
if (flags & 0x00080) res |= O_EXCL;
if (flags & 0x00200) res |= O_TRUNC;
if (flags & 0x00800) res |= O_NDELAY;
if (flags & 0x04000) res |= O_DIRECT;
if (flags & 0x10000) res |= O_DIRECTORY;
if (flags & 0x20000) res |= O_NOFOLLOW;
if (flags & 0x80000) res |= O_CLOEXEC;
if (flags & 0x00100) res |= O_NOCTTY;
#ifdef O_ASYNC
if (flags & 0x02000) res |= O_ASYNC;
#endif
#ifdef O_NOATIME
if (flags & 0x40000) res |= O_NOATIME;
#endif
#ifdef O_DSYNC
if (flags & 0x000001000) res |= O_DSYNC;
#endif
#ifdef O_SYNC
if ((flags & 0x00101000) == 0x00101000) res |= O_SYNC;
#endif
return res;
}
int XlatFcntlCmd(int x) {
switch (x) {
XLAT(1, F_GETFD);
XLAT(2, F_SETFD);
XLAT(3, F_GETFL);
XLAT(4, F_SETFL);
default:
return einval();
}
}
int XlatFcntlArg(int x) {
switch (x) {
XLAT(0, 0);
XLAT(1, FD_CLOEXEC);
XLAT(0x0800, O_NONBLOCK);
default:
return einval();
}
}
int XlatAdvice(int x) {
switch (x) {
XLAT(0, MADV_NORMAL);
XLAT(1, MADV_RANDOM);
XLAT(2, MADV_SEQUENTIAL);
XLAT(3, MADV_WILLNEED);
XLAT(4, MADV_DONTNEED);
XLAT(8, MADV_FREE);
XLAT(12, MADV_MERGEABLE);
default:
return einval();
}
}
void XlatSockaddrToHost(struct sockaddr_in *dst,
const struct sockaddr_in_bits *src) {
memset(dst, 0, sizeof(*dst));
dst->sin_family = XlatSocketFamily(Read16(src->sin_family));
dst->sin_port = src->sin_port;
dst->sin_addr.s_addr = src->sin_addr;
}
void XlatSockaddrToLinux(struct sockaddr_in_bits *dst,
const struct sockaddr_in *src) {
memset(dst, 0, sizeof(*dst));
Write16(dst->sin_family, UnXlatSocketFamily(src->sin_family));
dst->sin_port = src->sin_port;
dst->sin_addr = src->sin_addr.s_addr;
}
void XlatStatToLinux(struct stat_bits *dst, const struct stat *src) {
Write64(dst->st_dev, src->st_dev);
Write64(dst->st_ino, src->st_ino);
Write64(dst->st_nlink, src->st_nlink);
Write32(dst->st_mode, src->st_mode);
Write32(dst->st_uid, src->st_uid);
Write32(dst->st_gid, src->st_gid);
Write32(dst->__pad, 0);
Write64(dst->st_rdev, src->st_rdev);
Write64(dst->st_size, src->st_size);
Write64(dst->st_blksize, src->st_blksize);
Write64(dst->st_blocks, src->st_blocks);
Write64(dst->st_dev, src->st_dev);
Write64(dst->st_atim.tv_sec, src->st_atim.tv_sec);
Write64(dst->st_atim.tv_nsec, src->st_atim.tv_nsec);
Write64(dst->st_mtim.tv_sec, src->st_mtim.tv_sec);
Write64(dst->st_mtim.tv_nsec, src->st_mtim.tv_nsec);
Write64(dst->st_ctim.tv_sec, src->st_ctim.tv_sec);
Write64(dst->st_ctim.tv_nsec, src->st_ctim.tv_nsec);
}
void XlatRusageToLinux(struct rusage_bits *dst, const struct rusage *src) {
Write64(dst->ru_utime.tv_sec, src->ru_utime.tv_sec);
Write64(dst->ru_utime.tv_usec, src->ru_utime.tv_usec);
Write64(dst->ru_stime.tv_sec, src->ru_stime.tv_sec);
Write64(dst->ru_stime.tv_usec, src->ru_stime.tv_usec);
Write64(dst->ru_maxrss, src->ru_maxrss);
Write64(dst->ru_ixrss, src->ru_ixrss);
Write64(dst->ru_idrss, src->ru_idrss);
Write64(dst->ru_isrss, src->ru_isrss);
Write64(dst->ru_minflt, src->ru_minflt);
Write64(dst->ru_majflt, src->ru_majflt);
Write64(dst->ru_nswap, src->ru_nswap);
Write64(dst->ru_inblock, src->ru_inblock);
Write64(dst->ru_oublock, src->ru_oublock);
Write64(dst->ru_msgsnd, src->ru_msgsnd);
Write64(dst->ru_msgrcv, src->ru_msgrcv);
Write64(dst->ru_nsignals, src->ru_nsignals);
Write64(dst->ru_nvcsw, src->ru_nvcsw);
Write64(dst->ru_nivcsw, src->ru_nivcsw);
}
void XlatItimervalToLinux(struct itimerval_bits *dst,
const struct itimerval *src) {
Write64(dst->it_interval.tv_sec, src->it_interval.tv_sec);
Write64(dst->it_interval.tv_usec, src->it_interval.tv_usec);
Write64(dst->it_value.tv_sec, src->it_value.tv_sec);
Write64(dst->it_value.tv_usec, src->it_value.tv_usec);
}
void XlatLinuxToItimerval(struct itimerval *dst,
const struct itimerval_bits *src) {
dst->it_interval.tv_sec = Read64(src->it_interval.tv_sec);
dst->it_interval.tv_usec = Read64(src->it_interval.tv_usec);
dst->it_value.tv_sec = Read64(src->it_value.tv_sec);
dst->it_value.tv_usec = Read64(src->it_value.tv_usec);
}
void XlatWinsizeToLinux(struct winsize_bits *dst, const struct winsize *src) {
memset(dst, 0, sizeof(*dst));
Write16(dst->ws_row, src->ws_row);
Write16(dst->ws_col, src->ws_col);
}
void XlatSigsetToLinux(uint8_t dst[8], const sigset_t *src) {
int i;
uint64_t x;
for (x = i = 0; i < 64; ++i) {
if (sigismember(src, i + 1)) {
x |= 1ull << i;
}
}
Write64(dst, x);
}
void XlatLinuxToSigset(sigset_t *dst, const uint8_t src[8]) {
int i;
uint64_t x;
x = Read64(src);
sigemptyset(dst);
for (i = 0; i < 64; ++i) {
if ((1ull << i) & x) {
sigaddset(dst, i + 1);
}
}
}
static int XlatTermiosCflag(int x) {
int r = 0;
if (x & 0x0001) r |= ISIG;
if (x & 0x0040) r |= CSTOPB;
if (x & 0x0080) r |= CREAD;
if (x & 0x0100) r |= PARENB;
if (x & 0x0200) r |= PARODD;
if (x & 0x0400) r |= HUPCL;
if (x & 0x0800) r |= CLOCAL;
if ((x & 0x0030) == 0x0010) {
r |= CS6;
} else if ((x & 0x0030) == 0x0020) {
r |= CS7;
} else if ((x & 0x0030) == 0x0030) {
r |= CS8;
}
return r;
}
static int UnXlatTermiosCflag(int x) {
int r = 0;
if (x & ISIG) r |= 0x0001;
if (x & CSTOPB) r |= 0x0040;
if (x & CREAD) r |= 0x0080;
if (x & PARENB) r |= 0x0100;
if (x & PARODD) r |= 0x0200;
if (x & HUPCL) r |= 0x0400;
if (x & CLOCAL) r |= 0x0800;
if ((x & CSIZE) == CS5) {
r |= 0x0000;
} else if ((x & CSIZE) == CS6) {
r |= 0x0010;
} else if ((x & CSIZE) == CS7) {
r |= 0x0020;
} else if ((x & CSIZE) == CS8) {
r |= 0x0030;
}
return r;
}
static int XlatTermiosLflag(int x) {
int r = 0;
if (x & 0x0001) r |= ISIG;
if (x & 0x0002) r |= ICANON;
if (x & 0x0008) r |= ECHO;
if (x & 0x0010) r |= ECHOE;
if (x & 0x0020) r |= ECHOK;
if (x & 0x0040) r |= ECHONL;
if (x & 0x0080) r |= NOFLSH;
if (x & 0x0100) r |= TOSTOP;
if (x & 0x8000) r |= IEXTEN;
#ifdef ECHOCTL
if (x & 0x0200) r |= ECHOCTL;
#endif
#ifdef ECHOPRT
if (x & 0x0400) r |= ECHOPRT;
#endif
#ifdef ECHOKE
if (x & 0x0800) r |= ECHOKE;
#endif
#ifdef FLUSHO
if (x & 0x1000) r |= FLUSHO;
#endif
#ifdef PENDIN
if (x & 0x4000) r |= PENDIN;
#endif
#ifdef XCASE
if (x & 0x0004) r |= XCASE;
#endif
return r;
}
static int UnXlatTermiosLflag(int x) {
int r = 0;
if (x & ISIG) r |= 0x0001;
if (x & ICANON) r |= 0x0002;
if (x & ECHO) r |= 0x0008;
if (x & ECHOE) r |= 0x0010;
if (x & ECHOK) r |= 0x0020;
if (x & ECHONL) r |= 0x0040;
if (x & NOFLSH) r |= 0x0080;
if (x & TOSTOP) r |= 0x0100;
if (x & IEXTEN) r |= 0x8000;
#ifdef ECHOCTL
if (x & ECHOCTL) r |= 0x0200;
#endif
#ifdef ECHOPRT
if (x & ECHOPRT) r |= 0x0400;
#endif
#ifdef ECHOKE
if (x & ECHOKE) r |= 0x0800;
#endif
#ifdef FLUSHO
if (x & FLUSHO) r |= 0x1000;
#endif
#ifdef PENDIN
if (x & PENDIN) r |= 0x4000;
#endif
#ifdef XCASE
if (x & XCASE) r |= 0x0004;
#endif
return r;
}
static int XlatTermiosIflag(int x) {
int r = 0;
if (x & 0x0001) r |= IGNBRK;
if (x & 0x0002) r |= BRKINT;
if (x & 0x0004) r |= IGNPAR;
if (x & 0x0008) r |= PARMRK;
if (x & 0x0010) r |= INPCK;
if (x & 0x0020) r |= ISTRIP;
if (x & 0x0040) r |= INLCR;
if (x & 0x0080) r |= IGNCR;
if (x & 0x0100) r |= ICRNL;
if (x & 0x0400) r |= IXON;
if (x & 0x0800) r |= IXANY;
if (x & 0x1000) r |= IXOFF;
#ifdef IMAXBEL
if (x & 0x2000) r |= IMAXBEL;
#endif
#ifdef IUTF8
if (x & 0x4000) r |= IUTF8;
#endif
#ifdef IUCLC
if (x & 0x0200) r |= IUCLC;
#endif
return r;
}
static int UnXlatTermiosIflag(int x) {
int r = 0;
if (x & IGNBRK) r |= 0x0001;
if (x & BRKINT) r |= 0x0002;
if (x & IGNPAR) r |= 0x0004;
if (x & PARMRK) r |= 0x0008;
if (x & INPCK) r |= 0x0010;
if (x & ISTRIP) r |= 0x0020;
if (x & INLCR) r |= 0x0040;
if (x & IGNCR) r |= 0x0080;
if (x & ICRNL) r |= 0x0100;
if (x & IXON) r |= 0x0400;
if (x & IXANY) r |= 0x0800;
if (x & IXOFF) r |= 0x1000;
#ifdef IMAXBEL
if (x & IMAXBEL) r |= 0x2000;
#endif
#ifdef IUTF8
if (x & IUTF8) r |= 0x4000;
#endif
#ifdef IUCLC
if (x & IUCLC) r |= 0x0200;
#endif
return r;
}
static int XlatTermiosOflag(int x) {
int r = 0;
if (x & 0x0001) r |= OPOST;
#ifdef ONLCR
if (x & 0x0004) r |= ONLCR;
#endif
#ifdef OCRNL
if (x & 0x0008) r |= OCRNL;
#endif
#ifdef ONOCR
if (x & 0x0010) r |= ONOCR;
#endif
#ifdef ONLRET
if (x & 0x0020) r |= ONLRET;
#endif
#ifdef OFILL
if (x & 0x0040) r |= OFILL;
#endif
#ifdef OFDEL
if (x & 0x0080) r |= OFDEL;
#endif
#ifdef NLDLY
if ((x & 0x0100) == 0x0000) {
r |= NL0;
} else if ((x & 0x0100) == 0x0100) {
r |= NL1;
#ifdef NL2
} else if ((x & 0x0100) == 0x0000) {
r |= NL2;
#endif
#ifdef NL3
} else if ((x & 0x0100) == 0x0000) {
r |= NL3;
#endif
}
#endif
#ifdef CRDLY
if ((x & 0x0600) == 0x0000) {
r |= CR0;
} else if ((x & 0x0600) == 0x0200) {
r |= CR1;
} else if ((x & 0x0600) == 0x0400) {
r |= CR2;
} else if ((x & 0x0600) == 0x0600) {
r |= CR3;
}
#endif
#ifdef TABDLY
if ((x & 0x1800) == 0x0000) {
r |= TAB0;
#ifdef TAB1
} else if ((x & 0x1800) == 0x0800) {
r |= TAB1;
#endif
#ifdef TAB1
} else if ((x & 0x1800) == 0x1000) {
r |= TAB2;
#endif
} else if ((x & 0x1800) == 0x1800) {
r |= TAB3;
}
#endif
#ifdef BSDLY
if ((x & 0x2000) == 0x0000) {
r |= BS0;
} else if ((x & 0x2000) == 0x2000) {
r |= BS1;
}
#endif
#ifdef VTBDLY
if ((x & 0x4000) == 0x0000) {
r |= VT0;
} else if ((x & 0x4000) == 0x4000) {
r |= VT1;
}
#endif
#ifdef FFBDLY
if ((x & 0x8000) == 0x0000) {
r |= FF0;
} else if ((x & 0x8000) == 0x8000) {
r |= FF1;
}
#endif
#ifdef OLCUC
if (x & 0x0002) r |= OLCUC;
#endif
return r;
}
static int UnXlatTermiosOflag(int x) {
int r = 0;
if (x & OPOST) r |= 0x0001;
#ifdef ONLCR
if (x & ONLCR) r |= 0x0004;
#endif
#ifdef OCRNL
if (x & OCRNL) r |= 0x0008;
#endif
#ifdef ONOCR
if (x & ONOCR) r |= 0x0010;
#endif
#ifdef ONLRET
if (x & ONLRET) r |= 0x0020;
#endif
#ifdef OFILL
if (x & OFILL) r |= 0x0040;
#endif
#ifdef OFDEL
if (x & OFDEL) r |= 0x0080;
#endif
#ifdef NLDLY
if ((x & NLDLY) == NL0) {
r |= 0x0000;
} else if ((x & NLDLY) == NL1) {
r |= 0x0100;
#ifdef NL2
} else if ((x & NLDLY) == NL2) {
r |= 0x0000;
#endif
#ifdef NL3
} else if ((x & NLDLY) == NL3) {
r |= 0x0000;
#endif
}
#endif
#ifdef CRDLY
if ((x & CRDLY) == CR0) {
r |= 0x0000;
} else if ((x & CRDLY) == CR1) {
r |= 0x0200;
} else if ((x & CRDLY) == CR2) {
r |= 0x0400;
} else if ((x & CRDLY) == CR3) {
r |= 0x0600;
}
#endif
#ifdef TABDLY
if ((x & TABDLY) == TAB0) {
r |= 0x0000;
#ifdef TAB1
} else if ((x & TABDLY) == TAB1) {
r |= 0x0800;
#endif
#ifdef TAB2
} else if ((x & TABDLY) == TAB2) {
r |= 0x1000;
#endif
} else if ((x & TABDLY) == TAB3) {
r |= 0x1800;
}
#endif
#ifdef BSDLY
if ((x & BSDLY) == BS0) {
r |= 0x0000;
} else if ((x & BSDLY) == BS1) {
r |= 0x2000;
}
#endif
#ifdef VTDLY
if ((x & VTDLY) == VT0) {
r |= 0x0000;
} else if ((x & VTDLY) == VT1) {
r |= 0x4000;
}
#endif
#ifdef FFDLY
if ((x & FFDLY) == FF0) {
r |= 0x0000;
} else if ((x & FFDLY) == FF1) {
r |= 0x8000;
}
#endif
#ifdef OLCUC
if (x & OLCUC) r |= 0x0002;
#endif
return r;
}
static void XlatTermiosCc(struct termios *dst, const struct termios_bits *src) {
dst->c_cc[VINTR] = src->c_cc[0];
dst->c_cc[VQUIT] = src->c_cc[1];
dst->c_cc[VERASE] = src->c_cc[2];
dst->c_cc[VKILL] = src->c_cc[3];
dst->c_cc[VEOF] = src->c_cc[4];
dst->c_cc[VTIME] = src->c_cc[5];
dst->c_cc[VMIN] = src->c_cc[6];
dst->c_cc[VSTART] = src->c_cc[8];
dst->c_cc[VSTOP] = src->c_cc[9];
dst->c_cc[VSUSP] = src->c_cc[10];
dst->c_cc[VEOL] = src->c_cc[11];
#ifdef VSWTC
dst->c_cc[VSWTC] = src->c_cc[7];
#endif
#ifdef VREPRINT
dst->c_cc[VREPRINT] = src->c_cc[12];
#endif
#ifdef VDISCARD
dst->c_cc[VDISCARD] = src->c_cc[13];
#endif
#ifdef VWERASE
dst->c_cc[VWERASE] = src->c_cc[14];
#endif
#ifdef VLNEXT
dst->c_cc[VLNEXT] = src->c_cc[15];
#endif
#ifdef VEOL2
dst->c_cc[VEOL2] = src->c_cc[16];
#endif
}
static void UnXlatTermiosCc(struct termios_bits *dst,
const struct termios *src) {
dst->c_cc[0] = src->c_cc[VINTR];
dst->c_cc[1] = src->c_cc[VQUIT];
dst->c_cc[2] = src->c_cc[VERASE];
dst->c_cc[3] = src->c_cc[VKILL];
dst->c_cc[4] = src->c_cc[VEOF];
dst->c_cc[5] = src->c_cc[VTIME];
dst->c_cc[6] = src->c_cc[VMIN];
dst->c_cc[8] = src->c_cc[VSTART];
dst->c_cc[9] = src->c_cc[VSTOP];
dst->c_cc[10] = src->c_cc[VSUSP];
dst->c_cc[11] = src->c_cc[VEOL];
#ifdef VSWTC
dst->c_cc[7] = src->c_cc[VSWTC];
#endif
#ifdef VREPRINT
dst->c_cc[12] = src->c_cc[VREPRINT];
#endif
#ifdef VDISCARD
dst->c_cc[13] = src->c_cc[VDISCARD];
#endif
#ifdef VWERASE
dst->c_cc[14] = src->c_cc[VWERASE];
#endif
#ifdef VLNEXT
dst->c_cc[15] = src->c_cc[VLNEXT];
#endif
#ifdef VEOL2
dst->c_cc[16] = src->c_cc[VEOL2];
#endif
}
void XlatLinuxToTermios(struct termios *dst, const struct termios_bits *src) {
memset(dst, 0, sizeof(*dst));
dst->c_iflag = XlatTermiosIflag(Read32(src->c_iflag));
dst->c_oflag = XlatTermiosOflag(Read32(src->c_oflag));
dst->c_cflag = XlatTermiosCflag(Read32(src->c_cflag));
dst->c_lflag = XlatTermiosLflag(Read32(src->c_lflag));
XlatTermiosCc(dst, src);
}
void XlatTermiosToLinux(struct termios_bits *dst, const struct termios *src) {
memset(dst, 0, sizeof(*dst));
Write32(dst->c_iflag, UnXlatTermiosIflag(src->c_iflag));
Write32(dst->c_oflag, UnXlatTermiosOflag(src->c_oflag));
Write32(dst->c_cflag, UnXlatTermiosCflag(src->c_cflag));
Write32(dst->c_lflag, UnXlatTermiosLflag(src->c_lflag));
UnXlatTermiosCc(dst, src);
}