cosmopolitan/third_party/python/Lib/test/lock_tests.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

950 lines
28 KiB
Python
Raw Normal View History

"""
Various tests for synchronization primitives.
"""
import sys
import time
from _thread import start_new_thread, TIMEOUT_MAX
import threading
import unittest
import weakref
from test import support
def _wait():
# A crude wait/yield function not relying on synchronization primitives.
time.sleep(0.01)
class Bunch(object):
"""
A bunch of threads.
"""
def __init__(self, f, n, wait_before_exit=False):
"""
Construct a bunch of `n` threads running the same function `f`.
If `wait_before_exit` is True, the threads won't terminate until
do_finish() is called.
"""
self.f = f
self.n = n
self.started = []
self.finished = []
self._can_exit = not wait_before_exit
self.wait_thread = support.wait_threads_exit()
self.wait_thread.__enter__()
def task():
tid = threading.get_ident()
self.started.append(tid)
try:
f()
finally:
self.finished.append(tid)
while not self._can_exit:
_wait()
try:
for i in range(n):
start_new_thread(task, ())
except:
self._can_exit = True
raise
def wait_for_started(self):
while len(self.started) < self.n:
_wait()
def wait_for_finished(self):
while len(self.finished) < self.n:
_wait()
# Wait for threads exit
self.wait_thread.__exit__(None, None, None)
def do_finish(self):
self._can_exit = True
class BaseTestCase(unittest.TestCase):
def setUp(self):
self._threads = support.threading_setup()
def tearDown(self):
support.threading_cleanup(*self._threads)
support.reap_children()
def assertTimeout(self, actual, expected):
# The waiting and/or time.time() can be imprecise, which
# is why comparing to the expected value would sometimes fail
# (especially under Windows).
self.assertGreaterEqual(actual, expected * 0.6)
# Test nothing insane happened
self.assertLess(actual, expected * 10.0)
class BaseLockTests(BaseTestCase):
"""
Tests for both recursive and non-recursive locks.
"""
def test_constructor(self):
lock = self.locktype()
del lock
def test_repr(self):
lock = self.locktype()
self.assertRegex(repr(lock), "<unlocked .* object (.*)?at .*>")
del lock
def test_locked_repr(self):
lock = self.locktype()
lock.acquire()
self.assertRegex(repr(lock), "<locked .* object (.*)?at .*>")
del lock
def test_acquire_destroy(self):
lock = self.locktype()
lock.acquire()
del lock
def test_acquire_release(self):
lock = self.locktype()
lock.acquire()
lock.release()
del lock
def test_try_acquire(self):
lock = self.locktype()
self.assertTrue(lock.acquire(False))
lock.release()
def test_try_acquire_contended(self):
lock = self.locktype()
lock.acquire()
result = []
def f():
result.append(lock.acquire(False))
Bunch(f, 1).wait_for_finished()
self.assertFalse(result[0])
lock.release()
def test_acquire_contended(self):
lock = self.locktype()
lock.acquire()
N = 5
def f():
lock.acquire()
lock.release()
b = Bunch(f, N)
b.wait_for_started()
_wait()
self.assertEqual(len(b.finished), 0)
lock.release()
b.wait_for_finished()
self.assertEqual(len(b.finished), N)
def test_with(self):
lock = self.locktype()
def f():
lock.acquire()
lock.release()
def _with(err=None):
with lock:
if err is not None:
raise err
_with()
# Check the lock is unacquired
Bunch(f, 1).wait_for_finished()
self.assertRaises(TypeError, _with, TypeError)
# Check the lock is unacquired
Bunch(f, 1).wait_for_finished()
def test_thread_leak(self):
# The lock shouldn't leak a Thread instance when used from a foreign
# (non-threading) thread.
lock = self.locktype()
def f():
lock.acquire()
lock.release()
n = len(threading.enumerate())
# We run many threads in the hope that existing threads ids won't
# be recycled.
Bunch(f, 15).wait_for_finished()
if len(threading.enumerate()) != n:
# There is a small window during which a Thread instance's
# target function has finished running, but the Thread is still
# alive and registered. Avoid spurious failures by waiting a
# bit more (seen on a buildbot).
time.sleep(0.4)
self.assertEqual(n, len(threading.enumerate()))
def test_timeout(self):
lock = self.locktype()
# Can't set timeout if not blocking
self.assertRaises(ValueError, lock.acquire, 0, 1)
# Invalid timeout values
self.assertRaises(ValueError, lock.acquire, timeout=-100)
self.assertRaises(OverflowError, lock.acquire, timeout=1e100)
self.assertRaises(OverflowError, lock.acquire, timeout=TIMEOUT_MAX + 1)
# TIMEOUT_MAX is ok
lock.acquire(timeout=TIMEOUT_MAX)
lock.release()
t1 = time.time()
self.assertTrue(lock.acquire(timeout=5))
t2 = time.time()
# Just a sanity test that it didn't actually wait for the timeout.
self.assertLess(t2 - t1, 5)
results = []
def f():
t1 = time.time()
results.append(lock.acquire(timeout=0.5))
t2 = time.time()
results.append(t2 - t1)
Bunch(f, 1).wait_for_finished()
self.assertFalse(results[0])
self.assertTimeout(results[1], 0.5)
def test_weakref_exists(self):
lock = self.locktype()
ref = weakref.ref(lock)
self.assertIsNotNone(ref())
def test_weakref_deleted(self):
lock = self.locktype()
ref = weakref.ref(lock)
del lock
self.assertIsNone(ref())
class LockTests(BaseLockTests):
"""
Tests for non-recursive, weak locks
(which can be acquired and released from different threads).
"""
def test_reacquire(self):
# Lock needs to be released before re-acquiring.
lock = self.locktype()
phase = []
def f():
lock.acquire()
phase.append(None)
lock.acquire()
phase.append(None)
with support.wait_threads_exit():
start_new_thread(f, ())
while len(phase) == 0:
_wait()
_wait()
self.assertEqual(len(phase), 1)
lock.release()
while len(phase) == 1:
_wait()
self.assertEqual(len(phase), 2)
def test_different_thread(self):
# Lock can be released from a different thread.
lock = self.locktype()
lock.acquire()
def f():
lock.release()
b = Bunch(f, 1)
b.wait_for_finished()
lock.acquire()
lock.release()
def test_state_after_timeout(self):
# Issue #11618: check that lock is in a proper state after a
# (non-zero) timeout.
lock = self.locktype()
lock.acquire()
self.assertFalse(lock.acquire(timeout=0.01))
lock.release()
self.assertFalse(lock.locked())
self.assertTrue(lock.acquire(blocking=False))
class RLockTests(BaseLockTests):
"""
Tests for recursive locks.
"""
def test_reacquire(self):
lock = self.locktype()
lock.acquire()
lock.acquire()
lock.release()
lock.acquire()
lock.release()
lock.release()
def test_release_unacquired(self):
# Cannot release an unacquired lock
lock = self.locktype()
self.assertRaises(RuntimeError, lock.release)
lock.acquire()
lock.acquire()
lock.release()
lock.acquire()
lock.release()
lock.release()
self.assertRaises(RuntimeError, lock.release)
def test_release_save_unacquired(self):
# Cannot _release_save an unacquired lock
lock = self.locktype()
self.assertRaises(RuntimeError, lock._release_save)
lock.acquire()
lock.acquire()
lock.release()
lock.acquire()
lock.release()
lock.release()
self.assertRaises(RuntimeError, lock._release_save)
def test_different_thread(self):
# Cannot release from a different thread
lock = self.locktype()
def f():
lock.acquire()
b = Bunch(f, 1, True)
try:
self.assertRaises(RuntimeError, lock.release)
finally:
b.do_finish()
b.wait_for_finished()
def test__is_owned(self):
lock = self.locktype()
self.assertFalse(lock._is_owned())
lock.acquire()
self.assertTrue(lock._is_owned())
lock.acquire()
self.assertTrue(lock._is_owned())
result = []
def f():
result.append(lock._is_owned())
Bunch(f, 1).wait_for_finished()
self.assertFalse(result[0])
lock.release()
self.assertTrue(lock._is_owned())
lock.release()
self.assertFalse(lock._is_owned())
class EventTests(BaseTestCase):
"""
Tests for Event objects.
"""
def test_is_set(self):
evt = self.eventtype()
self.assertFalse(evt.is_set())
evt.set()
self.assertTrue(evt.is_set())
evt.set()
self.assertTrue(evt.is_set())
evt.clear()
self.assertFalse(evt.is_set())
evt.clear()
self.assertFalse(evt.is_set())
def _check_notify(self, evt):
# All threads get notified
N = 5
results1 = []
results2 = []
def f():
results1.append(evt.wait())
results2.append(evt.wait())
b = Bunch(f, N)
b.wait_for_started()
_wait()
self.assertEqual(len(results1), 0)
evt.set()
b.wait_for_finished()
self.assertEqual(results1, [True] * N)
self.assertEqual(results2, [True] * N)
def test_notify(self):
evt = self.eventtype()
self._check_notify(evt)
# Another time, after an explicit clear()
evt.set()
evt.clear()
self._check_notify(evt)
def test_timeout(self):
evt = self.eventtype()
results1 = []
results2 = []
N = 5
def f():
results1.append(evt.wait(0.0))
t1 = time.time()
r = evt.wait(0.5)
t2 = time.time()
results2.append((r, t2 - t1))
Bunch(f, N).wait_for_finished()
self.assertEqual(results1, [False] * N)
for r, dt in results2:
self.assertFalse(r)
self.assertTimeout(dt, 0.5)
# The event is set
results1 = []
results2 = []
evt.set()
Bunch(f, N).wait_for_finished()
self.assertEqual(results1, [True] * N)
for r, dt in results2:
self.assertTrue(r)
def test_set_and_clear(self):
# Issue #13502: check that wait() returns true even when the event is
# cleared before the waiting thread is woken up.
evt = self.eventtype()
results = []
timeout = 0.250
N = 5
def f():
results.append(evt.wait(timeout * 4))
b = Bunch(f, N)
b.wait_for_started()
time.sleep(timeout)
evt.set()
evt.clear()
b.wait_for_finished()
self.assertEqual(results, [True] * N)
def test_reset_internal_locks(self):
# ensure that condition is still using a Lock after reset
evt = self.eventtype()
with evt._cond:
self.assertFalse(evt._cond.acquire(False))
evt._reset_internal_locks()
with evt._cond:
self.assertFalse(evt._cond.acquire(False))
class ConditionTests(BaseTestCase):
"""
Tests for condition variables.
"""
def test_acquire(self):
cond = self.condtype()
# Be default we have an RLock: the condition can be acquired multiple
# times.
cond.acquire()
cond.acquire()
cond.release()
cond.release()
lock = threading.Lock()
cond = self.condtype(lock)
cond.acquire()
self.assertFalse(lock.acquire(False))
cond.release()
self.assertTrue(lock.acquire(False))
self.assertFalse(cond.acquire(False))
lock.release()
with cond:
self.assertFalse(lock.acquire(False))
def test_unacquired_wait(self):
cond = self.condtype()
self.assertRaises(RuntimeError, cond.wait)
def test_unacquired_notify(self):
cond = self.condtype()
self.assertRaises(RuntimeError, cond.notify)
def _check_notify(self, cond):
# Note that this test is sensitive to timing. If the worker threads
# don't execute in a timely fashion, the main thread may think they
# are further along then they are. The main thread therefore issues
# _wait() statements to try to make sure that it doesn't race ahead
# of the workers.
# Secondly, this test assumes that condition variables are not subject
# to spurious wakeups. The absence of spurious wakeups is an implementation
# detail of Condition Cariables in current CPython, but in general, not
# a guaranteed property of condition variables as a programming
# construct. In particular, it is possible that this can no longer
# be conveniently guaranteed should their implementation ever change.
N = 5
ready = []
results1 = []
results2 = []
phase_num = 0
def f():
cond.acquire()
ready.append(phase_num)
result = cond.wait()
cond.release()
results1.append((result, phase_num))
cond.acquire()
ready.append(phase_num)
result = cond.wait()
cond.release()
results2.append((result, phase_num))
b = Bunch(f, N)
b.wait_for_started()
# first wait, to ensure all workers settle into cond.wait() before
# we continue. See issues #8799 and #30727.
while len(ready) < 5:
_wait()
ready.clear()
self.assertEqual(results1, [])
# Notify 3 threads at first
cond.acquire()
cond.notify(3)
_wait()
phase_num = 1
cond.release()
while len(results1) < 3:
_wait()
self.assertEqual(results1, [(True, 1)] * 3)
self.assertEqual(results2, [])
# make sure all awaken workers settle into cond.wait()
while len(ready) < 3:
_wait()
# Notify 5 threads: they might be in their first or second wait
cond.acquire()
cond.notify(5)
_wait()
phase_num = 2
cond.release()
while len(results1) + len(results2) < 8:
_wait()
self.assertEqual(results1, [(True, 1)] * 3 + [(True, 2)] * 2)
self.assertEqual(results2, [(True, 2)] * 3)
# make sure all workers settle into cond.wait()
while len(ready) < 5:
_wait()
# Notify all threads: they are all in their second wait
cond.acquire()
cond.notify_all()
_wait()
phase_num = 3
cond.release()
while len(results2) < 5:
_wait()
self.assertEqual(results1, [(True, 1)] * 3 + [(True,2)] * 2)
self.assertEqual(results2, [(True, 2)] * 3 + [(True, 3)] * 2)
b.wait_for_finished()
def test_notify(self):
cond = self.condtype()
self._check_notify(cond)
# A second time, to check internal state is still ok.
self._check_notify(cond)
def test_timeout(self):
cond = self.condtype()
results = []
N = 5
def f():
cond.acquire()
t1 = time.time()
result = cond.wait(0.5)
t2 = time.time()
cond.release()
results.append((t2 - t1, result))
Bunch(f, N).wait_for_finished()
self.assertEqual(len(results), N)
for dt, result in results:
self.assertTimeout(dt, 0.5)
# Note that conceptually (that"s the condition variable protocol)
# a wait() may succeed even if no one notifies us and before any
# timeout occurs. Spurious wakeups can occur.
# This makes it hard to verify the result value.
# In practice, this implementation has no spurious wakeups.
self.assertFalse(result)
def test_waitfor(self):
cond = self.condtype()
state = 0
def f():
with cond:
result = cond.wait_for(lambda : state==4)
self.assertTrue(result)
self.assertEqual(state, 4)
b = Bunch(f, 1)
b.wait_for_started()
for i in range(4):
time.sleep(0.01)
with cond:
state += 1
cond.notify()
b.wait_for_finished()
def test_waitfor_timeout(self):
cond = self.condtype()
state = 0
success = []
def f():
with cond:
dt = time.time()
result = cond.wait_for(lambda : state==4, timeout=0.1)
dt = time.time() - dt
self.assertFalse(result)
self.assertTimeout(dt, 0.1)
success.append(None)
b = Bunch(f, 1)
b.wait_for_started()
# Only increment 3 times, so state == 4 is never reached.
for i in range(3):
time.sleep(0.01)
with cond:
state += 1
cond.notify()
b.wait_for_finished()
self.assertEqual(len(success), 1)
class BaseSemaphoreTests(BaseTestCase):
"""
Common tests for {bounded, unbounded} semaphore objects.
"""
def test_constructor(self):
self.assertRaises(ValueError, self.semtype, value = -1)
self.assertRaises(ValueError, self.semtype, value = -sys.maxsize)
def test_acquire(self):
sem = self.semtype(1)
sem.acquire()
sem.release()
sem = self.semtype(2)
sem.acquire()
sem.acquire()
sem.release()
sem.release()
def test_acquire_destroy(self):
sem = self.semtype()
sem.acquire()
del sem
def test_acquire_contended(self):
sem = self.semtype(7)
sem.acquire()
N = 10
sem_results = []
results1 = []
results2 = []
phase_num = 0
def f():
sem_results.append(sem.acquire())
results1.append(phase_num)
sem_results.append(sem.acquire())
results2.append(phase_num)
b = Bunch(f, 10)
b.wait_for_started()
while len(results1) + len(results2) < 6:
_wait()
self.assertEqual(results1 + results2, [0] * 6)
phase_num = 1
for i in range(7):
sem.release()
while len(results1) + len(results2) < 13:
_wait()
self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7)
phase_num = 2
for i in range(6):
sem.release()
while len(results1) + len(results2) < 19:
_wait()
self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7 + [2] * 6)
# The semaphore is still locked
self.assertFalse(sem.acquire(False))
# Final release, to let the last thread finish
sem.release()
b.wait_for_finished()
self.assertEqual(sem_results, [True] * (6 + 7 + 6 + 1))
def test_try_acquire(self):
sem = self.semtype(2)
self.assertTrue(sem.acquire(False))
self.assertTrue(sem.acquire(False))
self.assertFalse(sem.acquire(False))
sem.release()
self.assertTrue(sem.acquire(False))
def test_try_acquire_contended(self):
sem = self.semtype(4)
sem.acquire()
results = []
def f():
results.append(sem.acquire(False))
results.append(sem.acquire(False))
Bunch(f, 5).wait_for_finished()
# There can be a thread switch between acquiring the semaphore and
# appending the result, therefore results will not necessarily be
# ordered.
self.assertEqual(sorted(results), [False] * 7 + [True] * 3 )
def test_acquire_timeout(self):
sem = self.semtype(2)
self.assertRaises(ValueError, sem.acquire, False, timeout=1.0)
self.assertTrue(sem.acquire(timeout=0.005))
self.assertTrue(sem.acquire(timeout=0.005))
self.assertFalse(sem.acquire(timeout=0.005))
sem.release()
self.assertTrue(sem.acquire(timeout=0.005))
t = time.time()
self.assertFalse(sem.acquire(timeout=0.5))
dt = time.time() - t
self.assertTimeout(dt, 0.5)
def test_default_value(self):
# The default initial value is 1.
sem = self.semtype()
sem.acquire()
def f():
sem.acquire()
sem.release()
b = Bunch(f, 1)
b.wait_for_started()
_wait()
self.assertFalse(b.finished)
sem.release()
b.wait_for_finished()
def test_with(self):
sem = self.semtype(2)
def _with(err=None):
with sem:
self.assertTrue(sem.acquire(False))
sem.release()
with sem:
self.assertFalse(sem.acquire(False))
if err:
raise err
_with()
self.assertTrue(sem.acquire(False))
sem.release()
self.assertRaises(TypeError, _with, TypeError)
self.assertTrue(sem.acquire(False))
sem.release()
class SemaphoreTests(BaseSemaphoreTests):
"""
Tests for unbounded semaphores.
"""
def test_release_unacquired(self):
# Unbounded releases are allowed and increment the semaphore's value
sem = self.semtype(1)
sem.release()
sem.acquire()
sem.acquire()
sem.release()
class BoundedSemaphoreTests(BaseSemaphoreTests):
"""
Tests for bounded semaphores.
"""
def test_release_unacquired(self):
# Cannot go past the initial value
sem = self.semtype()
self.assertRaises(ValueError, sem.release)
sem.acquire()
sem.release()
self.assertRaises(ValueError, sem.release)
class BarrierTests(BaseTestCase):
"""
Tests for Barrier objects.
"""
N = 5
defaultTimeout = 2.0
def setUp(self):
self.barrier = self.barriertype(self.N, timeout=self.defaultTimeout)
def tearDown(self):
self.barrier.abort()
def run_threads(self, f):
b = Bunch(f, self.N-1)
f()
b.wait_for_finished()
def multipass(self, results, n):
m = self.barrier.parties
self.assertEqual(m, self.N)
for i in range(n):
results[0].append(True)
self.assertEqual(len(results[1]), i * m)
self.barrier.wait()
results[1].append(True)
self.assertEqual(len(results[0]), (i + 1) * m)
self.barrier.wait()
self.assertEqual(self.barrier.n_waiting, 0)
self.assertFalse(self.barrier.broken)
def test_barrier(self, passes=1):
"""
Test that a barrier is passed in lockstep
"""
results = [[],[]]
def f():
self.multipass(results, passes)
self.run_threads(f)
def test_barrier_10(self):
"""
Test that a barrier works for 10 consecutive runs
"""
return self.test_barrier(10)
def test_wait_return(self):
"""
test the return value from barrier.wait
"""
results = []
def f():
r = self.barrier.wait()
results.append(r)
self.run_threads(f)
self.assertEqual(sum(results), sum(range(self.N)))
def test_action(self):
"""
Test the 'action' callback
"""
results = []
def action():
results.append(True)
barrier = self.barriertype(self.N, action)
def f():
barrier.wait()
self.assertEqual(len(results), 1)
self.run_threads(f)
def test_abort(self):
"""
Test that an abort will put the barrier in a broken state
"""
results1 = []
results2 = []
def f():
try:
i = self.barrier.wait()
if i == self.N//2:
raise RuntimeError
self.barrier.wait()
results1.append(True)
except threading.BrokenBarrierError:
results2.append(True)
except RuntimeError:
self.barrier.abort()
pass
self.run_threads(f)
self.assertEqual(len(results1), 0)
self.assertEqual(len(results2), self.N-1)
self.assertTrue(self.barrier.broken)
def test_reset(self):
"""
Test that a 'reset' on a barrier frees the waiting threads
"""
results1 = []
results2 = []
results3 = []
def f():
i = self.barrier.wait()
if i == self.N//2:
# Wait until the other threads are all in the barrier.
while self.barrier.n_waiting < self.N-1:
time.sleep(0.001)
self.barrier.reset()
else:
try:
self.barrier.wait()
results1.append(True)
except threading.BrokenBarrierError:
results2.append(True)
# Now, pass the barrier again
self.barrier.wait()
results3.append(True)
self.run_threads(f)
self.assertEqual(len(results1), 0)
self.assertEqual(len(results2), self.N-1)
self.assertEqual(len(results3), self.N)
def test_abort_and_reset(self):
"""
Test that a barrier can be reset after being broken.
"""
results1 = []
results2 = []
results3 = []
barrier2 = self.barriertype(self.N)
def f():
try:
i = self.barrier.wait()
if i == self.N//2:
raise RuntimeError
self.barrier.wait()
results1.append(True)
except threading.BrokenBarrierError:
results2.append(True)
except RuntimeError:
self.barrier.abort()
pass
# Synchronize and reset the barrier. Must synchronize first so
# that everyone has left it when we reset, and after so that no
# one enters it before the reset.
if barrier2.wait() == self.N//2:
self.barrier.reset()
barrier2.wait()
self.barrier.wait()
results3.append(True)
self.run_threads(f)
self.assertEqual(len(results1), 0)
self.assertEqual(len(results2), self.N-1)
self.assertEqual(len(results3), self.N)
def test_timeout(self):
"""
Test wait(timeout)
"""
def f():
i = self.barrier.wait()
if i == self.N // 2:
# One thread is late!
time.sleep(1.0)
# Default timeout is 2.0, so this is shorter.
self.assertRaises(threading.BrokenBarrierError,
self.barrier.wait, 0.5)
self.run_threads(f)
def test_default_timeout(self):
"""
Test the barrier's default timeout
"""
# create a barrier with a low default timeout
barrier = self.barriertype(self.N, timeout=0.3)
def f():
i = barrier.wait()
if i == self.N // 2:
# One thread is later than the default timeout of 0.3s.
time.sleep(1.0)
self.assertRaises(threading.BrokenBarrierError, barrier.wait)
self.run_threads(f)
def test_single_thread(self):
b = self.barriertype(1)
b.wait()
b.wait()