cosmopolitan/third_party/radpajama/common-gptneox.cc

395 lines
19 KiB
C++
Raw Normal View History

/*-*-mode:c++;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8-*-│
vi: set net ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi
radpajama.com
Copyright (c) 2023 Ariel Núñez
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "third_party/radpajama/common-gptneox.h"
#include "third_party/ggml/llama_util.h"
#include "third_party/libcxx/algorithm"
#include "third_party/libcxx/cassert"
#include "third_party/libcxx/cstring"
#include "third_party/libcxx/fstream"
#include "third_party/libcxx/iostream"
#include "third_party/libcxx/iterator"
#include "third_party/libcxx/sstream"
#include "third_party/libcxx/string"
// clang-format off
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.n_threads = std::min(20., (unsigned)__get_cpu_count() * 0.75);
bool invalid_param = false;
std::string arg;
gpt_params default_params;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.seed = std::stoi(argv[i]);
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
} else if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.prompt = argv[i];
} else if (arg == "--session") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.path_session = argv[i];
} else if (arg == "-f" || arg == "--file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-n" || arg == "--n_predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
} else if (arg == "--top_k") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.top_k = std::stoi(argv[i]);
} else if (arg == "-c" || arg == "--ctx_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--memory_f32") {
params.memory_f16 = false;
} else if (arg == "--top_p") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.top_p = std::stof(argv[i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.temp = std::stof(argv[i]);
} else if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.tfs_z = std::stof(argv[i]);
} else if (arg == "--typical") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.typical_p = std::stof(argv[i]);
} else if (arg == "--repeat_last_n") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.repeat_last_n = std::stoi(argv[i]);
} else if (arg == "--repeat_penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.repeat_penalty = std::stof(argv[i]);
} else if (arg == "--frequency_penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.frequency_penalty = std::stof(argv[i]);
} else if (arg == "--presence_penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.presence_penalty = std::stof(argv[i]);
} else if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mirostat = std::stoi(argv[i]);
} else if (arg == "--mirostat_lr") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mirostat_eta = std::stof(argv[i]);
} else if (arg == "--mirostat_ent") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mirostat_tau = std::stof(argv[i]);
} else if (arg == "-b" || arg == "--batch_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
} else if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_keep = std::stoi(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter = argv[i];
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_base = argv[i];
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "--embedding") {
params.embedding = true;
} else if (arg == "--interactive-first") {
params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "--color") {
params.use_color = true;
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--mtest") {
params.mem_test = true;
} else if (arg == "--verbose-prompt") {
params.verbose_prompt = true;
} else if (arg == "-r" || arg == "--reverse-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.antiprompt.push_back(argv[i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--ignore-eos") {
params.logit_bias[gptneox_token_eos()] = -INFINITY;
} else if (arg == "--no-penalize-nl") {
params.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::stringstream ss(argv[i]);
gptneox_token key = 0;
char sign = 0;
std::string value_str;
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
} else {
invalid_param = true;
break;
}
} else if (arg == "--n_parts") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parts = std::stoi(argv[i]);
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, default_params);
exit(0);
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.input_prefix = argv[i];
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -i, --interactive run in interactive mode\n");
fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n");
fprintf(stderr, " -ins, --instruct run in instruction mode\n");
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n");
fprintf(stderr, " specified more than once for multiple prompts).\n");
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for <= 0)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: empty)\n");
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " prompt file to start generation.\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " --presence_penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
fprintf(stderr, " --frequency_penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
fprintf(stderr, " --mirostat_lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
fprintf(stderr, " --mirostat_ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
fprintf(stderr, " --memory_f32 use f32 instead of f16 for memory key+value\n");
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
if (gptneox_mlock_supported()) {
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (gptneox_mmap_supported()) {
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
fprintf(stderr, " --mtest compute maximum memory usage\n");
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
}
// TODO: not great allocating this every time
std::vector<gptneox_token> gptneox_tokenize(struct gptneox_context * ctx, const std::string & text, bool add_bos) {
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
std::vector<gptneox_token> res(text.size() + (int)add_bos);
int n = gptneox_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
assert(n >= 0);
res.resize(n);
return res;
}
/* Keep track of current color of output, and emit ANSI code if it changes. */
void set_console_color(console_state & con_st, console_color_t color) {
if (con_st.use_color && con_st.color != color) {
switch(color) {
case CONSOLE_COLOR_DEFAULT:
printf(ANSI_COLOR_RESET);
break;
case CONSOLE_COLOR_PROMPT:
printf(ANSI_COLOR_YELLOW);
break;
case CONSOLE_COLOR_USER_INPUT:
printf(ANSI_BOLD ANSI_COLOR_GREEN);
break;
}
con_st.color = color;
}
}