mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
145 lines
5.5 KiB
C
145 lines
5.5 KiB
C
|
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
||
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
|
│ Copyright 2021 Justine Alexandra Roberts Tunney │
|
||
|
│ │
|
||
|
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
|
│ any purpose with or without fee is hereby granted, provided that the │
|
||
|
│ above copyright notice and this permission notice appear in all copies. │
|
||
|
│ │
|
||
|
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
|
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
|
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
|
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
|
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
|
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
|
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
|
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
|
#include "libc/runtime/runtime.h"
|
||
|
#include "libc/str/str.h"
|
||
|
#include "third_party/mbedtls/bignum_internal.h"
|
||
|
#include "third_party/mbedtls/platform.h"
|
||
|
|
||
|
forceinline int Cmp(uint64_t *a, uint64_t *b, size_t n) {
|
||
|
size_t i;
|
||
|
uint64_t x, y;
|
||
|
while (n--) {
|
||
|
x = a[n];
|
||
|
y = b[n];
|
||
|
if (x != y) {
|
||
|
return x > y ? 1 : -1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
forceinline bool Sub(uint64_t *C, uint64_t *A, uint64_t *B, size_t n) {
|
||
|
bool cf;
|
||
|
uint64_t c, i;
|
||
|
asm volatile("xor\t%1,%1\n\t"
|
||
|
".align\t16\n1:\t"
|
||
|
"mov\t(%5,%3,8),%1\n\t"
|
||
|
"sbb\t(%6,%3,8),%1\n\t"
|
||
|
"mov\t%1,(%4,%3,8)\n\t"
|
||
|
"lea\t1(%3),%3\n\t"
|
||
|
"dec\t%2\n\t"
|
||
|
"jnz\t1b"
|
||
|
: "=@ccb"(cf), "=&r"(c), "+c"(n), "=r"(i)
|
||
|
: "r"(C), "r"(A), "r"(B), "3"(0)
|
||
|
: "cc", "memory");
|
||
|
return cf;
|
||
|
}
|
||
|
|
||
|
forceinline bool Add(uint64_t *C, uint64_t *A, uint64_t *B, size_t n) {
|
||
|
bool cf;
|
||
|
uint64_t c, i;
|
||
|
asm volatile("xor\t%1,%1\n\t"
|
||
|
".align\t16\n1:\t"
|
||
|
"mov\t(%5,%3,8),%1\n\t"
|
||
|
"adc\t(%6,%3,8),%1\n\t"
|
||
|
"mov\t%1,(%4,%3,8)\n\t"
|
||
|
"lea\t1(%3),%3\n\t"
|
||
|
"dec\t%2\n\t"
|
||
|
"jnz\t1b"
|
||
|
: "=@ccc"(cf), "=&r"(c), "+c"(n), "=r"(i)
|
||
|
: "r"(C), "r"(A), "r"(B), "3"(0)
|
||
|
: "cc", "memory");
|
||
|
return cf;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiplies huge numbers faster.
|
||
|
*
|
||
|
* For 4096 bit numbers it's twice as fast.
|
||
|
* For 16384 bit numbers it's thrice as fast.
|
||
|
*/
|
||
|
void Karatsuba(uint64_t *C, uint64_t *A, uint64_t *B, size_t n, uint64_t *K) {
|
||
|
int q, r;
|
||
|
size_t i;
|
||
|
uint64_t c, t;
|
||
|
uint64_t *x, *y;
|
||
|
if (n == 8) {
|
||
|
Mul8x8Adx(C, A, B);
|
||
|
return;
|
||
|
}
|
||
|
switch (Cmp(A, A + n / 2, n / 2) * 3 + Cmp(B + n / 2, B, n / 2)) {
|
||
|
case -1 * 3 + +0:
|
||
|
case +0 * 3 + -1:
|
||
|
case +0 * 3 + +0:
|
||
|
case +0 * 3 + +1:
|
||
|
case +1 * 3 + +0:
|
||
|
Karatsuba(C, A, B, n / 2, K + n * 2);
|
||
|
Karatsuba(C + n, A + n / 2, B + n / 2, n / 2, K + n * 2);
|
||
|
c = Add(K, C, C + n, n);
|
||
|
c += Add(C + n / 2, C + n / 2, K, n);
|
||
|
break;
|
||
|
case -1 * 3 + -1:
|
||
|
Sub(K, A + n / 2, A, n / 2);
|
||
|
Sub(K + n / 2, B, B + n / 2, n / 2);
|
||
|
Karatsuba(K + n, K, K + n / 2, n / 2, K + n * 2);
|
||
|
Karatsuba(C, A, B, n / 2, K + n * 2);
|
||
|
Karatsuba(C + n, A + n / 2, B + n / 2, n / 2, K + n * 2);
|
||
|
c = Add(K, C, C + n, n);
|
||
|
c += Add(K + n, K, K + n, n);
|
||
|
c += Add(C + n / 2, C + n / 2, K + n, n);
|
||
|
break;
|
||
|
case -1 * 3 + +1:
|
||
|
Sub(K, A + n / 2, A, n / 2);
|
||
|
Sub(K + n / 2, B + n / 2, B, n / 2);
|
||
|
Karatsuba(K + n, K, K + n / 2, n / 2, K + n * 2);
|
||
|
Karatsuba(C, A, B, n / 2, K + n * 2);
|
||
|
Karatsuba(C + n, A + n / 2, B + n / 2, n / 2, K + n * 2);
|
||
|
c = Add(K, C, C + n, n);
|
||
|
c -= Sub(K + n, K, K + n, n);
|
||
|
c += Add(C + n / 2, C + n / 2, K + n, n);
|
||
|
break;
|
||
|
case +1 * 3 + -1:
|
||
|
Sub(K, A, A + n / 2, n / 2);
|
||
|
Sub(K + n / 2, B, B + n / 2, n / 2);
|
||
|
Karatsuba(K + n, K, K + n / 2, n / 2, K + n * 2);
|
||
|
Karatsuba(C, A, B, n / 2, K + n * 2);
|
||
|
Karatsuba(C + n, A + n / 2, B + n / 2, n / 2, K + n * 2);
|
||
|
c = Add(K, C, C + n, n);
|
||
|
c -= Sub(K + n, K, K + n, n);
|
||
|
c += Add(C + n / 2, C + n / 2, K + n, n);
|
||
|
break;
|
||
|
case +1 * 3 + +1:
|
||
|
Sub(K, A, A + n / 2, n / 2);
|
||
|
Sub(K + n / 2, B + n / 2, B, n / 2);
|
||
|
Karatsuba(K + n, K, K + n / 2, n / 2, K + n * 2);
|
||
|
Karatsuba(C, A, B, n / 2, K + n * 2);
|
||
|
Karatsuba(C + n, A + n / 2, B + n / 2, n / 2, K + n * 2);
|
||
|
c = Add(K, C, C + n, n);
|
||
|
c += Add(K + n, K, K + n, n);
|
||
|
c += Add(C + n / 2, C + n / 2, K + n, n);
|
||
|
break;
|
||
|
default:
|
||
|
unreachable;
|
||
|
}
|
||
|
for (i = n / 2 + n; c && i < n + n; i++) {
|
||
|
t = C[i];
|
||
|
c = (C[i] = t + c) < t;
|
||
|
}
|
||
|
}
|