2021-05-14 09:07:09 +00:00
|
|
|
/*
|
|
|
|
** 2001 September 15
|
|
|
|
**
|
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
|
|
|
**
|
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** This file contains C code routines that are called by the SQLite parser
|
|
|
|
** when syntax rules are reduced. The routines in this file handle the
|
|
|
|
** following kinds of SQL syntax:
|
|
|
|
**
|
|
|
|
** CREATE TABLE
|
|
|
|
** DROP TABLE
|
|
|
|
** CREATE INDEX
|
|
|
|
** DROP INDEX
|
|
|
|
** creating ID lists
|
|
|
|
** BEGIN TRANSACTION
|
|
|
|
** COMMIT
|
|
|
|
** ROLLBACK
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
#include "third_party/sqlite3/sqliteInt.h"
|
2021-05-04 14:39:59 +00:00
|
|
|
|
2022-09-13 11:14:20 +00:00
|
|
|
#if __GNUC__ >= 11
|
|
|
|
#pragma GCC diagnostic ignored "-Wmisleading-indentation"
|
|
|
|
#endif
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
|
|
/*
|
|
|
|
** The TableLock structure is only used by the sqlite3TableLock() and
|
|
|
|
** codeTableLocks() functions.
|
|
|
|
*/
|
|
|
|
struct TableLock {
|
|
|
|
int iDb; /* The database containing the table to be locked */
|
|
|
|
Pgno iTab; /* The root page of the table to be locked */
|
|
|
|
u8 isWriteLock; /* True for write lock. False for a read lock */
|
|
|
|
const char *zLockName; /* Name of the table */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Record the fact that we want to lock a table at run-time.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** The table to be locked has root page iTab and is found in database iDb.
|
|
|
|
** A read or a write lock can be taken depending on isWritelock.
|
|
|
|
**
|
|
|
|
** This routine just records the fact that the lock is desired. The
|
|
|
|
** code to make the lock occur is generated by a later call to
|
|
|
|
** codeTableLocks() which occurs during sqlite3FinishCoding().
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
static SQLITE_NOINLINE void lockTable(
|
2021-05-14 09:07:09 +00:00
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
int iDb, /* Index of the database containing the table to lock */
|
|
|
|
Pgno iTab, /* Root page number of the table to be locked */
|
|
|
|
u8 isWriteLock, /* True for a write lock */
|
|
|
|
const char *zName /* Name of the table to be locked */
|
|
|
|
){
|
|
|
|
Parse *pToplevel;
|
|
|
|
int i;
|
|
|
|
int nBytes;
|
|
|
|
TableLock *p;
|
|
|
|
assert( iDb>=0 );
|
|
|
|
|
|
|
|
pToplevel = sqlite3ParseToplevel(pParse);
|
|
|
|
for(i=0; i<pToplevel->nTableLock; i++){
|
|
|
|
p = &pToplevel->aTableLock[i];
|
|
|
|
if( p->iDb==iDb && p->iTab==iTab ){
|
|
|
|
p->isWriteLock = (p->isWriteLock || isWriteLock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
|
|
|
|
pToplevel->aTableLock =
|
|
|
|
sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
|
|
|
|
if( pToplevel->aTableLock ){
|
|
|
|
p = &pToplevel->aTableLock[pToplevel->nTableLock++];
|
|
|
|
p->iDb = iDb;
|
|
|
|
p->iTab = iTab;
|
|
|
|
p->isWriteLock = isWriteLock;
|
|
|
|
p->zLockName = zName;
|
|
|
|
}else{
|
|
|
|
pToplevel->nTableLock = 0;
|
|
|
|
sqlite3OomFault(pToplevel->db);
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
void sqlite3TableLock(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
int iDb, /* Index of the database containing the table to lock */
|
|
|
|
Pgno iTab, /* Root page number of the table to be locked */
|
|
|
|
u8 isWriteLock, /* True for a write lock */
|
|
|
|
const char *zName /* Name of the table to be locked */
|
|
|
|
){
|
|
|
|
if( iDb==1 ) return;
|
|
|
|
if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
|
|
|
|
lockTable(pParse, iDb, iTab, isWriteLock, zName);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
** Code an OP_TableLock instruction for each table locked by the
|
|
|
|
** statement (configured by calls to sqlite3TableLock()).
|
|
|
|
*/
|
|
|
|
static void codeTableLocks(Parse *pParse){
|
|
|
|
int i;
|
2022-07-22 04:46:07 +00:00
|
|
|
Vdbe *pVdbe = pParse->pVdbe;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pVdbe!=0 );
|
|
|
|
|
|
|
|
for(i=0; i<pParse->nTableLock; i++){
|
|
|
|
TableLock *p = &pParse->aTableLock[i];
|
|
|
|
int p1 = p->iDb;
|
|
|
|
sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
|
|
|
|
p->zLockName, P4_STATIC);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define codeTableLocks(x)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return TRUE if the given yDbMask object is empty - if it contains no
|
|
|
|
** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
|
|
|
|
** macros when SQLITE_MAX_ATTACHED is greater than 30.
|
|
|
|
*/
|
|
|
|
#if SQLITE_MAX_ATTACHED>30
|
|
|
|
int sqlite3DbMaskAllZero(yDbMask m){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called after a single SQL statement has been
|
|
|
|
** parsed and a VDBE program to execute that statement has been
|
|
|
|
** prepared. This routine puts the finishing touches on the
|
|
|
|
** VDBE program and resets the pParse structure for the next
|
|
|
|
** parse.
|
|
|
|
**
|
|
|
|
** Note that if an error occurred, it might be the case that
|
|
|
|
** no VDBE code was generated.
|
|
|
|
*/
|
|
|
|
void sqlite3FinishCoding(Parse *pParse){
|
|
|
|
sqlite3 *db;
|
|
|
|
Vdbe *v;
|
2022-11-28 20:54:48 +00:00
|
|
|
int iDb, i;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
assert( pParse->pToplevel==0 );
|
|
|
|
db = pParse->db;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->pParse==pParse );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pParse->nested ) return;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pParse->nErr ){
|
|
|
|
if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
|
2021-05-14 09:07:09 +00:00
|
|
|
return;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->mallocFailed==0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* Begin by generating some termination code at the end of the
|
|
|
|
** vdbe program
|
|
|
|
*/
|
|
|
|
v = pParse->pVdbe;
|
|
|
|
if( v==0 ){
|
|
|
|
if( db->init.busy ){
|
|
|
|
pParse->rc = SQLITE_DONE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v==0 ) pParse->rc = SQLITE_ERROR;
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( !pParse->isMultiWrite
|
2021-05-14 09:07:09 +00:00
|
|
|
|| sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
|
|
|
|
if( v ){
|
|
|
|
if( pParse->bReturning ){
|
|
|
|
Returning *pReturning = pParse->u1.pReturning;
|
|
|
|
int addrRewind;
|
|
|
|
int reg;
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pReturning->nRetCol ){
|
|
|
|
sqlite3VdbeAddOp0(v, OP_FkCheck);
|
|
|
|
addrRewind =
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
|
|
|
|
VdbeCoverage(v);
|
|
|
|
reg = pReturning->iRetReg;
|
|
|
|
for(i=0; i<pReturning->nRetCol; i++){
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
|
|
|
|
VdbeCoverage(v);
|
|
|
|
sqlite3VdbeJumpHere(v, addrRewind);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp0(v, OP_Halt);
|
|
|
|
|
|
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
|
|
if( pParse->nTableLock>0 && db->init.busy==0 ){
|
|
|
|
sqlite3UserAuthInit(db);
|
|
|
|
if( db->auth.authLevel<UAUTH_User ){
|
|
|
|
sqlite3ErrorMsg(pParse, "user not authenticated");
|
|
|
|
pParse->rc = SQLITE_AUTH_USER;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* The cookie mask contains one bit for each database file open.
|
|
|
|
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
|
|
|
** set for each database that is used. Generate code to start a
|
|
|
|
** transaction on each used database and to verify the schema cookie
|
|
|
|
** on each used database.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
|
|
|
|
sqlite3VdbeJumpHere(v, 0);
|
|
|
|
assert( db->nDb>0 );
|
|
|
|
iDb = 0;
|
|
|
|
do{
|
|
|
|
Schema *pSchema;
|
|
|
|
if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
|
|
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
|
|
pSchema = db->aDb[iDb].pSchema;
|
|
|
|
sqlite3VdbeAddOp4Int(v,
|
|
|
|
OP_Transaction, /* Opcode */
|
|
|
|
iDb, /* P1 */
|
|
|
|
DbMaskTest(pParse->writeMask,iDb), /* P2 */
|
|
|
|
pSchema->schema_cookie, /* P3 */
|
|
|
|
pSchema->iGeneration /* P4 */
|
|
|
|
);
|
|
|
|
if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
|
|
|
|
VdbeComment((v,
|
|
|
|
"usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
|
|
|
|
}while( ++iDb<db->nDb );
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
2022-11-28 20:54:48 +00:00
|
|
|
for(i=0; i<pParse->nVtabLock; i++){
|
|
|
|
char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
|
|
|
|
sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
|
|
|
|
}
|
|
|
|
pParse->nVtabLock = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Once all the cookies have been verified and transactions opened,
|
|
|
|
** obtain the required table-locks. This is a no-op unless the
|
|
|
|
** shared-cache feature is enabled.
|
|
|
|
*/
|
|
|
|
codeTableLocks(pParse);
|
2021-05-14 09:07:09 +00:00
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Initialize any AUTOINCREMENT data structures required.
|
|
|
|
*/
|
|
|
|
sqlite3AutoincrementBegin(pParse);
|
|
|
|
|
|
|
|
/* Code constant expressions that where factored out of inner loops.
|
|
|
|
**
|
|
|
|
** The pConstExpr list might also contain expressions that we simply
|
|
|
|
** want to keep around until the Parse object is deleted. Such
|
|
|
|
** expressions have iConstExprReg==0. Do not generate code for
|
|
|
|
** those expressions, of course.
|
|
|
|
*/
|
|
|
|
if( pParse->pConstExpr ){
|
|
|
|
ExprList *pEL = pParse->pConstExpr;
|
|
|
|
pParse->okConstFactor = 0;
|
|
|
|
for(i=0; i<pEL->nExpr; i++){
|
|
|
|
int iReg = pEL->a[i].u.iConstExprReg;
|
|
|
|
sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pParse->bReturning ){
|
|
|
|
Returning *pRet = pParse->u1.pReturning;
|
|
|
|
if( pRet->nRetCol ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* Finally, jump back to the beginning of the executable code. */
|
|
|
|
sqlite3VdbeGoto(v, 1);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the VDBE program ready for execution
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( v!=0 || pParse->nErr );
|
|
|
|
assert( db->mallocFailed==0 || pParse->nErr );
|
|
|
|
if( pParse->nErr==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* A minimum of one cursor is required if autoincrement is used
|
|
|
|
* See ticket [a696379c1f08866] */
|
|
|
|
assert( pParse->pAinc==0 || pParse->nTab>0 );
|
|
|
|
sqlite3VdbeMakeReady(v, pParse);
|
|
|
|
pParse->rc = SQLITE_DONE;
|
|
|
|
}else{
|
|
|
|
pParse->rc = SQLITE_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Run the parser and code generator recursively in order to generate
|
|
|
|
** code for the SQL statement given onto the end of the pParse context
|
2022-11-28 20:54:48 +00:00
|
|
|
** currently under construction. Notes:
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
2022-11-28 20:54:48 +00:00
|
|
|
** * The final OP_Halt is not appended and other initialization
|
|
|
|
** and finalization steps are omitted because those are handling by the
|
|
|
|
** outermost parser.
|
|
|
|
**
|
|
|
|
** * Built-in SQL functions always take precedence over application-defined
|
|
|
|
** SQL functions. In other words, it is not possible to override a
|
|
|
|
** built-in function.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
|
|
|
va_list ap;
|
|
|
|
char *zSql;
|
|
|
|
sqlite3 *db = pParse->db;
|
2022-11-28 20:54:48 +00:00
|
|
|
u32 savedDbFlags = db->mDbFlags;
|
2021-05-14 09:07:09 +00:00
|
|
|
char saveBuf[PARSE_TAIL_SZ];
|
|
|
|
|
|
|
|
if( pParse->nErr ) return;
|
|
|
|
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
|
|
|
va_start(ap, zFormat);
|
|
|
|
zSql = sqlite3VMPrintf(db, zFormat, ap);
|
|
|
|
va_end(ap);
|
|
|
|
if( zSql==0 ){
|
|
|
|
/* This can result either from an OOM or because the formatted string
|
|
|
|
** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
|
|
|
|
** an error */
|
|
|
|
if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
|
|
|
|
pParse->nErr++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pParse->nested++;
|
|
|
|
memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
|
|
|
|
memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
|
2022-11-28 20:54:48 +00:00
|
|
|
db->mDbFlags |= DBFLAG_PreferBuiltin;
|
|
|
|
sqlite3RunParser(pParse, zSql);
|
|
|
|
db->mDbFlags = savedDbFlags;
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3DbFree(db, zSql);
|
|
|
|
memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
|
|
|
|
pParse->nested--;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
|
|
/*
|
|
|
|
** Return TRUE if zTable is the name of the system table that stores the
|
|
|
|
** list of users and their access credentials.
|
|
|
|
*/
|
|
|
|
int sqlite3UserAuthTable(const char *zTable){
|
|
|
|
return sqlite3_stricmp(zTable, "sqlite_user")==0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the in-memory structure that describes a particular database
|
|
|
|
** table given the name of that table and (optionally) the name of the
|
|
|
|
** database containing the table. Return NULL if not found.
|
|
|
|
**
|
|
|
|
** If zDatabase is 0, all databases are searched for the table and the
|
|
|
|
** first matching table is returned. (No checking for duplicate table
|
|
|
|
** names is done.) The search order is TEMP first, then MAIN, then any
|
|
|
|
** auxiliary databases added using the ATTACH command.
|
|
|
|
**
|
|
|
|
** See also sqlite3LocateTable().
|
|
|
|
*/
|
|
|
|
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
|
|
|
Table *p = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* All mutexes are required for schema access. Make sure we hold them. */
|
|
|
|
assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
|
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
|
|
/* Only the admin user is allowed to know that the sqlite_user table
|
|
|
|
** exists */
|
|
|
|
if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( zDatabase ){
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
|
|
|
|
}
|
|
|
|
if( i>=db->nDb ){
|
|
|
|
/* No match against the official names. But always match "main"
|
|
|
|
** to schema 0 as a legacy fallback. */
|
|
|
|
if( sqlite3StrICmp(zDatabase,"main")==0 ){
|
|
|
|
i = 0;
|
|
|
|
}else{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
|
|
|
|
if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
|
|
|
|
if( i==1 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
|
|
|
|
|| sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
|
|
|
|
|| sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
2022-07-22 04:46:07 +00:00
|
|
|
p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
|
2022-11-28 20:54:48 +00:00
|
|
|
LEGACY_TEMP_SCHEMA_TABLE);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
|
2022-11-28 20:54:48 +00:00
|
|
|
LEGACY_SCHEMA_TABLE);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* Match against TEMP first */
|
|
|
|
p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
|
|
|
|
if( p ) return p;
|
|
|
|
/* The main database is second */
|
|
|
|
p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
|
|
|
|
if( p ) return p;
|
|
|
|
/* Attached databases are in order of attachment */
|
|
|
|
for(i=2; i<db->nDb; i++){
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, i, 0) );
|
|
|
|
p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
|
|
|
|
if( p ) break;
|
|
|
|
}
|
|
|
|
if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
|
|
|
|
p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
|
|
|
|
}else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
|
2022-07-22 04:46:07 +00:00
|
|
|
p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
|
2022-11-28 20:54:48 +00:00
|
|
|
LEGACY_TEMP_SCHEMA_TABLE);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the in-memory structure that describes a particular database
|
|
|
|
** table given the name of that table and (optionally) the name of the
|
|
|
|
** database containing the table. Return NULL if not found. Also leave an
|
|
|
|
** error message in pParse->zErrMsg.
|
|
|
|
**
|
|
|
|
** The difference between this routine and sqlite3FindTable() is that this
|
|
|
|
** routine leaves an error message in pParse->zErrMsg where
|
|
|
|
** sqlite3FindTable() does not.
|
|
|
|
*/
|
|
|
|
Table *sqlite3LocateTable(
|
|
|
|
Parse *pParse, /* context in which to report errors */
|
|
|
|
u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
|
|
|
|
const char *zName, /* Name of the table we are looking for */
|
|
|
|
const char *zDbase /* Name of the database. Might be NULL */
|
|
|
|
){
|
|
|
|
Table *p;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
|
|
** and code in pParse and return NULL. */
|
2022-07-22 04:46:07 +00:00
|
|
|
if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
|
2021-05-14 09:07:09 +00:00
|
|
|
&& SQLITE_OK!=sqlite3ReadSchema(pParse)
|
|
|
|
){
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
p = sqlite3FindTable(db, zName, zDbase);
|
|
|
|
if( p==0 ){
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/* If zName is the not the name of a table in the schema created using
|
|
|
|
** CREATE, then check to see if it is the name of an virtual table that
|
|
|
|
** can be an eponymous virtual table. */
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
|
|
|
|
if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
|
|
|
|
pMod = sqlite3PragmaVtabRegister(db, zName);
|
|
|
|
}
|
|
|
|
if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
|
2022-11-28 20:54:48 +00:00
|
|
|
testcase( pMod->pEpoTab==0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
return pMod->pEpoTab;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( flags & LOCATE_NOERR ) return 0;
|
|
|
|
pParse->checkSchema = 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
}else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
p = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( p==0 ){
|
|
|
|
const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
|
|
|
|
if( zDbase ){
|
|
|
|
sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
|
|
|
|
}else{
|
|
|
|
sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
}else{
|
|
|
|
assert( HasRowid(p) || p->iPKey<0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the table identified by *p.
|
|
|
|
**
|
|
|
|
** This is a wrapper around sqlite3LocateTable(). The difference between
|
|
|
|
** sqlite3LocateTable() and this function is that this function restricts
|
|
|
|
** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
|
|
|
|
** non-NULL if it is part of a view or trigger program definition. See
|
|
|
|
** sqlite3FixSrcList() for details.
|
|
|
|
*/
|
|
|
|
Table *sqlite3LocateTableItem(
|
2022-07-22 04:46:07 +00:00
|
|
|
Parse *pParse,
|
2021-05-14 09:07:09 +00:00
|
|
|
u32 flags,
|
|
|
|
SrcItem *p
|
|
|
|
){
|
|
|
|
const char *zDb;
|
|
|
|
assert( p->pSchema==0 || p->zDatabase==0 );
|
|
|
|
if( p->pSchema ){
|
|
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
|
|
|
|
zDb = pParse->db->aDb[iDb].zDbSName;
|
|
|
|
}else{
|
|
|
|
zDb = p->zDatabase;
|
|
|
|
}
|
|
|
|
return sqlite3LocateTable(pParse, flags, p->zName, zDb);
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/*
|
|
|
|
** Return the preferred table name for system tables. Translate legacy
|
|
|
|
** names into the new preferred names, as appropriate.
|
|
|
|
*/
|
|
|
|
const char *sqlite3PreferredTableName(const char *zName){
|
|
|
|
if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
|
|
|
|
if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
|
|
|
|
return PREFERRED_SCHEMA_TABLE;
|
|
|
|
}
|
|
|
|
if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
|
|
|
|
return PREFERRED_TEMP_SCHEMA_TABLE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return zName;
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Locate the in-memory structure that describes
|
2021-05-14 09:07:09 +00:00
|
|
|
** a particular index given the name of that index
|
|
|
|
** and the name of the database that contains the index.
|
|
|
|
** Return NULL if not found.
|
|
|
|
**
|
|
|
|
** If zDatabase is 0, all databases are searched for the
|
|
|
|
** table and the first matching index is returned. (No checking
|
|
|
|
** for duplicate index names is done.) The search order is
|
|
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
|
|
** using the ATTACH command.
|
|
|
|
*/
|
|
|
|
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
|
|
|
Index *p = 0;
|
|
|
|
int i;
|
|
|
|
/* All mutexes are required for schema access. Make sure we hold them. */
|
|
|
|
assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
|
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
|
|
Schema *pSchema = db->aDb[j].pSchema;
|
|
|
|
assert( pSchema );
|
|
|
|
if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, j, 0) );
|
|
|
|
p = sqlite3HashFind(&pSchema->idxHash, zName);
|
|
|
|
if( p ) break;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Reclaim the memory used by an index
|
|
|
|
*/
|
|
|
|
void sqlite3FreeIndex(sqlite3 *db, Index *p){
|
|
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
|
|
sqlite3DeleteIndexSamples(db, p);
|
|
|
|
#endif
|
|
|
|
sqlite3ExprDelete(db, p->pPartIdxWhere);
|
|
|
|
sqlite3ExprListDelete(db, p->aColExpr);
|
|
|
|
sqlite3DbFree(db, p->zColAff);
|
|
|
|
if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
|
|
sqlite3_free(p->aiRowEst);
|
|
|
|
#endif
|
|
|
|
sqlite3DbFree(db, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** For the index called zIdxName which is found in the database iDb,
|
|
|
|
** unlike that index from its Table then remove the index from
|
|
|
|
** the index hash table and free all memory structures associated
|
|
|
|
** with the index.
|
|
|
|
*/
|
|
|
|
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
|
|
|
Index *pIndex;
|
|
|
|
Hash *pHash;
|
|
|
|
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
pHash = &db->aDb[iDb].pSchema->idxHash;
|
|
|
|
pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
|
|
|
|
if( ALWAYS(pIndex) ){
|
|
|
|
if( pIndex->pTable->pIndex==pIndex ){
|
|
|
|
pIndex->pTable->pIndex = pIndex->pNext;
|
|
|
|
}else{
|
|
|
|
Index *p;
|
|
|
|
/* Justification of ALWAYS(); The index must be on the list of
|
|
|
|
** indices. */
|
|
|
|
p = pIndex->pTable->pIndex;
|
|
|
|
while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
|
|
|
|
if( ALWAYS(p && p->pNext==pIndex) ){
|
|
|
|
p->pNext = pIndex->pNext;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqlite3FreeIndex(db, pIndex);
|
|
|
|
}
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Look through the list of open database files in db->aDb[] and if
|
|
|
|
** any have been closed, remove them from the list. Reallocate the
|
|
|
|
** db->aDb[] structure to a smaller size, if possible.
|
|
|
|
**
|
|
|
|
** Entry 0 (the "main" database) and entry 1 (the "temp" database)
|
|
|
|
** are never candidates for being collapsed.
|
|
|
|
*/
|
|
|
|
void sqlite3CollapseDatabaseArray(sqlite3 *db){
|
|
|
|
int i, j;
|
|
|
|
for(i=j=2; i<db->nDb; i++){
|
|
|
|
struct Db *pDb = &db->aDb[i];
|
|
|
|
if( pDb->pBt==0 ){
|
|
|
|
sqlite3DbFree(db, pDb->zDbSName);
|
|
|
|
pDb->zDbSName = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if( j<i ){
|
|
|
|
db->aDb[j] = db->aDb[i];
|
|
|
|
}
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
db->nDb = j;
|
|
|
|
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
|
|
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
|
|
sqlite3DbFree(db, db->aDb);
|
|
|
|
db->aDb = db->aDbStatic;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Reset the schema for the database at index iDb. Also reset the
|
|
|
|
** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
|
|
|
|
** Deferred resets may be run by calling with iDb<0.
|
|
|
|
*/
|
|
|
|
void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
|
|
|
|
int i;
|
|
|
|
assert( iDb<db->nDb );
|
|
|
|
|
|
|
|
if( iDb>=0 ){
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
DbSetProperty(db, iDb, DB_ResetWanted);
|
|
|
|
DbSetProperty(db, 1, DB_ResetWanted);
|
|
|
|
db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( db->nSchemaLock==0 ){
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
if( DbHasProperty(db, i, DB_ResetWanted) ){
|
|
|
|
sqlite3SchemaClear(db->aDb[i].pSchema);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Erase all schema information from all attached databases (including
|
|
|
|
** "main" and "temp") for a single database connection.
|
|
|
|
*/
|
|
|
|
void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
|
|
|
|
int i;
|
|
|
|
sqlite3BtreeEnterAll(db);
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
Db *pDb = &db->aDb[i];
|
|
|
|
if( pDb->pSchema ){
|
|
|
|
if( db->nSchemaLock==0 ){
|
|
|
|
sqlite3SchemaClear(pDb->pSchema);
|
|
|
|
}else{
|
|
|
|
DbSetProperty(db, i, DB_ResetWanted);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
|
|
|
|
sqlite3VtabUnlockList(db);
|
|
|
|
sqlite3BtreeLeaveAll(db);
|
|
|
|
if( db->nSchemaLock==0 ){
|
|
|
|
sqlite3CollapseDatabaseArray(db);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called when a commit occurs.
|
|
|
|
*/
|
|
|
|
void sqlite3CommitInternalChanges(sqlite3 *db){
|
|
|
|
db->mDbFlags &= ~DBFLAG_SchemaChange;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/*
|
|
|
|
** Set the expression associated with a column. This is usually
|
|
|
|
** the DEFAULT value, but might also be the expression that computes
|
|
|
|
** the value for a generated column.
|
|
|
|
*/
|
|
|
|
void sqlite3ColumnSetExpr(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
Table *pTab, /* The table containing the column */
|
|
|
|
Column *pCol, /* The column to receive the new DEFAULT expression */
|
|
|
|
Expr *pExpr /* The new default expression */
|
|
|
|
){
|
|
|
|
ExprList *pList;
|
|
|
|
assert( IsOrdinaryTable(pTab) );
|
|
|
|
pList = pTab->u.tab.pDfltList;
|
|
|
|
if( pCol->iDflt==0
|
|
|
|
|| NEVER(pList==0)
|
|
|
|
|| NEVER(pList->nExpr<pCol->iDflt)
|
|
|
|
){
|
|
|
|
pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
|
|
|
|
pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
|
|
|
|
}else{
|
|
|
|
sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
|
|
|
|
pList->a[pCol->iDflt-1].pExpr = pExpr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the expression associated with a column. The expression might be
|
|
|
|
** the DEFAULT clause or the AS clause of a generated column.
|
|
|
|
** Return NULL if the column has no associated expression.
|
|
|
|
*/
|
|
|
|
Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
|
|
|
|
if( pCol->iDflt==0 ) return 0;
|
|
|
|
if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
|
|
|
|
if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
|
|
|
|
if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
|
|
|
|
return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Set the collating sequence name for a column.
|
|
|
|
*/
|
|
|
|
void sqlite3ColumnSetColl(
|
|
|
|
sqlite3 *db,
|
|
|
|
Column *pCol,
|
|
|
|
const char *zColl
|
|
|
|
){
|
|
|
|
i64 nColl;
|
|
|
|
i64 n;
|
|
|
|
char *zNew;
|
|
|
|
assert( zColl!=0 );
|
|
|
|
n = sqlite3Strlen30(pCol->zCnName) + 1;
|
|
|
|
if( pCol->colFlags & COLFLAG_HASTYPE ){
|
|
|
|
n += sqlite3Strlen30(pCol->zCnName+n) + 1;
|
|
|
|
}
|
|
|
|
nColl = sqlite3Strlen30(zColl) + 1;
|
|
|
|
zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
|
|
|
|
if( zNew ){
|
|
|
|
pCol->zCnName = zNew;
|
|
|
|
memcpy(pCol->zCnName + n, zColl, nColl);
|
|
|
|
pCol->colFlags |= COLFLAG_HASCOLL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the collating squence name for a column
|
|
|
|
*/
|
|
|
|
const char *sqlite3ColumnColl(Column *pCol){
|
|
|
|
const char *z;
|
|
|
|
if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
|
|
|
|
z = pCol->zCnName;
|
|
|
|
while( *z ){ z++; }
|
|
|
|
if( pCol->colFlags & COLFLAG_HASTYPE ){
|
|
|
|
do{ z++; }while( *z );
|
|
|
|
}
|
|
|
|
return z+1;
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/*
|
|
|
|
** Delete memory allocated for the column names of a table or view (the
|
|
|
|
** Table.aCol[] array).
|
|
|
|
*/
|
|
|
|
void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
|
|
|
|
int i;
|
|
|
|
Column *pCol;
|
|
|
|
assert( pTable!=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( (pCol = pTable->aCol)!=0 ){
|
|
|
|
for(i=0; i<pTable->nCol; i++, pCol++){
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
|
|
|
|
sqlite3DbFree(db, pCol->zCnName);
|
|
|
|
}
|
|
|
|
sqlite3DbNNFreeNN(db, pTable->aCol);
|
|
|
|
if( IsOrdinaryTable(pTable) ){
|
|
|
|
sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
|
|
|
|
}
|
|
|
|
if( db->pnBytesFreed==0 ){
|
|
|
|
pTable->aCol = 0;
|
|
|
|
pTable->nCol = 0;
|
|
|
|
if( IsOrdinaryTable(pTable) ){
|
|
|
|
pTable->u.tab.pDfltList = 0;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Remove the memory data structures associated with the given
|
|
|
|
** Table. No changes are made to disk by this routine.
|
|
|
|
**
|
|
|
|
** This routine just deletes the data structure. It does not unlink
|
|
|
|
** the table data structure from the hash table. But it does destroy
|
2022-07-22 04:46:07 +00:00
|
|
|
** memory structures of the indices and foreign keys associated with
|
2021-05-14 09:07:09 +00:00
|
|
|
** the table.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** The db parameter is optional. It is needed if the Table object
|
2021-05-14 09:07:09 +00:00
|
|
|
** contains lookaside memory. (Table objects in the schema do not use
|
|
|
|
** lookaside memory, but some ephemeral Table objects do.) Or the
|
|
|
|
** db parameter can be used with db->pnBytesFreed to measure the memory
|
|
|
|
** used by the Table object.
|
|
|
|
*/
|
|
|
|
static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
|
|
|
|
Index *pIndex, *pNext;
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Record the number of outstanding lookaside allocations in schema Tables
|
|
|
|
** prior to doing any free() operations. Since schema Tables do not use
|
2022-07-22 04:46:07 +00:00
|
|
|
** lookaside, this number should not change.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** If malloc has already failed, it may be that it failed while allocating
|
|
|
|
** a Table object that was going to be marked ephemeral. So do not check
|
|
|
|
** that no lookaside memory is used in this case either. */
|
|
|
|
int nLookaside = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db!=0 );
|
|
|
|
if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
nLookaside = sqlite3LookasideUsed(db, 0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Delete all indices associated with this table. */
|
|
|
|
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
|
|
pNext = pIndex->pNext;
|
|
|
|
assert( pIndex->pSchema==pTable->pSchema
|
|
|
|
|| (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
|
2022-11-28 20:54:48 +00:00
|
|
|
if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){
|
2022-07-22 04:46:07 +00:00
|
|
|
char *zName = pIndex->zName;
|
2021-05-14 09:07:09 +00:00
|
|
|
TESTONLY ( Index *pOld = ) sqlite3HashInsert(
|
|
|
|
&pIndex->pSchema->idxHash, zName, 0
|
|
|
|
);
|
|
|
|
assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
|
|
|
assert( pOld==pIndex || pOld==0 );
|
|
|
|
}
|
|
|
|
sqlite3FreeIndex(db, pIndex);
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IsOrdinaryTable(pTable) ){
|
|
|
|
sqlite3FkDelete(db, pTable);
|
|
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUAL_TABLE
|
|
|
|
else if( IsVirtual(pTable) ){
|
|
|
|
sqlite3VtabClear(db, pTable);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
else{
|
|
|
|
assert( IsView(pTable) );
|
|
|
|
sqlite3SelectDelete(db, pTable->u.view.pSelect);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* Delete the Table structure itself.
|
|
|
|
*/
|
|
|
|
sqlite3DeleteColumnNames(db, pTable);
|
|
|
|
sqlite3DbFree(db, pTable->zName);
|
|
|
|
sqlite3DbFree(db, pTable->zColAff);
|
|
|
|
sqlite3ExprListDelete(db, pTable->pCheck);
|
|
|
|
sqlite3DbFree(db, pTable);
|
|
|
|
|
|
|
|
/* Verify that no lookaside memory was used by schema tables */
|
|
|
|
assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
|
|
|
|
}
|
|
|
|
void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
|
|
|
|
/* Do not delete the table until the reference count reaches zero. */
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( !pTable ) return;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return;
|
2021-05-14 09:07:09 +00:00
|
|
|
deleteTable(db, pTable);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Unlink the given table from the hash tables and the delete the
|
|
|
|
** table structure with all its indices and foreign keys.
|
|
|
|
*/
|
|
|
|
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
|
|
|
Table *p;
|
|
|
|
Db *pDb;
|
|
|
|
|
|
|
|
assert( db!=0 );
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
assert( zTabName );
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
|
|
|
|
pDb = &db->aDb[iDb];
|
|
|
|
p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
|
|
|
|
sqlite3DeleteTable(db, p);
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Given a token, return a string that consists of the text of that
|
|
|
|
** token. Space to hold the returned string
|
|
|
|
** is obtained from sqliteMalloc() and must be freed by the calling
|
|
|
|
** function.
|
|
|
|
**
|
|
|
|
** Any quotation marks (ex: "name", 'name', [name], or `name`) that
|
|
|
|
** surround the body of the token are removed.
|
|
|
|
**
|
|
|
|
** Tokens are often just pointers into the original SQL text and so
|
|
|
|
** are not \000 terminated and are not persistent. The returned string
|
|
|
|
** is \000 terminated and is persistent.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
|
2021-05-14 09:07:09 +00:00
|
|
|
char *zName;
|
|
|
|
if( pName ){
|
2022-11-28 20:54:48 +00:00
|
|
|
zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3Dequote(zName);
|
|
|
|
}else{
|
|
|
|
zName = 0;
|
|
|
|
}
|
|
|
|
return zName;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Open the sqlite_schema table stored in database number iDb for
|
|
|
|
** writing. The table is opened using cursor 0.
|
|
|
|
*/
|
|
|
|
void sqlite3OpenSchemaTable(Parse *p, int iDb){
|
|
|
|
Vdbe *v = sqlite3GetVdbe(p);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
|
|
|
|
if( p->nTab==0 ){
|
|
|
|
p->nTab = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Parameter zName points to a nul-terminated buffer containing the name
|
|
|
|
** of a database ("main", "temp" or the name of an attached db). This
|
|
|
|
** function returns the index of the named database in db->aDb[], or
|
|
|
|
** -1 if the named db cannot be found.
|
|
|
|
*/
|
|
|
|
int sqlite3FindDbName(sqlite3 *db, const char *zName){
|
|
|
|
int i = -1; /* Database number */
|
|
|
|
if( zName ){
|
|
|
|
Db *pDb;
|
|
|
|
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
|
|
|
if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
|
|
|
|
/* "main" is always an acceptable alias for the primary database
|
|
|
|
** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
|
|
|
|
if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The token *pName contains the name of a database (either "main" or
|
|
|
|
** "temp" or the name of an attached db). This routine returns the
|
2022-07-22 04:46:07 +00:00
|
|
|
** index of the named database in db->aDb[], or -1 if the named db
|
2021-05-14 09:07:09 +00:00
|
|
|
** does not exist.
|
|
|
|
*/
|
|
|
|
int sqlite3FindDb(sqlite3 *db, Token *pName){
|
|
|
|
int i; /* Database number */
|
|
|
|
char *zName; /* Name we are searching for */
|
|
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
|
|
i = sqlite3FindDbName(db, zName);
|
|
|
|
sqlite3DbFree(db, zName);
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The table or view or trigger name is passed to this routine via tokens
|
|
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
|
|
**
|
|
|
|
** CREATE TABLE xxx.yyy (...);
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
|
|
** the table name is not fully qualified, i.e.:
|
|
|
|
**
|
|
|
|
** CREATE TABLE yyy(...);
|
|
|
|
**
|
|
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
|
|
**
|
|
|
|
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
|
|
|
** pName2) that stores the unqualified table name. The index of the
|
|
|
|
** database "xxx" is returned.
|
|
|
|
*/
|
|
|
|
int sqlite3TwoPartName(
|
|
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
|
|
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
|
|
|
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
|
|
|
Token **pUnqual /* Write the unqualified object name here */
|
|
|
|
){
|
|
|
|
int iDb; /* Database holding the object */
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
|
|
|
|
assert( pName2!=0 );
|
|
|
|
if( pName2->n>0 ){
|
|
|
|
if( db->init.busy ) {
|
|
|
|
sqlite3ErrorMsg(pParse, "corrupt database");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
*pUnqual = pName2;
|
|
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
|
|
if( iDb<0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
|
2021-05-14 09:07:09 +00:00
|
|
|
|| (db->mDbFlags & DBFLAG_Vacuum)!=0);
|
|
|
|
iDb = db->init.iDb;
|
|
|
|
*pUnqual = pName1;
|
|
|
|
}
|
|
|
|
return iDb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** True if PRAGMA writable_schema is ON
|
|
|
|
*/
|
|
|
|
int sqlite3WritableSchema(sqlite3 *db){
|
|
|
|
testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
|
|
|
|
testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
|
|
|
|
SQLITE_WriteSchema );
|
|
|
|
testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
|
|
|
|
SQLITE_Defensive );
|
|
|
|
testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
|
|
|
|
(SQLITE_WriteSchema|SQLITE_Defensive) );
|
|
|
|
return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is used to check if the UTF-8 string zName is a legal
|
|
|
|
** unqualified name for a new schema object (table, index, view or
|
|
|
|
** trigger). All names are legal except those that begin with the string
|
|
|
|
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
|
|
|
** is reserved for internal use.
|
|
|
|
**
|
|
|
|
** When parsing the sqlite_schema table, this routine also checks to
|
|
|
|
** make sure the "type", "name", and "tbl_name" columns are consistent
|
|
|
|
** with the SQL.
|
|
|
|
*/
|
|
|
|
int sqlite3CheckObjectName(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
const char *zName, /* Name of the object to check */
|
|
|
|
const char *zType, /* Type of this object */
|
|
|
|
const char *zTblName /* Parent table name for triggers and indexes */
|
|
|
|
){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( sqlite3WritableSchema(db)
|
|
|
|
|| db->init.imposterTable
|
|
|
|
|| !sqlite3Config.bExtraSchemaChecks
|
|
|
|
){
|
|
|
|
/* Skip these error checks for writable_schema=ON */
|
|
|
|
return SQLITE_OK;
|
|
|
|
}
|
|
|
|
if( db->init.busy ){
|
|
|
|
if( sqlite3_stricmp(zType, db->init.azInit[0])
|
|
|
|
|| sqlite3_stricmp(zName, db->init.azInit[1])
|
|
|
|
|| sqlite3_stricmp(zTblName, db->init.azInit[2])
|
|
|
|
){
|
|
|
|
sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
|
|
|
|
return SQLITE_ERROR;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
|
|
|
|
|| (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
|
|
|
|
){
|
|
|
|
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
|
|
|
|
zName);
|
|
|
|
return SQLITE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the PRIMARY KEY index of a table
|
|
|
|
*/
|
|
|
|
Index *sqlite3PrimaryKeyIndex(Table *pTab){
|
|
|
|
Index *p;
|
|
|
|
for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Convert an table column number into a index column number. That is,
|
|
|
|
** for the column iCol in the table (as defined by the CREATE TABLE statement)
|
|
|
|
** find the (first) offset of that column in index pIdx. Or return -1
|
|
|
|
** if column iCol is not used in index pIdx.
|
|
|
|
*/
|
|
|
|
i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
|
|
if( iCol==pIdx->aiColumn[i] ) return i;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
/* Convert a storage column number into a table column number.
|
|
|
|
**
|
|
|
|
** The storage column number (0,1,2,....) is the index of the value
|
|
|
|
** as it appears in the record on disk. The true column number
|
|
|
|
** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** The storage column number is less than the table column number if
|
|
|
|
** and only there are VIRTUAL columns to the left.
|
|
|
|
**
|
|
|
|
** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
|
|
|
|
*/
|
|
|
|
i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
|
|
|
|
if( pTab->tabFlags & TF_HasVirtual ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<=iCol; i++){
|
|
|
|
if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return iCol;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
/* Convert a table column number into a storage column number.
|
|
|
|
**
|
|
|
|
** The storage column number (0,1,2,....) is the index of the value
|
|
|
|
** as it appears in the record on disk. Or, if the input column is
|
|
|
|
** the N-th virtual column (zero-based) then the storage number is
|
2022-07-22 04:46:07 +00:00
|
|
|
** the number of non-virtual columns in the table plus N.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** The true column number is the index (0,1,2,...) of the column in
|
|
|
|
** the CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** If the input column is a VIRTUAL column, then it should not appear
|
|
|
|
** in storage. But the value sometimes is cached in registers that
|
|
|
|
** follow the range of registers used to construct storage. This
|
|
|
|
** avoids computing the same VIRTUAL column multiple times, and provides
|
|
|
|
** values for use by OP_Param opcodes in triggers. Hence, if the
|
|
|
|
** input column is a VIRTUAL table, put it after all the other columns.
|
|
|
|
**
|
|
|
|
** In the following, N means "normal column", S means STORED, and
|
|
|
|
** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
|
|
|
|
**
|
|
|
|
** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
|
|
|
|
** -- 0 1 2 3 4 5 6 7 8
|
|
|
|
**
|
|
|
|
** Then the mapping from this function is as follows:
|
|
|
|
**
|
|
|
|
** INPUTS: 0 1 2 3 4 5 6 7 8
|
|
|
|
** OUTPUTS: 0 1 6 2 3 7 4 5 8
|
|
|
|
**
|
|
|
|
** So, in other words, this routine shifts all the virtual columns to
|
|
|
|
** the end.
|
|
|
|
**
|
|
|
|
** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
|
|
|
|
** this routine is a no-op macro. If the pTab does not have any virtual
|
|
|
|
** columns, then this routine is no-op that always return iCol. If iCol
|
|
|
|
** is negative (indicating the ROWID column) then this routine return iCol.
|
|
|
|
*/
|
|
|
|
i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
|
|
|
|
int i;
|
|
|
|
i16 n;
|
|
|
|
assert( iCol<pTab->nCol );
|
|
|
|
if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
|
|
|
|
for(i=0, n=0; i<iCol; i++){
|
|
|
|
if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
|
|
|
|
}
|
|
|
|
if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
|
|
|
|
/* iCol is a virtual column itself */
|
|
|
|
return pTab->nNVCol + i - n;
|
|
|
|
}else{
|
|
|
|
/* iCol is a normal or stored column */
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/*
|
|
|
|
** Insert a single OP_JournalMode query opcode in order to force the
|
|
|
|
** prepared statement to return false for sqlite3_stmt_readonly(). This
|
|
|
|
** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
|
|
|
|
** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
|
|
|
|
** will return false for sqlite3_stmt_readonly() even if that statement
|
|
|
|
** is a read-only no-op.
|
|
|
|
*/
|
|
|
|
static void sqlite3ForceNotReadOnly(Parse *pParse){
|
|
|
|
int iReg = ++pParse->nMem;
|
|
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
|
|
|
|
sqlite3VdbeUsesBtree(v, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/*
|
|
|
|
** Begin constructing a new table representation in memory. This is
|
|
|
|
** the first of several action routines that get called in response
|
|
|
|
** to a CREATE TABLE statement. In particular, this routine is called
|
|
|
|
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
|
|
|
** flag is true if the table should be stored in the auxiliary database
|
|
|
|
** file instead of in the main database file. This is normally the case
|
|
|
|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
|
|
** CREATE and TABLE.
|
|
|
|
**
|
|
|
|
** The new table record is initialized and put in pParse->pNewTable.
|
|
|
|
** As more of the CREATE TABLE statement is parsed, additional action
|
|
|
|
** routines will be called to add more information to this record.
|
|
|
|
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
|
|
|
** is called to complete the construction of the new table record.
|
|
|
|
*/
|
|
|
|
void sqlite3StartTable(
|
|
|
|
Parse *pParse, /* Parser context */
|
|
|
|
Token *pName1, /* First part of the name of the table or view */
|
|
|
|
Token *pName2, /* Second part of the name of the table or view */
|
|
|
|
int isTemp, /* True if this is a TEMP table */
|
|
|
|
int isView, /* True if this is a VIEW */
|
|
|
|
int isVirtual, /* True if this is a VIRTUAL table */
|
|
|
|
int noErr /* Do nothing if table already exists */
|
|
|
|
){
|
|
|
|
Table *pTable;
|
|
|
|
char *zName = 0; /* The name of the new table */
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
Vdbe *v;
|
|
|
|
int iDb; /* Database number to create the table in */
|
|
|
|
Token *pName; /* Unqualified name of the table to create */
|
|
|
|
|
|
|
|
if( db->init.busy && db->init.newTnum==1 ){
|
|
|
|
/* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
|
|
|
|
iDb = db->init.iDb;
|
|
|
|
zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
|
|
|
|
pName = pName1;
|
|
|
|
}else{
|
|
|
|
/* The common case */
|
|
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
|
|
if( iDb<0 ) return;
|
|
|
|
if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* If creating a temp table, the name may not be qualified. Unless
|
2021-05-14 09:07:09 +00:00
|
|
|
** the database name is "temp" anyway. */
|
|
|
|
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
|
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameTokenMap(pParse, (void*)zName, pName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pParse->sNameToken = *pName;
|
|
|
|
if( zName==0 ) return;
|
|
|
|
if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
if( db->init.iDb==1 ) isTemp = 1;
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
assert( isTemp==0 || isTemp==1 );
|
|
|
|
assert( isView==0 || isView==1 );
|
|
|
|
{
|
|
|
|
static const u8 aCode[] = {
|
|
|
|
SQLITE_CREATE_TABLE,
|
|
|
|
SQLITE_CREATE_TEMP_TABLE,
|
|
|
|
SQLITE_CREATE_VIEW,
|
|
|
|
SQLITE_CREATE_TEMP_VIEW
|
|
|
|
};
|
|
|
|
char *zDb = db->aDb[iDb].zDbSName;
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
|
|
|
|
zName, 0, zDb) ){
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Make sure the new table name does not collide with an existing
|
|
|
|
** index or table name in the same database. Issue an error message if
|
|
|
|
** it does. The exception is if the statement being parsed was passed
|
|
|
|
** to an sqlite3_declare_vtab() call. In that case only the column names
|
|
|
|
** and types will be used, so there is no need to test for namespace
|
|
|
|
** collisions.
|
|
|
|
*/
|
|
|
|
if( !IN_SPECIAL_PARSE ){
|
|
|
|
char *zDb = db->aDb[iDb].zDbSName;
|
|
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
pTable = sqlite3FindTable(db, zName, zDb);
|
|
|
|
if( pTable ){
|
|
|
|
if( !noErr ){
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "%s %T already exists",
|
|
|
|
(IsView(pTable)? "view" : "table"), pName);
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
|
|
|
assert( !db->init.busy || CORRUPT_DB );
|
|
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ForceNotReadOnly(pParse);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
if( sqlite3FindIndex(db, zName, zDb)!=0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pTable = sqlite3DbMallocZero(db, sizeof(Table));
|
|
|
|
if( pTable==0 ){
|
|
|
|
assert( db->mallocFailed );
|
|
|
|
pParse->rc = SQLITE_NOMEM_BKPT;
|
|
|
|
pParse->nErr++;
|
|
|
|
goto begin_table_error;
|
|
|
|
}
|
|
|
|
pTable->zName = zName;
|
|
|
|
pTable->iPKey = -1;
|
|
|
|
pTable->pSchema = db->aDb[iDb].pSchema;
|
|
|
|
pTable->nTabRef = 1;
|
|
|
|
#ifdef SQLITE_DEFAULT_ROWEST
|
|
|
|
pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
|
|
|
|
#else
|
|
|
|
pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
|
|
|
#endif
|
|
|
|
assert( pParse->pNewTable==0 );
|
|
|
|
pParse->pNewTable = pTable;
|
|
|
|
|
|
|
|
/* Begin generating the code that will insert the table record into
|
|
|
|
** the schema table. Note in particular that we must go ahead
|
|
|
|
** and allocate the record number for the table entry now. Before any
|
|
|
|
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
2022-07-22 04:46:07 +00:00
|
|
|
** indices to be created and the table record must come before the
|
2021-05-14 09:07:09 +00:00
|
|
|
** indices. Hence, the record number for the table must be allocated
|
|
|
|
** now.
|
|
|
|
*/
|
|
|
|
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
|
|
int addr1;
|
|
|
|
int fileFormat;
|
|
|
|
int reg1, reg2, reg3;
|
|
|
|
/* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
|
|
|
|
static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
|
|
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
if( isVirtual ){
|
|
|
|
sqlite3VdbeAddOp0(v, OP_VBegin);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* If the file format and encoding in the database have not been set,
|
2021-05-14 09:07:09 +00:00
|
|
|
** set them now.
|
|
|
|
*/
|
|
|
|
reg1 = pParse->regRowid = ++pParse->nMem;
|
|
|
|
reg2 = pParse->regRoot = ++pParse->nMem;
|
|
|
|
reg3 = ++pParse->nMem;
|
|
|
|
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
|
|
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
|
|
|
|
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
|
|
|
1 : SQLITE_MAX_FILE_FORMAT;
|
|
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
|
|
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
|
|
|
|
|
|
/* This just creates a place-holder record in the sqlite_schema table.
|
|
|
|
** The record created does not contain anything yet. It will be replaced
|
|
|
|
** by the real entry in code generated at sqlite3EndTable().
|
|
|
|
**
|
|
|
|
** The rowid for the new entry is left in register pParse->regRowid.
|
|
|
|
** The root page number of the new table is left in reg pParse->regRoot.
|
|
|
|
** The rowid and root page number values are needed by the code that
|
|
|
|
** sqlite3EndTable will generate.
|
|
|
|
*/
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
|
|
if( isView || isVirtual ){
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
assert( !pParse->bReturning );
|
|
|
|
pParse->u1.addrCrTab =
|
|
|
|
sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
|
|
|
|
}
|
|
|
|
sqlite3OpenSchemaTable(pParse, iDb);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
|
|
|
|
sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
|
|
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
|
|
sqlite3VdbeAddOp0(v, OP_Close);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Normal (non-error) return. */
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* If an error occurs, we jump here */
|
|
|
|
begin_table_error:
|
2022-11-28 20:54:48 +00:00
|
|
|
pParse->checkSchema = 1;
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3DbFree(db, zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set properties of a table column based on the (magical)
|
|
|
|
** name of the column.
|
|
|
|
*/
|
|
|
|
#if SQLITE_ENABLE_HIDDEN_COLUMNS
|
|
|
|
void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
pCol->colFlags |= COLFLAG_HIDDEN;
|
|
|
|
if( pTab ) pTab->tabFlags |= TF_HasHidden;
|
|
|
|
}else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
|
|
|
|
pTab->tabFlags |= TF_OOOHidden;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Name of the special TEMP trigger used to implement RETURNING. The
|
|
|
|
** name begins with "sqlite_" so that it is guaranteed not to collide
|
|
|
|
** with any application-generated triggers.
|
|
|
|
*/
|
|
|
|
#define RETURNING_TRIGGER_NAME "sqlite_returning"
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Clean up the data structures associated with the RETURNING clause.
|
|
|
|
*/
|
|
|
|
static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
|
|
|
|
Hash *pHash;
|
|
|
|
pHash = &(db->aDb[1].pSchema->trigHash);
|
|
|
|
sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
|
|
|
|
sqlite3ExprListDelete(db, pRet->pReturnEL);
|
|
|
|
sqlite3DbFree(db, pRet);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add the RETURNING clause to the parse currently underway.
|
|
|
|
**
|
|
|
|
** This routine creates a special TEMP trigger that will fire for each row
|
|
|
|
** of the DML statement. That TEMP trigger contains a single SELECT
|
|
|
|
** statement with a result set that is the argument of the RETURNING clause.
|
|
|
|
** The trigger has the Trigger.bReturning flag and an opcode of
|
|
|
|
** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
|
|
|
|
** knows to handle it specially. The TEMP trigger is automatically
|
|
|
|
** removed at the end of the parse.
|
|
|
|
**
|
|
|
|
** When this routine is called, we do not yet know if the RETURNING clause
|
|
|
|
** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
|
|
|
|
** RETURNING trigger instead. It will then be converted into the appropriate
|
|
|
|
** type on the first call to sqlite3TriggersExist().
|
|
|
|
*/
|
|
|
|
void sqlite3AddReturning(Parse *pParse, ExprList *pList){
|
|
|
|
Returning *pRet;
|
|
|
|
Hash *pHash;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pParse->pNewTrigger ){
|
|
|
|
sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
|
|
|
|
}else{
|
|
|
|
assert( pParse->bReturning==0 );
|
|
|
|
}
|
|
|
|
pParse->bReturning = 1;
|
|
|
|
pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
|
|
|
|
if( pRet==0 ){
|
|
|
|
sqlite3ExprListDelete(db, pList);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pParse->u1.pReturning = pRet;
|
|
|
|
pRet->pParse = pParse;
|
|
|
|
pRet->pReturnEL = pList;
|
|
|
|
sqlite3ParserAddCleanup(pParse,
|
|
|
|
(void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
|
|
|
|
testcase( pParse->earlyCleanup );
|
|
|
|
if( db->mallocFailed ) return;
|
|
|
|
pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
|
|
|
|
pRet->retTrig.op = TK_RETURNING;
|
|
|
|
pRet->retTrig.tr_tm = TRIGGER_AFTER;
|
|
|
|
pRet->retTrig.bReturning = 1;
|
|
|
|
pRet->retTrig.pSchema = db->aDb[1].pSchema;
|
2022-11-28 20:54:48 +00:00
|
|
|
pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
|
2021-05-14 09:07:09 +00:00
|
|
|
pRet->retTrig.step_list = &pRet->retTStep;
|
|
|
|
pRet->retTStep.op = TK_RETURNING;
|
|
|
|
pRet->retTStep.pTrig = &pRet->retTrig;
|
|
|
|
pRet->retTStep.pExprList = pList;
|
|
|
|
pHash = &(db->aDb[1].pSchema->trigHash);
|
|
|
|
assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
|
|
|
|
if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
|
|
|
|
==&pRet->retTrig ){
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add a new column to the table currently being constructed.
|
|
|
|
**
|
|
|
|
** The parser calls this routine once for each column declaration
|
|
|
|
** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
|
|
|
** first to get things going. Then this routine is called for each
|
|
|
|
** column.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
|
2021-05-14 09:07:09 +00:00
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
char *z;
|
|
|
|
char *zType;
|
|
|
|
Column *pCol;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
u8 hName;
|
2022-11-28 20:54:48 +00:00
|
|
|
Column *aNew;
|
|
|
|
u8 eType = COLTYPE_CUSTOM;
|
|
|
|
u8 szEst = 1;
|
|
|
|
char affinity = SQLITE_AFF_BLOB;
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
|
|
|
sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
|
|
|
|
return;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
|
|
|
|
|
|
|
|
/* Because keywords GENERATE ALWAYS can be converted into indentifiers
|
|
|
|
** by the parser, we can sometimes end up with a typename that ends
|
|
|
|
** with "generated always". Check for this case and omit the surplus
|
|
|
|
** text. */
|
|
|
|
if( sType.n>=16
|
|
|
|
&& sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
|
|
|
|
){
|
|
|
|
sType.n -= 6;
|
|
|
|
while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
|
|
|
|
if( sType.n>=9
|
|
|
|
&& sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
|
|
|
|
){
|
|
|
|
sType.n -= 9;
|
|
|
|
while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for standard typenames. For standard typenames we will
|
|
|
|
** set the Column.eType field rather than storing the typename after
|
|
|
|
** the column name, in order to save space. */
|
|
|
|
if( sType.n>=3 ){
|
|
|
|
sqlite3DequoteToken(&sType);
|
|
|
|
for(i=0; i<SQLITE_N_STDTYPE; i++){
|
|
|
|
if( sType.n==sqlite3StdTypeLen[i]
|
|
|
|
&& sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
|
|
|
|
){
|
|
|
|
sType.n = 0;
|
|
|
|
eType = i+1;
|
|
|
|
affinity = sqlite3StdTypeAffinity[i];
|
|
|
|
if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( z==0 ) return;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
|
|
|
|
memcpy(z, sName.z, sName.n);
|
|
|
|
z[sName.n] = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3Dequote(z);
|
|
|
|
hName = sqlite3StrIHash(z);
|
|
|
|
for(i=0; i<p->nCol; i++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
|
|
|
sqlite3DbFree(db, z);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
|
|
|
|
if( aNew==0 ){
|
|
|
|
sqlite3DbFree(db, z);
|
|
|
|
return;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
p->aCol = aNew;
|
2021-05-14 09:07:09 +00:00
|
|
|
pCol = &p->aCol[p->nCol];
|
|
|
|
memset(pCol, 0, sizeof(p->aCol[0]));
|
2022-11-28 20:54:48 +00:00
|
|
|
pCol->zCnName = z;
|
2021-05-14 09:07:09 +00:00
|
|
|
pCol->hName = hName;
|
|
|
|
sqlite3ColumnPropertiesFromName(p, pCol);
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sType.n==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* If there is no type specified, columns have the default affinity
|
|
|
|
** 'BLOB' with a default size of 4 bytes. */
|
2022-11-28 20:54:48 +00:00
|
|
|
pCol->affinity = affinity;
|
|
|
|
pCol->eCType = eType;
|
|
|
|
pCol->szEst = szEst;
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
2022-11-28 20:54:48 +00:00
|
|
|
if( affinity==SQLITE_AFF_BLOB ){
|
|
|
|
if( 4>=sqlite3GlobalConfig.szSorterRef ){
|
|
|
|
pCol->colFlags |= COLFLAG_SORTERREF;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}else{
|
|
|
|
zType = z + sqlite3Strlen30(z) + 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
memcpy(zType, sType.z, sType.n);
|
|
|
|
zType[sType.n] = 0;
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3Dequote(zType);
|
|
|
|
pCol->affinity = sqlite3AffinityType(zType, pCol);
|
|
|
|
pCol->colFlags |= COLFLAG_HASTYPE;
|
|
|
|
}
|
|
|
|
p->nCol++;
|
|
|
|
p->nNVCol++;
|
|
|
|
pParse->constraintName.n = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
|
|
** been seen on a column. This routine sets the notNull flag on
|
|
|
|
** the column currently under construction.
|
|
|
|
*/
|
|
|
|
void sqlite3AddNotNull(Parse *pParse, int onError){
|
|
|
|
Table *p;
|
|
|
|
Column *pCol;
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p==0 || NEVER(p->nCol<1) ) return;
|
|
|
|
pCol = &p->aCol[p->nCol-1];
|
|
|
|
pCol->notNull = (u8)onError;
|
|
|
|
p->tabFlags |= TF_HasNotNull;
|
|
|
|
|
|
|
|
/* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
|
|
|
|
** on this column. */
|
|
|
|
if( pCol->colFlags & COLFLAG_UNIQUE ){
|
|
|
|
Index *pIdx;
|
|
|
|
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
|
|
|
|
if( pIdx->aiColumn[0]==p->nCol-1 ){
|
|
|
|
pIdx->uniqNotNull = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Scan the column type name zType (length nType) and return the
|
|
|
|
** associated affinity type.
|
|
|
|
**
|
2022-07-22 04:46:07 +00:00
|
|
|
** This routine does a case-independent search of zType for the
|
2021-05-14 09:07:09 +00:00
|
|
|
** substrings in the following table. If one of the substrings is
|
|
|
|
** found, the corresponding affinity is returned. If zType contains
|
2022-07-22 04:46:07 +00:00
|
|
|
** more than one of the substrings, entries toward the top of
|
|
|
|
** the table take priority. For example, if zType is 'BLOBINT',
|
2021-05-14 09:07:09 +00:00
|
|
|
** SQLITE_AFF_INTEGER is returned.
|
|
|
|
**
|
|
|
|
** Substring | Affinity
|
|
|
|
** --------------------------------
|
|
|
|
** 'INT' | SQLITE_AFF_INTEGER
|
|
|
|
** 'CHAR' | SQLITE_AFF_TEXT
|
|
|
|
** 'CLOB' | SQLITE_AFF_TEXT
|
|
|
|
** 'TEXT' | SQLITE_AFF_TEXT
|
|
|
|
** 'BLOB' | SQLITE_AFF_BLOB
|
|
|
|
** 'REAL' | SQLITE_AFF_REAL
|
|
|
|
** 'FLOA' | SQLITE_AFF_REAL
|
|
|
|
** 'DOUB' | SQLITE_AFF_REAL
|
|
|
|
**
|
|
|
|
** If none of the substrings in the above table are found,
|
|
|
|
** SQLITE_AFF_NUMERIC is returned.
|
|
|
|
*/
|
|
|
|
char sqlite3AffinityType(const char *zIn, Column *pCol){
|
|
|
|
u32 h = 0;
|
|
|
|
char aff = SQLITE_AFF_NUMERIC;
|
|
|
|
const char *zChar = 0;
|
|
|
|
|
|
|
|
assert( zIn!=0 );
|
|
|
|
while( zIn[0] ){
|
|
|
|
h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
|
|
|
|
zIn++;
|
|
|
|
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
|
|
|
aff = SQLITE_AFF_TEXT;
|
|
|
|
zChar = zIn;
|
|
|
|
}else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
|
|
|
aff = SQLITE_AFF_TEXT;
|
|
|
|
}else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
|
|
|
aff = SQLITE_AFF_TEXT;
|
|
|
|
}else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
|
|
|
&& (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
|
|
|
aff = SQLITE_AFF_BLOB;
|
|
|
|
if( zIn[0]=='(' ) zChar = zIn;
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
|
|
}else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
|
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
|
|
aff = SQLITE_AFF_REAL;
|
|
|
|
}else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
|
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
|
|
aff = SQLITE_AFF_REAL;
|
|
|
|
}else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
|
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
|
|
aff = SQLITE_AFF_REAL;
|
|
|
|
#endif
|
|
|
|
}else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
|
|
|
aff = SQLITE_AFF_INTEGER;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If pCol is not NULL, store an estimate of the field size. The
|
|
|
|
** estimate is scaled so that the size of an integer is 1. */
|
|
|
|
if( pCol ){
|
|
|
|
int v = 0; /* default size is approx 4 bytes */
|
|
|
|
if( aff<SQLITE_AFF_NUMERIC ){
|
|
|
|
if( zChar ){
|
|
|
|
while( zChar[0] ){
|
|
|
|
if( sqlite3Isdigit(zChar[0]) ){
|
|
|
|
/* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
|
|
|
|
sqlite3GetInt32(zChar, &v);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
zChar++;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
|
|
if( v>=sqlite3GlobalConfig.szSorterRef ){
|
|
|
|
pCol->colFlags |= COLFLAG_SORTERREF;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
v = v/4 + 1;
|
|
|
|
if( v>255 ) v = 255;
|
|
|
|
pCol->szEst = v;
|
|
|
|
}
|
|
|
|
return aff;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The expression is the default value for the most recently added column
|
|
|
|
** of the table currently under construction.
|
|
|
|
**
|
|
|
|
** Default value expressions must be constant. Raise an exception if this
|
|
|
|
** is not the case.
|
|
|
|
**
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement.
|
|
|
|
*/
|
|
|
|
void sqlite3AddDefaultValue(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
Expr *pExpr, /* The parsed expression of the default value */
|
|
|
|
const char *zStart, /* Start of the default value text */
|
|
|
|
const char *zEnd /* First character past end of defaut value text */
|
|
|
|
){
|
|
|
|
Table *p;
|
|
|
|
Column *pCol;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p!=0 ){
|
|
|
|
int isInit = db->init.busy && db->init.iDb!=1;
|
|
|
|
pCol = &(p->aCol[p->nCol-1]);
|
|
|
|
if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
|
|
|
|
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
2022-11-28 20:54:48 +00:00
|
|
|
pCol->zCnName);
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
}else if( pCol->colFlags & COLFLAG_GENERATED ){
|
|
|
|
testcase( pCol->colFlags & COLFLAG_VIRTUAL );
|
|
|
|
testcase( pCol->colFlags & COLFLAG_STORED );
|
|
|
|
sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
|
|
|
|
#endif
|
|
|
|
}else{
|
|
|
|
/* A copy of pExpr is used instead of the original, as pExpr contains
|
|
|
|
** tokens that point to volatile memory.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
Expr x, *pDfltExpr;
|
2021-05-14 09:07:09 +00:00
|
|
|
memset(&x, 0, sizeof(x));
|
|
|
|
x.op = TK_SPAN;
|
|
|
|
x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
|
|
|
|
x.pLeft = pExpr;
|
|
|
|
x.flags = EP_Skip;
|
2022-11-28 20:54:48 +00:00
|
|
|
pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3DbFree(db, x.u.zToken);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameExprUnmap(pParse, pExpr);
|
|
|
|
}
|
|
|
|
sqlite3ExprDelete(db, pExpr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Backwards Compatibility Hack:
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** Historical versions of SQLite accepted strings as column names in
|
|
|
|
** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
|
|
|
|
**
|
|
|
|
** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
|
|
|
|
** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
|
|
|
|
**
|
|
|
|
** This is goofy. But to preserve backwards compatibility we continue to
|
|
|
|
** accept it. This routine does the necessary conversion. It converts
|
|
|
|
** the expression given in its argument from a TK_STRING into a TK_ID
|
|
|
|
** if the expression is just a TK_STRING with an optional COLLATE clause.
|
|
|
|
** If the expression is anything other than TK_STRING, the expression is
|
|
|
|
** unchanged.
|
|
|
|
*/
|
|
|
|
static void sqlite3StringToId(Expr *p){
|
|
|
|
if( p->op==TK_STRING ){
|
|
|
|
p->op = TK_ID;
|
|
|
|
}else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
|
|
|
|
p->pLeft->op = TK_ID;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Tag the given column as being part of the PRIMARY KEY
|
|
|
|
*/
|
|
|
|
static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
|
|
|
|
pCol->colFlags |= COLFLAG_PRIMKEY;
|
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
if( pCol->colFlags & COLFLAG_GENERATED ){
|
|
|
|
testcase( pCol->colFlags & COLFLAG_VIRTUAL );
|
|
|
|
testcase( pCol->colFlags & COLFLAG_STORED );
|
|
|
|
sqlite3ErrorMsg(pParse,
|
|
|
|
"generated columns cannot be part of the PRIMARY KEY");
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Designate the PRIMARY KEY for the table. pList is a list of names
|
2021-05-14 09:07:09 +00:00
|
|
|
** of columns that form the primary key. If pList is NULL, then the
|
|
|
|
** most recently added column of the table is the primary key.
|
|
|
|
**
|
|
|
|
** A table can have at most one primary key. If the table already has
|
|
|
|
** a primary key (and this is the second primary key) then create an
|
|
|
|
** error.
|
|
|
|
**
|
|
|
|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
|
|
** then we will try to use that column as the rowid. Set the Table.iPKey
|
|
|
|
** field of the table under construction to be the index of the
|
|
|
|
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
|
|
** no INTEGER PRIMARY KEY.
|
|
|
|
**
|
|
|
|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
|
|
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
|
|
*/
|
|
|
|
void sqlite3AddPrimaryKey(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
ExprList *pList, /* List of field names to be indexed */
|
|
|
|
int onError, /* What to do with a uniqueness conflict */
|
|
|
|
int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
|
|
|
int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
|
|
|
){
|
|
|
|
Table *pTab = pParse->pNewTable;
|
|
|
|
Column *pCol = 0;
|
|
|
|
int iCol = -1, i;
|
|
|
|
int nTerm;
|
|
|
|
if( pTab==0 ) goto primary_key_exit;
|
|
|
|
if( pTab->tabFlags & TF_HasPrimaryKey ){
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse,
|
2021-05-14 09:07:09 +00:00
|
|
|
"table \"%s\" has more than one primary key", pTab->zName);
|
|
|
|
goto primary_key_exit;
|
|
|
|
}
|
|
|
|
pTab->tabFlags |= TF_HasPrimaryKey;
|
|
|
|
if( pList==0 ){
|
|
|
|
iCol = pTab->nCol - 1;
|
|
|
|
pCol = &pTab->aCol[iCol];
|
|
|
|
makeColumnPartOfPrimaryKey(pParse, pCol);
|
|
|
|
nTerm = 1;
|
|
|
|
}else{
|
|
|
|
nTerm = pList->nExpr;
|
|
|
|
for(i=0; i<nTerm; i++){
|
|
|
|
Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
|
|
|
|
assert( pCExpr!=0 );
|
|
|
|
sqlite3StringToId(pCExpr);
|
|
|
|
if( pCExpr->op==TK_ID ){
|
2022-11-28 20:54:48 +00:00
|
|
|
const char *zCName;
|
|
|
|
assert( !ExprHasProperty(pCExpr, EP_IntValue) );
|
|
|
|
zCName = pCExpr->u.zToken;
|
2021-05-14 09:07:09 +00:00
|
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
pCol = &pTab->aCol[iCol];
|
|
|
|
makeColumnPartOfPrimaryKey(pParse, pCol);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( nTerm==1
|
|
|
|
&& pCol
|
2022-11-28 20:54:48 +00:00
|
|
|
&& pCol->eCType==COLTYPE_INTEGER
|
2021-05-14 09:07:09 +00:00
|
|
|
&& sortOrder!=SQLITE_SO_DESC
|
|
|
|
){
|
|
|
|
if( IN_RENAME_OBJECT && pList ){
|
|
|
|
Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
|
|
|
|
sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
|
|
|
|
}
|
|
|
|
pTab->iPKey = iCol;
|
|
|
|
pTab->keyConf = (u8)onError;
|
|
|
|
assert( autoInc==0 || autoInc==1 );
|
|
|
|
pTab->tabFlags |= autoInc*TF_Autoincrement;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
|
2021-05-14 09:07:09 +00:00
|
|
|
(void)sqlite3HasExplicitNulls(pParse, pList);
|
|
|
|
}else if( autoInc ){
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
|
|
|
"INTEGER PRIMARY KEY");
|
|
|
|
#endif
|
|
|
|
}else{
|
|
|
|
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
|
|
|
|
0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
|
|
|
|
pList = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
primary_key_exit:
|
|
|
|
sqlite3ExprListDelete(pParse->db, pList);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add a new CHECK constraint to the table currently under construction.
|
|
|
|
*/
|
|
|
|
void sqlite3AddCheckConstraint(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
Expr *pCheckExpr, /* The check expression */
|
|
|
|
const char *zStart, /* Opening "(" */
|
|
|
|
const char *zEnd /* Closing ")" */
|
|
|
|
){
|
|
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
|
|
Table *pTab = pParse->pNewTable;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pTab && !IN_DECLARE_VTAB
|
|
|
|
&& !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
|
|
|
|
){
|
|
|
|
pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
|
|
|
|
if( pParse->constraintName.n ){
|
|
|
|
sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
|
|
|
|
}else{
|
|
|
|
Token t;
|
|
|
|
for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
|
|
|
|
while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
|
|
|
|
t.z = zStart;
|
|
|
|
t.n = (int)(zEnd - t.z);
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
sqlite3ExprDelete(pParse->db, pCheckExpr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Set the collation function of the most recently parsed table column
|
|
|
|
** to the CollSeq given.
|
|
|
|
*/
|
|
|
|
void sqlite3AddCollateType(Parse *pParse, Token *pToken){
|
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
char *zColl; /* Dequoted name of collation sequence */
|
|
|
|
sqlite3 *db;
|
|
|
|
|
|
|
|
if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
|
|
|
|
i = p->nCol-1;
|
|
|
|
db = pParse->db;
|
|
|
|
zColl = sqlite3NameFromToken(db, pToken);
|
|
|
|
if( !zColl ) return;
|
|
|
|
|
|
|
|
if( sqlite3LocateCollSeq(pParse, zColl) ){
|
|
|
|
Index *pIdx;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
|
|
|
** then an index may have been created on this column before the
|
|
|
|
** collation type was added. Correct this if it is the case.
|
|
|
|
*/
|
|
|
|
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
assert( pIdx->nKeyCol==1 );
|
|
|
|
if( pIdx->aiColumn[0]==i ){
|
2022-11-28 20:54:48 +00:00
|
|
|
pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3DbFree(db, zColl);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Change the most recently parsed column to be a GENERATED ALWAYS AS
|
|
|
|
** column.
|
|
|
|
*/
|
|
|
|
void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
|
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
u8 eType = COLFLAG_VIRTUAL;
|
|
|
|
Table *pTab = pParse->pNewTable;
|
|
|
|
Column *pCol;
|
|
|
|
if( pTab==0 ){
|
|
|
|
/* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
|
|
|
|
goto generated_done;
|
|
|
|
}
|
|
|
|
pCol = &(pTab->aCol[pTab->nCol-1]);
|
|
|
|
if( IN_DECLARE_VTAB ){
|
|
|
|
sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
|
|
|
|
goto generated_done;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pCol->iDflt>0 ) goto generated_error;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pType ){
|
|
|
|
if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
|
|
|
|
/* no-op */
|
|
|
|
}else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
|
|
|
|
eType = COLFLAG_STORED;
|
|
|
|
}else{
|
|
|
|
goto generated_error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
|
|
|
|
pCol->colFlags |= eType;
|
|
|
|
assert( TF_HasVirtual==COLFLAG_VIRTUAL );
|
|
|
|
assert( TF_HasStored==COLFLAG_STORED );
|
|
|
|
pTab->tabFlags |= eType;
|
|
|
|
if( pCol->colFlags & COLFLAG_PRIMKEY ){
|
|
|
|
makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
|
2021-05-14 09:07:09 +00:00
|
|
|
pExpr = 0;
|
|
|
|
goto generated_done;
|
|
|
|
|
|
|
|
generated_error:
|
|
|
|
sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
|
2022-11-28 20:54:48 +00:00
|
|
|
pCol->zCnName);
|
2021-05-14 09:07:09 +00:00
|
|
|
generated_done:
|
|
|
|
sqlite3ExprDelete(pParse->db, pExpr);
|
|
|
|
#else
|
|
|
|
/* Throw and error for the GENERATED ALWAYS AS clause if the
|
|
|
|
** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
|
|
|
|
sqlite3ErrorMsg(pParse, "generated columns not supported");
|
|
|
|
sqlite3ExprDelete(pParse->db, pExpr);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code that will increment the schema cookie.
|
|
|
|
**
|
|
|
|
** The schema cookie is used to determine when the schema for the
|
|
|
|
** database changes. After each schema change, the cookie value
|
|
|
|
** changes. When a process first reads the schema it records the
|
|
|
|
** cookie. Thereafter, whenever it goes to access the database,
|
|
|
|
** it checks the cookie to make sure the schema has not changed
|
|
|
|
** since it was last read.
|
|
|
|
**
|
|
|
|
** This plan is not completely bullet-proof. It is possible for
|
|
|
|
** the schema to change multiple times and for the cookie to be
|
|
|
|
** set back to prior value. But schema changes are infrequent
|
|
|
|
** and the probability of hitting the same cookie value is only
|
|
|
|
** 1 chance in 2^32. So we're safe enough.
|
|
|
|
**
|
|
|
|
** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
|
|
|
|
** the schema-version whenever the schema changes.
|
|
|
|
*/
|
|
|
|
void sqlite3ChangeCookie(Parse *pParse, int iDb){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
|
2021-05-14 09:07:09 +00:00
|
|
|
(int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Measure the number of characters needed to output the given
|
|
|
|
** identifier. The number returned includes any quotes used
|
|
|
|
** but does not include the null terminator.
|
|
|
|
**
|
|
|
|
** The estimate is conservative. It might be larger that what is
|
|
|
|
** really needed.
|
|
|
|
*/
|
|
|
|
static int identLength(const char *z){
|
|
|
|
int n;
|
|
|
|
for(n=0; *z; n++, z++){
|
|
|
|
if( *z=='"' ){ n++; }
|
|
|
|
}
|
|
|
|
return n + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** The first parameter is a pointer to an output buffer. The second
|
2021-05-14 09:07:09 +00:00
|
|
|
** parameter is a pointer to an integer that contains the offset at
|
|
|
|
** which to write into the output buffer. This function copies the
|
|
|
|
** nul-terminated string pointed to by the third parameter, zSignedIdent,
|
|
|
|
** to the specified offset in the buffer and updates *pIdx to refer
|
|
|
|
** to the first byte after the last byte written before returning.
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** If the string zSignedIdent consists entirely of alpha-numeric
|
|
|
|
** characters, does not begin with a digit and is not an SQL keyword,
|
|
|
|
** then it is copied to the output buffer exactly as it is. Otherwise,
|
|
|
|
** it is quoted using double-quotes.
|
|
|
|
*/
|
|
|
|
static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
|
|
|
unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
|
|
|
int i, j, needQuote;
|
|
|
|
i = *pIdx;
|
|
|
|
|
|
|
|
for(j=0; zIdent[j]; j++){
|
|
|
|
if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
|
|
}
|
|
|
|
needQuote = sqlite3Isdigit(zIdent[0])
|
|
|
|
|| sqlite3KeywordCode(zIdent, j)!=TK_ID
|
|
|
|
|| zIdent[j]!=0
|
|
|
|
|| j==0;
|
|
|
|
|
|
|
|
if( needQuote ) z[i++] = '"';
|
|
|
|
for(j=0; zIdent[j]; j++){
|
|
|
|
z[i++] = zIdent[j];
|
|
|
|
if( zIdent[j]=='"' ) z[i++] = '"';
|
|
|
|
}
|
|
|
|
if( needQuote ) z[i++] = '"';
|
|
|
|
z[i] = 0;
|
|
|
|
*pIdx = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate a CREATE TABLE statement appropriate for the given
|
|
|
|
** table. Memory to hold the text of the statement is obtained
|
|
|
|
** from sqliteMalloc() and must be freed by the calling function.
|
|
|
|
*/
|
|
|
|
static char *createTableStmt(sqlite3 *db, Table *p){
|
|
|
|
int i, k, n;
|
|
|
|
char *zStmt;
|
|
|
|
char *zSep, *zSep2, *zEnd;
|
|
|
|
Column *pCol;
|
|
|
|
n = 0;
|
|
|
|
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
2022-11-28 20:54:48 +00:00
|
|
|
n += identLength(pCol->zCnName) + 5;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
n += identLength(p->zName);
|
2022-07-22 04:46:07 +00:00
|
|
|
if( n<50 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
zSep = "";
|
|
|
|
zSep2 = ",";
|
|
|
|
zEnd = ")";
|
|
|
|
}else{
|
|
|
|
zSep = "\n ";
|
|
|
|
zSep2 = ",\n ";
|
|
|
|
zEnd = "\n)";
|
|
|
|
}
|
|
|
|
n += 35 + 6*p->nCol;
|
|
|
|
zStmt = sqlite3DbMallocRaw(0, n);
|
|
|
|
if( zStmt==0 ){
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
|
|
|
|
k = sqlite3Strlen30(zStmt);
|
|
|
|
identPut(zStmt, &k, p->zName);
|
|
|
|
zStmt[k++] = '(';
|
|
|
|
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
|
|
static const char * const azType[] = {
|
|
|
|
/* SQLITE_AFF_BLOB */ "",
|
|
|
|
/* SQLITE_AFF_TEXT */ " TEXT",
|
|
|
|
/* SQLITE_AFF_NUMERIC */ " NUM",
|
|
|
|
/* SQLITE_AFF_INTEGER */ " INT",
|
|
|
|
/* SQLITE_AFF_REAL */ " REAL"
|
|
|
|
};
|
|
|
|
int len;
|
|
|
|
const char *zType;
|
|
|
|
|
|
|
|
sqlite3_snprintf(n-k, &zStmt[k], zSep);
|
|
|
|
k += sqlite3Strlen30(&zStmt[k]);
|
|
|
|
zSep = zSep2;
|
2022-11-28 20:54:48 +00:00
|
|
|
identPut(zStmt, &k, pCol->zCnName);
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
|
|
|
|
assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
|
|
|
|
testcase( pCol->affinity==SQLITE_AFF_BLOB );
|
|
|
|
testcase( pCol->affinity==SQLITE_AFF_TEXT );
|
|
|
|
testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
|
|
|
|
testcase( pCol->affinity==SQLITE_AFF_INTEGER );
|
|
|
|
testcase( pCol->affinity==SQLITE_AFF_REAL );
|
2022-07-22 04:46:07 +00:00
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
|
|
|
|
len = sqlite3Strlen30(zType);
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( pCol->affinity==SQLITE_AFF_BLOB
|
2021-05-14 09:07:09 +00:00
|
|
|
|| pCol->affinity==sqlite3AffinityType(zType, 0) );
|
|
|
|
memcpy(&zStmt[k], zType, len);
|
|
|
|
k += len;
|
|
|
|
assert( k<=n );
|
|
|
|
}
|
|
|
|
sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
|
|
|
|
return zStmt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Resize an Index object to hold N columns total. Return SQLITE_OK
|
|
|
|
** on success and SQLITE_NOMEM on an OOM error.
|
|
|
|
*/
|
|
|
|
static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
|
|
|
|
char *zExtra;
|
|
|
|
int nByte;
|
|
|
|
if( pIdx->nColumn>=N ) return SQLITE_OK;
|
|
|
|
assert( pIdx->isResized==0 );
|
|
|
|
nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
|
|
|
|
zExtra = sqlite3DbMallocZero(db, nByte);
|
|
|
|
if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
|
|
|
|
memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
|
|
|
|
pIdx->azColl = (const char**)zExtra;
|
|
|
|
zExtra += sizeof(char*)*N;
|
|
|
|
memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
|
|
|
|
pIdx->aiRowLogEst = (LogEst*)zExtra;
|
|
|
|
zExtra += sizeof(LogEst)*N;
|
|
|
|
memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
|
|
|
|
pIdx->aiColumn = (i16*)zExtra;
|
|
|
|
zExtra += sizeof(i16)*N;
|
|
|
|
memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
|
|
|
|
pIdx->aSortOrder = (u8*)zExtra;
|
|
|
|
pIdx->nColumn = N;
|
|
|
|
pIdx->isResized = 1;
|
|
|
|
return SQLITE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Estimate the total row width for a table.
|
|
|
|
*/
|
|
|
|
static void estimateTableWidth(Table *pTab){
|
|
|
|
unsigned wTable = 0;
|
|
|
|
const Column *pTabCol;
|
|
|
|
int i;
|
|
|
|
for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
|
|
|
|
wTable += pTabCol->szEst;
|
|
|
|
}
|
|
|
|
if( pTab->iPKey<0 ) wTable++;
|
|
|
|
pTab->szTabRow = sqlite3LogEst(wTable*4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Estimate the average size of a row for an index.
|
|
|
|
*/
|
|
|
|
static void estimateIndexWidth(Index *pIdx){
|
|
|
|
unsigned wIndex = 0;
|
|
|
|
int i;
|
|
|
|
const Column *aCol = pIdx->pTable->aCol;
|
|
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
|
|
i16 x = pIdx->aiColumn[i];
|
|
|
|
assert( x<pIdx->pTable->nCol );
|
|
|
|
wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
|
|
|
|
}
|
|
|
|
pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return true if column number x is any of the first nCol entries of aiCol[].
|
|
|
|
** This is used to determine if the column number x appears in any of the
|
|
|
|
** first nCol entries of an index.
|
|
|
|
*/
|
|
|
|
static int hasColumn(const i16 *aiCol, int nCol, int x){
|
|
|
|
while( nCol-- > 0 ){
|
|
|
|
if( x==*(aiCol++) ){
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return true if any of the first nKey entries of index pIdx exactly
|
|
|
|
** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
|
|
|
|
** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
|
|
|
|
** or may not be the same index as pPk.
|
|
|
|
**
|
|
|
|
** The first nKey entries of pIdx are guaranteed to be ordinary columns,
|
|
|
|
** not a rowid or expression.
|
|
|
|
**
|
|
|
|
** This routine differs from hasColumn() in that both the column and the
|
|
|
|
** collating sequence must match for this routine, but for hasColumn() only
|
|
|
|
** the column name must match.
|
|
|
|
*/
|
|
|
|
static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
|
|
|
|
int i, j;
|
|
|
|
assert( nKey<=pIdx->nColumn );
|
|
|
|
assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
|
|
|
|
assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
|
|
|
|
assert( pPk->pTable->tabFlags & TF_WithoutRowid );
|
|
|
|
assert( pPk->pTable==pIdx->pTable );
|
|
|
|
testcase( pPk==pIdx );
|
|
|
|
j = pPk->aiColumn[iCol];
|
|
|
|
assert( j!=XN_ROWID && j!=XN_EXPR );
|
|
|
|
for(i=0; i<nKey; i++){
|
|
|
|
assert( pIdx->aiColumn[i]>=0 || j>=0 );
|
2022-07-22 04:46:07 +00:00
|
|
|
if( pIdx->aiColumn[i]==j
|
2021-05-14 09:07:09 +00:00
|
|
|
&& sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
|
|
|
|
){
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Recompute the colNotIdxed field of the Index.
|
|
|
|
**
|
|
|
|
** colNotIdxed is a bitmask that has a 0 bit representing each indexed
|
2022-11-28 20:54:48 +00:00
|
|
|
** columns that are within the first 63 columns of the table and a 1 for
|
|
|
|
** all other bits (all columns that are not in the index). The
|
2021-05-14 09:07:09 +00:00
|
|
|
** high-order bit of colNotIdxed is always 1. All unindexed columns
|
|
|
|
** of the table have a 1.
|
|
|
|
**
|
|
|
|
** 2019-10-24: For the purpose of this computation, virtual columns are
|
|
|
|
** not considered to be covered by the index, even if they are in the
|
|
|
|
** index, because we do not trust the logic in whereIndexExprTrans() to be
|
|
|
|
** able to find all instances of a reference to the indexed table column
|
|
|
|
** and convert them into references to the index. Hence we always want
|
|
|
|
** the actual table at hand in order to recompute the virtual column, if
|
|
|
|
** necessary.
|
|
|
|
**
|
|
|
|
** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
|
|
|
|
** to determine if the index is covering index.
|
|
|
|
*/
|
|
|
|
static void recomputeColumnsNotIndexed(Index *pIdx){
|
|
|
|
Bitmask m = 0;
|
|
|
|
int j;
|
|
|
|
Table *pTab = pIdx->pTable;
|
|
|
|
for(j=pIdx->nColumn-1; j>=0; j--){
|
|
|
|
int x = pIdx->aiColumn[j];
|
|
|
|
if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
|
|
|
|
testcase( x==BMS-1 );
|
|
|
|
testcase( x==BMS-2 );
|
|
|
|
if( x<BMS-1 ) m |= MASKBIT(x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pIdx->colNotIdxed = ~m;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine runs at the end of parsing a CREATE TABLE statement that
|
|
|
|
** has a WITHOUT ROWID clause. The job of this routine is to convert both
|
|
|
|
** internal schema data structures and the generated VDBE code so that they
|
|
|
|
** are appropriate for a WITHOUT ROWID table instead of a rowid table.
|
|
|
|
** Changes include:
|
|
|
|
**
|
|
|
|
** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
|
2022-07-22 04:46:07 +00:00
|
|
|
** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
|
2021-05-14 09:07:09 +00:00
|
|
|
** into BTREE_BLOBKEY.
|
|
|
|
** (3) Bypass the creation of the sqlite_schema table entry
|
|
|
|
** for the PRIMARY KEY as the primary key index is now
|
|
|
|
** identified by the sqlite_schema table entry of the table itself.
|
|
|
|
** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
|
|
|
|
** schema to the rootpage from the main table.
|
|
|
|
** (5) Add all table columns to the PRIMARY KEY Index object
|
|
|
|
** so that the PRIMARY KEY is a covering index. The surplus
|
|
|
|
** columns are part of KeyInfo.nAllField and are not used for
|
|
|
|
** sorting or lookup or uniqueness checks.
|
|
|
|
** (6) Replace the rowid tail on all automatically generated UNIQUE
|
|
|
|
** indices with the PRIMARY KEY columns.
|
|
|
|
**
|
|
|
|
** For virtual tables, only (1) is performed.
|
|
|
|
*/
|
|
|
|
static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
|
|
|
|
Index *pIdx;
|
|
|
|
Index *pPk;
|
|
|
|
int nPk;
|
|
|
|
int nExtra;
|
|
|
|
int i, j;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
|
|
|
|
/* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
|
|
|
|
*/
|
|
|
|
if( !db->init.imposterTable ){
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
|
|
|
|
&& (pTab->aCol[i].notNull==OE_None)
|
|
|
|
){
|
2021-05-14 09:07:09 +00:00
|
|
|
pTab->aCol[i].notNull = OE_Abort;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pTab->tabFlags |= TF_HasNotNull;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
|
|
|
|
** into BTREE_BLOBKEY.
|
|
|
|
*/
|
|
|
|
assert( !pParse->bReturning );
|
|
|
|
if( pParse->u1.addrCrTab ){
|
|
|
|
assert( v );
|
|
|
|
sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Locate the PRIMARY KEY index. Or, if this table was originally
|
2022-07-22 04:46:07 +00:00
|
|
|
** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
if( pTab->iPKey>=0 ){
|
|
|
|
ExprList *pList;
|
|
|
|
Token ipkToken;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
|
2022-07-22 04:46:07 +00:00
|
|
|
pList = sqlite3ExprListAppend(pParse, 0,
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pList==0 ){
|
|
|
|
pTab->tabFlags &= ~TF_WithoutRowid;
|
|
|
|
return;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pParse->pNewTable==pTab );
|
|
|
|
pTab->iPKey = -1;
|
|
|
|
sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
|
|
|
|
SQLITE_IDXTYPE_PRIMARYKEY);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pParse->nErr ){
|
|
|
|
pTab->tabFlags &= ~TF_WithoutRowid;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
assert( db->mallocFailed==0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
|
|
assert( pPk->nKeyCol==1 );
|
|
|
|
}else{
|
|
|
|
pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
|
|
assert( pPk!=0 );
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Remove all redundant columns from the PRIMARY KEY. For example, change
|
|
|
|
** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
|
|
|
|
** code assumes the PRIMARY KEY contains no repeated columns.
|
|
|
|
*/
|
|
|
|
for(i=j=1; i<pPk->nKeyCol; i++){
|
|
|
|
if( isDupColumn(pPk, j, pPk, i) ){
|
|
|
|
pPk->nColumn--;
|
|
|
|
}else{
|
|
|
|
testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
|
|
|
|
pPk->azColl[j] = pPk->azColl[i];
|
|
|
|
pPk->aSortOrder[j] = pPk->aSortOrder[i];
|
|
|
|
pPk->aiColumn[j++] = pPk->aiColumn[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pPk->nKeyCol = j;
|
|
|
|
}
|
|
|
|
assert( pPk!=0 );
|
|
|
|
pPk->isCovering = 1;
|
|
|
|
if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
|
|
|
|
nPk = pPk->nColumn = pPk->nKeyCol;
|
|
|
|
|
|
|
|
/* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
|
|
|
|
** table entry. This is only required if currently generating VDBE
|
|
|
|
** code for a CREATE TABLE (not when parsing one as part of reading
|
|
|
|
** a database schema). */
|
|
|
|
if( v && pPk->tnum>0 ){
|
|
|
|
assert( db->init.busy==0 );
|
|
|
|
sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The root page of the PRIMARY KEY is the table root page */
|
|
|
|
pPk->tnum = pTab->tnum;
|
|
|
|
|
|
|
|
/* Update the in-memory representation of all UNIQUE indices by converting
|
|
|
|
** the final rowid column into one or more columns of the PRIMARY KEY.
|
|
|
|
*/
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
int n;
|
|
|
|
if( IsPrimaryKeyIndex(pIdx) ) continue;
|
|
|
|
for(i=n=0; i<nPk; i++){
|
|
|
|
if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
|
|
|
|
testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( n==0 ){
|
|
|
|
/* This index is a superset of the primary key */
|
|
|
|
pIdx->nColumn = pIdx->nKeyCol;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
|
|
|
|
for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
|
|
|
|
if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
|
|
|
|
testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
|
|
|
|
pIdx->aiColumn[j] = pPk->aiColumn[i];
|
|
|
|
pIdx->azColl[j] = pPk->azColl[i];
|
|
|
|
if( pPk->aSortOrder[i] ){
|
|
|
|
/* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
|
|
|
|
pIdx->bAscKeyBug = 1;
|
|
|
|
}
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( pIdx->nColumn>=pIdx->nKeyCol+n );
|
|
|
|
assert( pIdx->nColumn>=j );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add all table columns to the PRIMARY KEY index
|
|
|
|
*/
|
|
|
|
nExtra = 0;
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
|
|
if( !hasColumn(pPk->aiColumn, nPk, i)
|
|
|
|
&& (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
|
|
|
|
}
|
|
|
|
if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
|
|
|
|
for(i=0, j=nPk; i<pTab->nCol; i++){
|
|
|
|
if( !hasColumn(pPk->aiColumn, j, i)
|
|
|
|
&& (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
|
|
|
|
){
|
|
|
|
assert( j<pPk->nColumn );
|
|
|
|
pPk->aiColumn[j] = i;
|
|
|
|
pPk->azColl[j] = sqlite3StrBINARY;
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( pPk->nColumn==j );
|
|
|
|
assert( pTab->nNVCol<=j );
|
|
|
|
recomputeColumnsNotIndexed(pPk);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/*
|
|
|
|
** Return true if pTab is a virtual table and zName is a shadow table name
|
|
|
|
** for that virtual table.
|
|
|
|
*/
|
|
|
|
int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
|
|
|
|
int nName; /* Length of zName */
|
|
|
|
Module *pMod; /* Module for the virtual table */
|
|
|
|
|
|
|
|
if( !IsVirtual(pTab) ) return 0;
|
|
|
|
nName = sqlite3Strlen30(pTab->zName);
|
|
|
|
if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
|
|
|
|
if( zName[nName]!='_' ) return 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pMod==0 ) return 0;
|
|
|
|
if( pMod->pModule->iVersion<3 ) return 0;
|
|
|
|
if( pMod->pModule->xShadowName==0 ) return 0;
|
|
|
|
return pMod->pModule->xShadowName(zName+nName+1);
|
|
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/*
|
|
|
|
** Table pTab is a virtual table. If it the virtual table implementation
|
|
|
|
** exists and has an xShadowName method, then loop over all other ordinary
|
|
|
|
** tables within the same schema looking for shadow tables of pTab, and mark
|
|
|
|
** any shadow tables seen using the TF_Shadow flag.
|
|
|
|
*/
|
|
|
|
void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
|
|
|
|
int nName; /* Length of pTab->zName */
|
|
|
|
Module *pMod; /* Module for the virtual table */
|
|
|
|
HashElem *k; /* For looping through the symbol table */
|
|
|
|
|
|
|
|
assert( IsVirtual(pTab) );
|
|
|
|
pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
|
|
|
|
if( pMod==0 ) return;
|
|
|
|
if( NEVER(pMod->pModule==0) ) return;
|
|
|
|
if( pMod->pModule->iVersion<3 ) return;
|
|
|
|
if( pMod->pModule->xShadowName==0 ) return;
|
|
|
|
assert( pTab->zName!=0 );
|
|
|
|
nName = sqlite3Strlen30(pTab->zName);
|
|
|
|
for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
|
|
Table *pOther = sqliteHashData(k);
|
|
|
|
assert( pOther->zName!=0 );
|
|
|
|
if( !IsOrdinaryTable(pOther) ) continue;
|
|
|
|
if( pOther->tabFlags & TF_Shadow ) continue;
|
|
|
|
if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
|
|
|
|
&& pOther->zName[nName]=='_'
|
|
|
|
&& pMod->pModule->xShadowName(pOther->zName+nName+1)
|
|
|
|
){
|
|
|
|
pOther->tabFlags |= TF_Shadow;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/*
|
|
|
|
** Return true if zName is a shadow table name in the current database
|
|
|
|
** connection.
|
|
|
|
**
|
|
|
|
** zName is temporarily modified while this routine is running, but is
|
|
|
|
** restored to its original value prior to this routine returning.
|
|
|
|
*/
|
|
|
|
int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
|
|
|
|
char *zTail; /* Pointer to the last "_" in zName */
|
|
|
|
Table *pTab; /* Table that zName is a shadow of */
|
|
|
|
zTail = strrchr(zName, '_');
|
|
|
|
if( zTail==0 ) return 0;
|
|
|
|
*zTail = 0;
|
|
|
|
pTab = sqlite3FindTable(db, zName, 0);
|
|
|
|
*zTail = '_';
|
|
|
|
if( pTab==0 ) return 0;
|
|
|
|
if( !IsVirtual(pTab) ) return 0;
|
|
|
|
return sqlite3IsShadowTableOf(db, pTab, zName);
|
|
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/*
|
|
|
|
** Mark all nodes of an expression as EP_Immutable, indicating that
|
|
|
|
** they should not be changed. Expressions attached to a table or
|
|
|
|
** index definition are tagged this way to help ensure that we do
|
|
|
|
** not pass them into code generator routines by mistake.
|
|
|
|
*/
|
|
|
|
static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
|
|
|
|
ExprSetVVAProperty(pExpr, EP_Immutable);
|
|
|
|
return WRC_Continue;
|
|
|
|
}
|
|
|
|
static void markExprListImmutable(ExprList *pList){
|
|
|
|
if( pList ){
|
|
|
|
Walker w;
|
|
|
|
memset(&w, 0, sizeof(w));
|
|
|
|
w.xExprCallback = markImmutableExprStep;
|
|
|
|
w.xSelectCallback = sqlite3SelectWalkNoop;
|
|
|
|
w.xSelectCallback2 = 0;
|
|
|
|
sqlite3WalkExprList(&w, pList);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define markExprListImmutable(X) /* no-op */
|
|
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to report the final ")" that terminates
|
|
|
|
** a CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** The table structure that other action routines have been building
|
|
|
|
** is added to the internal hash tables, assuming no errors have
|
|
|
|
** occurred.
|
|
|
|
**
|
|
|
|
** An entry for the table is made in the schema table on disk, unless
|
|
|
|
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
|
|
** it means we are reading the sqlite_schema table because we just
|
|
|
|
** connected to the database or because the sqlite_schema table has
|
|
|
|
** recently changed, so the entry for this table already exists in
|
|
|
|
** the sqlite_schema table. We do not want to create it again.
|
|
|
|
**
|
|
|
|
** If the pSelect argument is not NULL, it means that this routine
|
2022-07-22 04:46:07 +00:00
|
|
|
** was called to create a table generated from a
|
2021-05-14 09:07:09 +00:00
|
|
|
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
|
|
** the new table will match the result set of the SELECT.
|
|
|
|
*/
|
|
|
|
void sqlite3EndTable(
|
|
|
|
Parse *pParse, /* Parse context */
|
|
|
|
Token *pCons, /* The ',' token after the last column defn. */
|
|
|
|
Token *pEnd, /* The ')' before options in the CREATE TABLE */
|
2022-11-28 20:54:48 +00:00
|
|
|
u32 tabOpts, /* Extra table options. Usually 0. */
|
2021-05-14 09:07:09 +00:00
|
|
|
Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
|
|
|
){
|
|
|
|
Table *p; /* The new table */
|
|
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
|
|
int iDb; /* Database in which the table lives */
|
|
|
|
Index *pIdx; /* An implied index of the table */
|
|
|
|
|
|
|
|
if( pEnd==0 && pSelect==0 ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p==0 ) return;
|
|
|
|
|
|
|
|
if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
|
|
|
|
p->tabFlags |= TF_Shadow;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
|
|
** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
|
|
|
|
** So do not write to the disk again. Extract the root page number
|
|
|
|
** for the table from the db->init.newTnum field. (The page number
|
|
|
|
** should have been put there by the sqliteOpenCb routine.)
|
|
|
|
**
|
|
|
|
** If the root page number is 1, that means this is the sqlite_schema
|
|
|
|
** table itself. So mark it read-only.
|
|
|
|
*/
|
|
|
|
if( db->init.busy ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p->tnum = db->init.newTnum;
|
|
|
|
if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
|
|
|
|
}
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
/* Special processing for tables that include the STRICT keyword:
|
|
|
|
**
|
|
|
|
** * Do not allow custom column datatypes. Every column must have
|
|
|
|
** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
|
|
|
|
**
|
|
|
|
** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
|
|
|
|
** then all columns of the PRIMARY KEY must have a NOT NULL
|
|
|
|
** constraint.
|
|
|
|
*/
|
|
|
|
if( tabOpts & TF_Strict ){
|
|
|
|
int ii;
|
|
|
|
p->tabFlags |= TF_Strict;
|
|
|
|
for(ii=0; ii<p->nCol; ii++){
|
|
|
|
Column *pCol = &p->aCol[ii];
|
|
|
|
if( pCol->eCType==COLTYPE_CUSTOM ){
|
|
|
|
if( pCol->colFlags & COLFLAG_HASTYPE ){
|
|
|
|
sqlite3ErrorMsg(pParse,
|
|
|
|
"unknown datatype for %s.%s: \"%s\"",
|
|
|
|
p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
|
|
|
|
);
|
|
|
|
}else{
|
|
|
|
sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
|
|
|
|
p->zName, pCol->zCnName);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}else if( pCol->eCType==COLTYPE_ANY ){
|
|
|
|
pCol->affinity = SQLITE_AFF_BLOB;
|
|
|
|
}
|
|
|
|
if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
|
|
|
|
&& p->iPKey!=ii
|
|
|
|
&& pCol->notNull == OE_None
|
|
|
|
){
|
|
|
|
pCol->notNull = OE_Abort;
|
|
|
|
p->tabFlags |= TF_HasNotNull;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( (p->tabFlags & TF_HasPrimaryKey)==0
|
|
|
|
|| p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
|
|
|
|
assert( (p->tabFlags & TF_HasPrimaryKey)!=0
|
|
|
|
|| (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
|
|
|
|
|
|
|
|
/* Special processing for WITHOUT ROWID Tables */
|
|
|
|
if( tabOpts & TF_WithoutRowid ){
|
|
|
|
if( (p->tabFlags & TF_Autoincrement) ){
|
|
|
|
sqlite3ErrorMsg(pParse,
|
|
|
|
"AUTOINCREMENT not allowed on WITHOUT ROWID tables");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
|
|
|
|
convertToWithoutRowidTable(pParse, p);
|
|
|
|
}
|
|
|
|
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
|
|
/* Resolve names in all CHECK constraint expressions.
|
|
|
|
*/
|
|
|
|
if( p->pCheck ){
|
|
|
|
sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
|
|
|
|
if( pParse->nErr ){
|
|
|
|
/* If errors are seen, delete the CHECK constraints now, else they might
|
|
|
|
** actually be used if PRAGMA writable_schema=ON is set. */
|
|
|
|
sqlite3ExprListDelete(db, p->pCheck);
|
|
|
|
p->pCheck = 0;
|
|
|
|
}else{
|
|
|
|
markExprListImmutable(p->pCheck);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
#ifndef SQLITE_OMIT_GENERATED_COLUMNS
|
|
|
|
if( p->tabFlags & TF_HasGenerated ){
|
|
|
|
int ii, nNG = 0;
|
|
|
|
testcase( p->tabFlags & TF_HasVirtual );
|
|
|
|
testcase( p->tabFlags & TF_HasStored );
|
|
|
|
for(ii=0; ii<p->nCol; ii++){
|
|
|
|
u32 colFlags = p->aCol[ii].colFlags;
|
|
|
|
if( (colFlags & COLFLAG_GENERATED)!=0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
|
2021-05-14 09:07:09 +00:00
|
|
|
testcase( colFlags & COLFLAG_VIRTUAL );
|
|
|
|
testcase( colFlags & COLFLAG_STORED );
|
|
|
|
if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
|
|
|
|
/* If there are errors in resolving the expression, change the
|
|
|
|
** expression to a NULL. This prevents code generators that operate
|
|
|
|
** on the expression from inserting extra parts into the expression
|
|
|
|
** tree that have been allocated from lookaside memory, which is
|
|
|
|
** illegal in a schema and will lead to errors or heap corruption
|
|
|
|
** when the database connection closes. */
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
|
|
|
|
sqlite3ExprAlloc(db, TK_NULL, 0, 0));
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}else{
|
|
|
|
nNG++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( nNG==0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Estimate the average row size for the table and for all implied indices */
|
|
|
|
estimateTableWidth(p);
|
|
|
|
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
estimateIndexWidth(pIdx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If not initializing, then create a record for the new table
|
|
|
|
** in the schema table of the database.
|
|
|
|
**
|
|
|
|
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
|
|
** file instead of into the main database file.
|
|
|
|
*/
|
|
|
|
if( !db->init.busy ){
|
|
|
|
int n;
|
|
|
|
Vdbe *v;
|
|
|
|
char *zType; /* "view" or "table" */
|
|
|
|
char *zType2; /* "VIEW" or "TABLE" */
|
|
|
|
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
|
|
|
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( NEVER(v==0) ) return;
|
|
|
|
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, 0);
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/*
|
2021-05-14 09:07:09 +00:00
|
|
|
** Initialize zType for the new view or table.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IsOrdinaryTable(p) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
/* A regular table */
|
|
|
|
zType = "table";
|
|
|
|
zType2 = "TABLE";
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
|
|
}else{
|
|
|
|
/* A view */
|
|
|
|
zType = "view";
|
|
|
|
zType2 = "VIEW";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
|
|
|
** statement to populate the new table. The root-page number for the
|
|
|
|
** new table is in register pParse->regRoot.
|
|
|
|
**
|
|
|
|
** Once the SELECT has been coded by sqlite3Select(), it is in a
|
|
|
|
** suitable state to query for the column names and types to be used
|
|
|
|
** by the new table.
|
|
|
|
**
|
|
|
|
** A shared-cache write-lock is not required to write to the new table,
|
|
|
|
** as a schema-lock must have already been obtained to create it. Since
|
|
|
|
** a schema-lock excludes all other database users, the write-lock would
|
|
|
|
** be redundant.
|
|
|
|
*/
|
|
|
|
if( pSelect ){
|
|
|
|
SelectDest dest; /* Where the SELECT should store results */
|
|
|
|
int regYield; /* Register holding co-routine entry-point */
|
|
|
|
int addrTop; /* Top of the co-routine */
|
|
|
|
int regRec; /* A record to be insert into the new table */
|
|
|
|
int regRowid; /* Rowid of the next row to insert */
|
|
|
|
int addrInsLoop; /* Top of the loop for inserting rows */
|
|
|
|
Table *pSelTab; /* A table that describes the SELECT results */
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IN_SPECIAL_PARSE ){
|
|
|
|
pParse->rc = SQLITE_ERROR;
|
|
|
|
pParse->nErr++;
|
|
|
|
return;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
regYield = ++pParse->nMem;
|
|
|
|
regRec = ++pParse->nMem;
|
|
|
|
regRowid = ++pParse->nMem;
|
|
|
|
assert(pParse->nTab==1);
|
|
|
|
sqlite3MayAbort(pParse);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
|
|
|
|
sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
|
|
|
|
pParse->nTab = 2;
|
|
|
|
addrTop = sqlite3VdbeCurrentAddr(v) + 1;
|
|
|
|
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
|
|
|
|
if( pParse->nErr ) return;
|
|
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
|
|
|
|
if( pSelTab==0 ) return;
|
|
|
|
assert( p->aCol==0 );
|
|
|
|
p->nCol = p->nNVCol = pSelTab->nCol;
|
|
|
|
p->aCol = pSelTab->aCol;
|
|
|
|
pSelTab->nCol = 0;
|
|
|
|
pSelTab->aCol = 0;
|
|
|
|
sqlite3DeleteTable(db, pSelTab);
|
|
|
|
sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
|
|
|
|
sqlite3Select(pParse, pSelect, &dest);
|
|
|
|
if( pParse->nErr ) return;
|
|
|
|
sqlite3VdbeEndCoroutine(v, regYield);
|
|
|
|
sqlite3VdbeJumpHere(v, addrTop - 1);
|
|
|
|
addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
|
|
|
|
VdbeCoverage(v);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
|
|
|
|
sqlite3TableAffinity(v, p, 0);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
|
|
|
|
sqlite3VdbeGoto(v, addrInsLoop);
|
|
|
|
sqlite3VdbeJumpHere(v, addrInsLoop);
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the complete text of the CREATE statement */
|
|
|
|
if( pSelect ){
|
|
|
|
zStmt = createTableStmt(db, p);
|
|
|
|
}else{
|
|
|
|
Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
|
|
|
|
n = (int)(pEnd2->z - pParse->sNameToken.z);
|
|
|
|
if( pEnd2->z[0]!=';' ) n += pEnd2->n;
|
2022-07-22 04:46:07 +00:00
|
|
|
zStmt = sqlite3MPrintf(db,
|
2021-05-14 09:07:09 +00:00
|
|
|
"CREATE %s %.*s", zType2, n, pParse->sNameToken.z
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* A slot for the record has already been allocated in the
|
2021-05-14 09:07:09 +00:00
|
|
|
** schema table. We just need to update that slot with all
|
|
|
|
** the information we've collected.
|
|
|
|
*/
|
|
|
|
sqlite3NestedParse(pParse,
|
2022-11-28 20:54:48 +00:00
|
|
|
"UPDATE %Q." LEGACY_SCHEMA_TABLE
|
2021-05-14 09:07:09 +00:00
|
|
|
" SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
|
|
|
|
" WHERE rowid=#%d",
|
|
|
|
db->aDb[iDb].zDbSName,
|
|
|
|
zType,
|
|
|
|
p->zName,
|
|
|
|
p->zName,
|
|
|
|
pParse->regRoot,
|
|
|
|
zStmt,
|
|
|
|
pParse->regRowid
|
|
|
|
);
|
|
|
|
sqlite3DbFree(db, zStmt);
|
|
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
/* Check to see if we need to create an sqlite_sequence table for
|
|
|
|
** keeping track of autoincrement keys.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
|
2021-05-14 09:07:09 +00:00
|
|
|
Db *pDb = &db->aDb[iDb];
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
if( pDb->pSchema->pSeqTab==0 ){
|
|
|
|
sqlite3NestedParse(pParse,
|
|
|
|
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
|
|
|
pDb->zDbSName
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Reparse everything to update our internal data structures */
|
|
|
|
sqlite3VdbeAddParseSchemaOp(v, iDb,
|
|
|
|
sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add the table to the in-memory representation of the database.
|
|
|
|
*/
|
|
|
|
if( db->init.busy ){
|
|
|
|
Table *pOld;
|
|
|
|
Schema *pSchema = p->pSchema;
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( HasRowid(p) || p->iPKey<0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
|
|
|
|
if( pOld ){
|
|
|
|
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pParse->pNewTable = 0;
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* If this is the magic sqlite_sequence table used by autoincrement,
|
|
|
|
** then record a pointer to this table in the main database structure
|
|
|
|
** so that INSERT can find the table easily. */
|
|
|
|
assert( !pParse->nested );
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
if( strcmp(p->zName, "sqlite_sequence")==0 ){
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
p->pSchema->pSeqTab = p;
|
|
|
|
}
|
|
|
|
#endif
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !pSelect && IsOrdinaryTable(p) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pCons && pEnd );
|
|
|
|
if( pCons->z==0 ){
|
|
|
|
pCons = pEnd;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
|
|
/*
|
|
|
|
** The parser calls this routine in order to create a new VIEW
|
|
|
|
*/
|
|
|
|
void sqlite3CreateView(
|
|
|
|
Parse *pParse, /* The parsing context */
|
|
|
|
Token *pBegin, /* The CREATE token that begins the statement */
|
|
|
|
Token *pName1, /* The token that holds the name of the view */
|
|
|
|
Token *pName2, /* The token that holds the name of the view */
|
|
|
|
ExprList *pCNames, /* Optional list of view column names */
|
|
|
|
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
|
|
int isTemp, /* TRUE for a TEMPORARY view */
|
|
|
|
int noErr /* Suppress error messages if VIEW already exists */
|
|
|
|
){
|
|
|
|
Table *p;
|
|
|
|
int n;
|
|
|
|
const char *z;
|
|
|
|
Token sEnd;
|
|
|
|
DbFixer sFix;
|
|
|
|
Token *pName = 0;
|
|
|
|
int iDb;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
|
|
|
|
if( pParse->nVar>0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
|
|
|
goto create_view_fail;
|
|
|
|
}
|
|
|
|
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p==0 || pParse->nErr ) goto create_view_fail;
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* Legacy versions of SQLite allowed the use of the magic "rowid" column
|
|
|
|
** on a view, even though views do not have rowids. The following flag
|
|
|
|
** setting fixes this problem. But the fix can be disabled by compiling
|
|
|
|
** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
|
|
|
|
** depend upon the old buggy behavior. */
|
|
|
|
#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
|
|
|
|
p->tabFlags |= TF_NoVisibleRowid;
|
|
|
|
#endif
|
|
|
|
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
|
|
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
|
|
sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
|
|
|
|
if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
|
|
|
|
|
|
|
|
/* Make a copy of the entire SELECT statement that defines the view.
|
|
|
|
** This will force all the Expr.token.z values to be dynamically
|
|
|
|
** allocated rather than point to the input string - which means that
|
|
|
|
** they will persist after the current sqlite3_exec() call returns.
|
|
|
|
*/
|
|
|
|
pSelect->selFlags |= SF_View;
|
|
|
|
if( IN_RENAME_OBJECT ){
|
2022-11-28 20:54:48 +00:00
|
|
|
p->u.view.pSelect = pSelect;
|
2021-05-14 09:07:09 +00:00
|
|
|
pSelect = 0;
|
|
|
|
}else{
|
2022-11-28 20:54:48 +00:00
|
|
|
p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
|
2022-11-28 20:54:48 +00:00
|
|
|
p->eTabType = TABTYP_VIEW;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( db->mallocFailed ) goto create_view_fail;
|
|
|
|
|
|
|
|
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
|
|
** the end.
|
|
|
|
*/
|
|
|
|
sEnd = pParse->sLastToken;
|
|
|
|
assert( sEnd.z[0]!=0 || sEnd.n==0 );
|
|
|
|
if( sEnd.z[0]!=';' ){
|
|
|
|
sEnd.z += sEnd.n;
|
|
|
|
}
|
|
|
|
sEnd.n = 0;
|
|
|
|
n = (int)(sEnd.z - pBegin->z);
|
|
|
|
assert( n>0 );
|
|
|
|
z = pBegin->z;
|
|
|
|
while( sqlite3Isspace(z[n-1]) ){ n--; }
|
|
|
|
sEnd.z = &z[n-1];
|
|
|
|
sEnd.n = 1;
|
|
|
|
|
|
|
|
/* Use sqlite3EndTable() to add the view to the schema table */
|
|
|
|
sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
|
|
|
|
|
|
|
|
create_view_fail:
|
|
|
|
sqlite3SelectDelete(db, pSelect);
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameExprlistUnmap(pParse, pCNames);
|
|
|
|
}
|
|
|
|
sqlite3ExprListDelete(db, pCNames);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
|
|
/*
|
|
|
|
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
|
|
** the columns of the view in the pTable structure. Return the number
|
|
|
|
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){
|
2021-05-14 09:07:09 +00:00
|
|
|
Table *pSelTab; /* A fake table from which we get the result set */
|
|
|
|
Select *pSel; /* Copy of the SELECT that implements the view */
|
|
|
|
int nErr = 0; /* Number of errors encountered */
|
|
|
|
sqlite3 *db = pParse->db; /* Database connection for malloc errors */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
int rc;
|
|
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
sqlite3_xauth xAuth; /* Saved xAuth pointer */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
assert( pTable );
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IsVirtual(pTable) ){
|
|
|
|
db->nSchemaLock++;
|
|
|
|
rc = sqlite3VtabCallConnect(pParse, pTable);
|
|
|
|
db->nSchemaLock--;
|
|
|
|
return rc;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
|
|
/* A positive nCol means the columns names for this view are
|
2022-11-28 20:54:48 +00:00
|
|
|
** already known. This routine is not called unless either the
|
|
|
|
** table is virtual or nCol is zero.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pTable->nCol<=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* A negative nCol is a special marker meaning that we are currently
|
|
|
|
** trying to compute the column names. If we enter this routine with
|
|
|
|
** a negative nCol, it means two or more views form a loop, like this:
|
|
|
|
**
|
|
|
|
** CREATE VIEW one AS SELECT * FROM two;
|
|
|
|
** CREATE VIEW two AS SELECT * FROM one;
|
|
|
|
**
|
|
|
|
** Actually, the error above is now caught prior to reaching this point.
|
|
|
|
** But the following test is still important as it does come up
|
|
|
|
** in the following:
|
2022-07-22 04:46:07 +00:00
|
|
|
**
|
2021-05-14 09:07:09 +00:00
|
|
|
** CREATE TABLE main.ex1(a);
|
|
|
|
** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
|
|
|
|
** SELECT * FROM temp.ex1;
|
|
|
|
*/
|
|
|
|
if( pTable->nCol<0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
assert( pTable->nCol>=0 );
|
|
|
|
|
|
|
|
/* If we get this far, it means we need to compute the table names.
|
|
|
|
** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
|
|
|
** "*" elements in the results set of the view and will assign cursors
|
|
|
|
** to the elements of the FROM clause. But we do not want these changes
|
|
|
|
** to be permanent. So the computation is done on a copy of the SELECT
|
|
|
|
** statement that defines the view.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( IsView(pTable) );
|
|
|
|
pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pSel ){
|
|
|
|
u8 eParseMode = pParse->eParseMode;
|
2022-11-28 20:54:48 +00:00
|
|
|
int nTab = pParse->nTab;
|
|
|
|
int nSelect = pParse->nSelect;
|
2021-05-14 09:07:09 +00:00
|
|
|
pParse->eParseMode = PARSE_MODE_NORMAL;
|
|
|
|
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
|
|
|
pTable->nCol = -1;
|
|
|
|
DisableLookaside;
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
xAuth = db->xAuth;
|
|
|
|
db->xAuth = 0;
|
|
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
|
|
|
|
db->xAuth = xAuth;
|
|
|
|
#else
|
|
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
|
|
|
|
#endif
|
2022-11-28 20:54:48 +00:00
|
|
|
pParse->nTab = nTab;
|
|
|
|
pParse->nSelect = nSelect;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pSelTab==0 ){
|
|
|
|
pTable->nCol = 0;
|
|
|
|
nErr++;
|
|
|
|
}else if( pTable->pCheck ){
|
|
|
|
/* CREATE VIEW name(arglist) AS ...
|
|
|
|
** The names of the columns in the table are taken from
|
|
|
|
** arglist which is stored in pTable->pCheck. The pCheck field
|
|
|
|
** normally holds CHECK constraints on an ordinary table, but for
|
|
|
|
** a VIEW it holds the list of column names.
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
|
2021-05-14 09:07:09 +00:00
|
|
|
&pTable->nCol, &pTable->aCol);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pParse->nErr==0
|
2021-05-14 09:07:09 +00:00
|
|
|
&& pTable->nCol==pSel->pEList->nExpr
|
|
|
|
){
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->mallocFailed==0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
|
|
|
|
SQLITE_AFF_NONE);
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
/* CREATE VIEW name AS... without an argument list. Construct
|
|
|
|
** the column names from the SELECT statement that defines the view.
|
|
|
|
*/
|
|
|
|
assert( pTable->aCol==0 );
|
|
|
|
pTable->nCol = pSelTab->nCol;
|
|
|
|
pTable->aCol = pSelTab->aCol;
|
|
|
|
pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
|
|
|
|
pSelTab->nCol = 0;
|
|
|
|
pSelTab->aCol = 0;
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
|
|
|
|
}
|
|
|
|
pTable->nNVCol = pTable->nCol;
|
|
|
|
sqlite3DeleteTable(db, pSelTab);
|
|
|
|
sqlite3SelectDelete(db, pSel);
|
|
|
|
EnableLookaside;
|
|
|
|
pParse->eParseMode = eParseMode;
|
|
|
|
} else {
|
|
|
|
nErr++;
|
|
|
|
}
|
|
|
|
pTable->pSchema->schemaFlags |= DB_UnresetViews;
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
sqlite3DeleteColumnNames(db, pTable);
|
|
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIEW */
|
2022-07-22 04:46:07 +00:00
|
|
|
return nErr;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
|
|
assert( pTable!=0 );
|
|
|
|
if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0;
|
|
|
|
return viewGetColumnNames(pParse, pTable);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
|
|
/*
|
|
|
|
** Clear the column names from every VIEW in database idx.
|
|
|
|
*/
|
|
|
|
static void sqliteViewResetAll(sqlite3 *db, int idx){
|
|
|
|
HashElem *i;
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, idx, 0) );
|
|
|
|
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
|
|
for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
|
|
|
Table *pTab = sqliteHashData(i);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IsView(pTab) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3DeleteColumnNames(db, pTab);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DbClearProperty(db, idx, DB_UnresetViews);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
# define sqliteViewResetAll(A,B)
|
|
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This function is called by the VDBE to adjust the internal schema
|
|
|
|
** used by SQLite when the btree layer moves a table root page. The
|
|
|
|
** root-page of a table or index in database iDb has changed from iFrom
|
|
|
|
** to iTo.
|
|
|
|
**
|
|
|
|
** Ticket #1728: The symbol table might still contain information
|
|
|
|
** on tables and/or indices that are the process of being deleted.
|
|
|
|
** If you are unlucky, one of those deleted indices or tables might
|
|
|
|
** have the same rootpage number as the real table or index that is
|
2022-07-22 04:46:07 +00:00
|
|
|
** being moved. So we cannot stop searching after the first match
|
2021-05-14 09:07:09 +00:00
|
|
|
** because the first match might be for one of the deleted indices
|
|
|
|
** or tables and not the table/index that is actually being moved.
|
|
|
|
** We must continue looping until all tables and indices with
|
|
|
|
** rootpage==iFrom have been converted to have a rootpage of iTo
|
|
|
|
** in order to be certain that we got the right one.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
|
|
void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
|
|
|
|
HashElem *pElem;
|
|
|
|
Hash *pHash;
|
|
|
|
Db *pDb;
|
|
|
|
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
pDb = &db->aDb[iDb];
|
|
|
|
pHash = &pDb->pSchema->tblHash;
|
|
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
|
|
Table *pTab = sqliteHashData(pElem);
|
|
|
|
if( pTab->tnum==iFrom ){
|
|
|
|
pTab->tnum = iTo;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pHash = &pDb->pSchema->idxHash;
|
|
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
|
|
Index *pIdx = sqliteHashData(pElem);
|
|
|
|
if( pIdx->tnum==iFrom ){
|
|
|
|
pIdx->tnum = iTo;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Write code to erase the table with root-page iTable from database iDb.
|
|
|
|
** Also write code to modify the sqlite_schema table and internal schema
|
|
|
|
** if a root-page of another table is moved by the btree-layer whilst
|
|
|
|
** erasing iTable (this can happen with an auto-vacuum database).
|
2022-07-22 04:46:07 +00:00
|
|
|
*/
|
2021-05-14 09:07:09 +00:00
|
|
|
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
|
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
|
|
if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
|
|
|
|
sqlite3MayAbort(pParse);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
|
|
/* OP_Destroy stores an in integer r1. If this integer
|
|
|
|
** is non-zero, then it is the root page number of a table moved to
|
|
|
|
** location iTable. The following code modifies the sqlite_schema table to
|
|
|
|
** reflect this.
|
|
|
|
**
|
|
|
|
** The "#NNN" in the SQL is a special constant that means whatever value
|
|
|
|
** is in register NNN. See grammar rules associated with the TK_REGISTER
|
|
|
|
** token for additional information.
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3NestedParse(pParse,
|
2022-11-28 20:54:48 +00:00
|
|
|
"UPDATE %Q." LEGACY_SCHEMA_TABLE
|
2021-05-14 09:07:09 +00:00
|
|
|
" SET rootpage=%d WHERE #%d AND rootpage=#%d",
|
|
|
|
pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
|
|
|
|
#endif
|
|
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Write VDBE code to erase table pTab and all associated indices on disk.
|
|
|
|
** Code to update the sqlite_schema tables and internal schema definitions
|
|
|
|
** in case a root-page belonging to another table is moved by the btree layer
|
|
|
|
** is also added (this can happen with an auto-vacuum database).
|
|
|
|
*/
|
|
|
|
static void destroyTable(Parse *pParse, Table *pTab){
|
|
|
|
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
|
|
|
** is not defined), then it is important to call OP_Destroy on the
|
2022-07-22 04:46:07 +00:00
|
|
|
** table and index root-pages in order, starting with the numerically
|
2021-05-14 09:07:09 +00:00
|
|
|
** largest root-page number. This guarantees that none of the root-pages
|
|
|
|
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
|
|
|
** following were coded:
|
|
|
|
**
|
|
|
|
** OP_Destroy 4 0
|
|
|
|
** ...
|
|
|
|
** OP_Destroy 5 0
|
|
|
|
**
|
|
|
|
** and root page 5 happened to be the largest root-page number in the
|
2022-07-22 04:46:07 +00:00
|
|
|
** database, then root page 5 would be moved to page 4 by the
|
2021-05-14 09:07:09 +00:00
|
|
|
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
|
|
|
** a free-list page.
|
|
|
|
*/
|
|
|
|
Pgno iTab = pTab->tnum;
|
|
|
|
Pgno iDestroyed = 0;
|
|
|
|
|
|
|
|
while( 1 ){
|
|
|
|
Index *pIdx;
|
|
|
|
Pgno iLargest = 0;
|
|
|
|
|
|
|
|
if( iDestroyed==0 || iTab<iDestroyed ){
|
|
|
|
iLargest = iTab;
|
|
|
|
}
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
Pgno iIdx = pIdx->tnum;
|
|
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
|
|
if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
|
|
|
iLargest = iIdx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( iLargest==0 ){
|
|
|
|
return;
|
|
|
|
}else{
|
|
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
|
|
assert( iDb>=0 && iDb<pParse->db->nDb );
|
|
|
|
destroyRootPage(pParse, iLargest, iDb);
|
|
|
|
iDestroyed = iLargest;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Remove entries from the sqlite_statN tables (for N in (1,2,3))
|
|
|
|
** after a DROP INDEX or DROP TABLE command.
|
|
|
|
*/
|
|
|
|
static void sqlite3ClearStatTables(
|
|
|
|
Parse *pParse, /* The parsing context */
|
|
|
|
int iDb, /* The database number */
|
|
|
|
const char *zType, /* "idx" or "tbl" */
|
|
|
|
const char *zName /* Name of index or table */
|
|
|
|
){
|
|
|
|
int i;
|
|
|
|
const char *zDbName = pParse->db->aDb[iDb].zDbSName;
|
|
|
|
for(i=1; i<=4; i++){
|
|
|
|
char zTab[24];
|
|
|
|
sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
|
|
|
|
if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
|
|
|
|
sqlite3NestedParse(pParse,
|
|
|
|
"DELETE FROM %Q.%s WHERE %s=%Q",
|
|
|
|
zDbName, zTab, zType, zName
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code to drop a table.
|
|
|
|
*/
|
|
|
|
void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
Trigger *pTrigger;
|
|
|
|
Db *pDb = &db->aDb[iDb];
|
|
|
|
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
assert( v!=0 );
|
|
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
if( IsVirtual(pTab) ){
|
|
|
|
sqlite3VdbeAddOp0(v, OP_VBegin);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Drop all triggers associated with the table being dropped. Code
|
|
|
|
** is generated to remove entries from sqlite_schema and/or
|
|
|
|
** sqlite_temp_schema if required.
|
|
|
|
*/
|
|
|
|
pTrigger = sqlite3TriggerList(pParse, pTab);
|
|
|
|
while( pTrigger ){
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( pTrigger->pSchema==pTab->pSchema ||
|
2021-05-14 09:07:09 +00:00
|
|
|
pTrigger->pSchema==db->aDb[1].pSchema );
|
|
|
|
sqlite3DropTriggerPtr(pParse, pTrigger);
|
|
|
|
pTrigger = pTrigger->pNext;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
|
|
/* Remove any entries of the sqlite_sequence table associated with
|
|
|
|
** the table being dropped. This is done before the table is dropped
|
|
|
|
** at the btree level, in case the sqlite_sequence table needs to
|
|
|
|
** move as a result of the drop (can happen in auto-vacuum mode).
|
|
|
|
*/
|
|
|
|
if( pTab->tabFlags & TF_Autoincrement ){
|
|
|
|
sqlite3NestedParse(pParse,
|
|
|
|
"DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
|
|
|
|
pDb->zDbSName, pTab->zName
|
|
|
|
);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Drop all entries in the schema table that refer to the
|
|
|
|
** table. The program name loops through the schema table and deletes
|
|
|
|
** every row that refers to a table of the same name as the one being
|
|
|
|
** dropped. Triggers are handled separately because a trigger can be
|
|
|
|
** created in the temp database that refers to a table in another
|
|
|
|
** database.
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3NestedParse(pParse,
|
2022-11-28 20:54:48 +00:00
|
|
|
"DELETE FROM %Q." LEGACY_SCHEMA_TABLE
|
2021-05-14 09:07:09 +00:00
|
|
|
" WHERE tbl_name=%Q and type!='trigger'",
|
|
|
|
pDb->zDbSName, pTab->zName);
|
|
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
|
|
destroyTable(pParse, pTab);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove the table entry from SQLite's internal schema and modify
|
|
|
|
** the schema cookie.
|
|
|
|
*/
|
|
|
|
if( IsVirtual(pTab) ){
|
|
|
|
sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
|
|
|
|
sqlite3MayAbort(pParse);
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
|
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
sqliteViewResetAll(db, iDb);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return TRUE if shadow tables should be read-only in the current
|
|
|
|
** context.
|
|
|
|
*/
|
|
|
|
int sqlite3ReadOnlyShadowTables(sqlite3 *db){
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
if( (db->flags & SQLITE_Defensive)!=0
|
|
|
|
&& db->pVtabCtx==0
|
|
|
|
&& db->nVdbeExec==0
|
2022-11-28 20:54:48 +00:00
|
|
|
&& !sqlite3VtabInSync(db)
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return true if it is not allowed to drop the given table
|
|
|
|
*/
|
|
|
|
static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
|
|
|
|
if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
|
|
|
|
if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
|
|
|
|
if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
|
|
|
|
return 1;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pTab->tabFlags & TF_Eponymous ){
|
|
|
|
return 1;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to do the work of a DROP TABLE statement.
|
|
|
|
** pName is the name of the table to be dropped.
|
|
|
|
*/
|
|
|
|
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
|
|
|
Table *pTab;
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
int iDb;
|
|
|
|
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
assert( pParse->nErr==0 );
|
|
|
|
assert( pName->nSrc==1 );
|
|
|
|
if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
|
|
|
|
if( noErr ) db->suppressErr++;
|
|
|
|
assert( isView==0 || isView==LOCATE_VIEW );
|
|
|
|
pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
|
|
|
|
if( noErr ) db->suppressErr--;
|
|
|
|
|
|
|
|
if( pTab==0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( noErr ){
|
|
|
|
sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
|
|
|
sqlite3ForceNotReadOnly(pParse);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
|
|
|
|
/* If pTab is a virtual table, call ViewGetColumnNames() to ensure
|
|
|
|
** it is initialized.
|
|
|
|
*/
|
|
|
|
if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
{
|
|
|
|
int code;
|
|
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
|
|
const char *zDb = db->aDb[iDb].zDbSName;
|
|
|
|
const char *zArg2 = 0;
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
if( isView ){
|
|
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
|
|
code = SQLITE_DROP_TEMP_VIEW;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_DROP_VIEW;
|
|
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
}else if( IsVirtual(pTab) ){
|
|
|
|
code = SQLITE_DROP_VTABLE;
|
|
|
|
zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
|
|
|
|
#endif
|
|
|
|
}else{
|
|
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
|
|
code = SQLITE_DROP_TEMP_TABLE;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_DROP_TABLE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( tableMayNotBeDropped(db, pTab) ){
|
|
|
|
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
|
|
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
|
|
|
** on a table.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
if( isView && !IsView(pTab) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !isView && IsView(pTab) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
|
|
|
goto exit_drop_table;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Generate code to remove the table from the schema table
|
|
|
|
** on disk.
|
|
|
|
*/
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
if( !isView ){
|
|
|
|
sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
|
|
|
|
sqlite3FkDropTable(pParse, pName, pTab);
|
|
|
|
}
|
|
|
|
sqlite3CodeDropTable(pParse, pTab, iDb, isView);
|
|
|
|
}
|
|
|
|
|
|
|
|
exit_drop_table:
|
|
|
|
sqlite3SrcListDelete(db, pName);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to create a new foreign key on the table
|
|
|
|
** currently under construction. pFromCol determines which columns
|
|
|
|
** in the current table point to the foreign key. If pFromCol==0 then
|
|
|
|
** connect the key to the last column inserted. pTo is the name of
|
|
|
|
** the table referred to (a.k.a the "parent" table). pToCol is a list
|
|
|
|
** of tables in the parent pTo table. flags contains all
|
|
|
|
** information about the conflict resolution algorithms specified
|
|
|
|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
|
|
**
|
|
|
|
** An FKey structure is created and added to the table currently
|
|
|
|
** under construction in the pParse->pNewTable field.
|
|
|
|
**
|
|
|
|
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
|
|
** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
|
|
|
*/
|
|
|
|
void sqlite3CreateForeignKey(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
ExprList *pFromCol, /* Columns in this table that point to other table */
|
|
|
|
Token *pTo, /* Name of the other table */
|
|
|
|
ExprList *pToCol, /* Columns in the other table */
|
|
|
|
int flags /* Conflict resolution algorithms. */
|
|
|
|
){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
|
|
FKey *pFKey = 0;
|
|
|
|
FKey *pNextTo;
|
|
|
|
Table *p = pParse->pNewTable;
|
2022-11-28 20:54:48 +00:00
|
|
|
i64 nByte;
|
2021-05-14 09:07:09 +00:00
|
|
|
int i;
|
|
|
|
int nCol;
|
|
|
|
char *z;
|
|
|
|
|
|
|
|
assert( pTo!=0 );
|
|
|
|
if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
|
|
|
|
if( pFromCol==0 ){
|
|
|
|
int iCol = p->nCol-1;
|
|
|
|
if( NEVER(iCol<0) ) goto fk_end;
|
|
|
|
if( pToCol && pToCol->nExpr!=1 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "foreign key on %s"
|
|
|
|
" should reference only one column of table %T",
|
2022-11-28 20:54:48 +00:00
|
|
|
p->aCol[iCol].zCnName, pTo);
|
2021-05-14 09:07:09 +00:00
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
nCol = 1;
|
|
|
|
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
|
|
|
sqlite3ErrorMsg(pParse,
|
|
|
|
"number of columns in foreign key does not match the number of "
|
|
|
|
"columns in the referenced table");
|
|
|
|
goto fk_end;
|
|
|
|
}else{
|
|
|
|
nCol = pFromCol->nExpr;
|
|
|
|
}
|
|
|
|
nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
|
|
if( pToCol ){
|
|
|
|
for(i=0; i<pToCol->nExpr; i++){
|
|
|
|
nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pFKey = sqlite3DbMallocZero(db, nByte );
|
|
|
|
if( pFKey==0 ){
|
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
pFKey->pFrom = p;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( IsOrdinaryTable(p) );
|
|
|
|
pFKey->pNextFrom = p->u.tab.pFKey;
|
2021-05-14 09:07:09 +00:00
|
|
|
z = (char*)&pFKey->aCol[nCol];
|
|
|
|
pFKey->zTo = z;
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameTokenMap(pParse, (void*)z, pTo);
|
|
|
|
}
|
|
|
|
memcpy(z, pTo->z, pTo->n);
|
|
|
|
z[pTo->n] = 0;
|
|
|
|
sqlite3Dequote(z);
|
|
|
|
z += pTo->n+1;
|
|
|
|
pFKey->nCol = nCol;
|
|
|
|
if( pFromCol==0 ){
|
|
|
|
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
|
|
}else{
|
|
|
|
for(i=0; i<nCol; i++){
|
|
|
|
int j;
|
|
|
|
for(j=0; j<p->nCol; j++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
pFKey->aCol[i].iFrom = j;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( j>=p->nCol ){
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse,
|
|
|
|
"unknown column \"%s\" in foreign key definition",
|
2021-05-14 09:07:09 +00:00
|
|
|
pFromCol->a[i].zEName);
|
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pToCol ){
|
|
|
|
for(i=0; i<nCol; i++){
|
|
|
|
int n = sqlite3Strlen30(pToCol->a[i].zEName);
|
|
|
|
pFKey->aCol[i].zCol = z;
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
|
|
|
|
}
|
|
|
|
memcpy(z, pToCol->a[i].zEName, n);
|
|
|
|
z[n] = 0;
|
|
|
|
z += n+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pFKey->isDeferred = 0;
|
|
|
|
pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
|
|
|
|
pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
|
|
|
|
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
|
2022-07-22 04:46:07 +00:00
|
|
|
pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
|
2021-05-14 09:07:09 +00:00
|
|
|
pFKey->zTo, (void *)pFKey
|
|
|
|
);
|
|
|
|
if( pNextTo==pFKey ){
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
if( pNextTo ){
|
|
|
|
assert( pNextTo->pPrevTo==0 );
|
|
|
|
pFKey->pNextTo = pNextTo;
|
|
|
|
pNextTo->pPrevTo = pFKey;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Link the foreign key to the table as the last step.
|
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( IsOrdinaryTable(p) );
|
|
|
|
p->u.tab.pFKey = pFKey;
|
2021-05-14 09:07:09 +00:00
|
|
|
pFKey = 0;
|
|
|
|
|
|
|
|
fk_end:
|
|
|
|
sqlite3DbFree(db, pFKey);
|
|
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
|
|
sqlite3ExprListDelete(db, pFromCol);
|
|
|
|
sqlite3ExprListDelete(db, pToCol);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
|
|
** clause is seen as part of a foreign key definition. The isDeferred
|
|
|
|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
|
|
** The behavior of the most recently created foreign key is adjusted
|
|
|
|
** accordingly.
|
|
|
|
*/
|
|
|
|
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
|
|
Table *pTab;
|
|
|
|
FKey *pFKey;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( (pTab = pParse->pNewTable)==0 ) return;
|
|
|
|
if( NEVER(!IsOrdinaryTable(pTab)) ) return;
|
|
|
|
if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
|
|
|
|
pFKey->isDeferred = (u8)isDeferred;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code that will erase and refill index *pIdx. This is
|
|
|
|
** used to initialize a newly created index or to recompute the
|
|
|
|
** content of an index in response to a REINDEX command.
|
|
|
|
**
|
|
|
|
** if memRootPage is not negative, it means that the index is newly
|
|
|
|
** created. The register specified by memRootPage contains the
|
|
|
|
** root page number of the index. If memRootPage is negative, then
|
|
|
|
** the index already exists and must be cleared before being refilled and
|
|
|
|
** the root page number of the index is taken from pIndex->tnum.
|
|
|
|
*/
|
|
|
|
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
|
|
|
Table *pTab = pIndex->pTable; /* The table that is indexed */
|
|
|
|
int iTab = pParse->nTab++; /* Btree cursor used for pTab */
|
|
|
|
int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
|
|
|
|
int iSorter; /* Cursor opened by OpenSorter (if in use) */
|
|
|
|
int addr1; /* Address of top of loop */
|
|
|
|
int addr2; /* Address to jump to for next iteration */
|
|
|
|
Pgno tnum; /* Root page of index */
|
|
|
|
int iPartIdxLabel; /* Jump to this label to skip a row */
|
|
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
|
|
KeyInfo *pKey; /* KeyInfo for index */
|
|
|
|
int regRecord; /* Register holding assembled index record */
|
|
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
|
|
int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
|
|
|
db->aDb[iDb].zDbSName ) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Require a write-lock on the table to perform this operation */
|
|
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
|
|
|
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v==0 ) return;
|
|
|
|
if( memRootPage>=0 ){
|
|
|
|
tnum = (Pgno)memRootPage;
|
|
|
|
}else{
|
|
|
|
tnum = pIndex->tnum;
|
|
|
|
}
|
|
|
|
pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pKey!=0 || pParse->nErr );
|
2021-05-14 09:07:09 +00:00
|
|
|
|
|
|
|
/* Open the sorter cursor if we are to use one. */
|
|
|
|
iSorter = pParse->nTab++;
|
|
|
|
sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
|
|
|
|
sqlite3KeyInfoRef(pKey), P4_KEYINFO);
|
|
|
|
|
|
|
|
/* Open the table. Loop through all rows of the table, inserting index
|
|
|
|
** records into the sorter. */
|
|
|
|
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
|
|
|
|
regRecord = sqlite3GetTempReg(pParse);
|
|
|
|
sqlite3MultiWrite(pParse);
|
|
|
|
|
|
|
|
sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
|
|
|
|
sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
|
|
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
|
|
if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
|
2021-05-14 09:07:09 +00:00
|
|
|
(char *)pKey, P4_KEYINFO);
|
|
|
|
sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
|
|
|
|
|
|
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
|
|
|
|
if( IsUniqueIndex(pIndex) ){
|
|
|
|
int j2 = sqlite3VdbeGoto(v, 1);
|
|
|
|
addr2 = sqlite3VdbeCurrentAddr(v);
|
|
|
|
sqlite3VdbeVerifyAbortable(v, OE_Abort);
|
|
|
|
sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
|
|
|
|
pIndex->nKeyCol); VdbeCoverage(v);
|
|
|
|
sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
|
|
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
|
|
}else{
|
|
|
|
/* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
|
|
|
|
** abort. The exception is if one of the indexed expressions contains a
|
|
|
|
** user function that throws an exception when it is evaluated. But the
|
|
|
|
** overhead of adding a statement journal to a CREATE INDEX statement is
|
|
|
|
** very small (since most of the pages written do not contain content that
|
2022-07-22 04:46:07 +00:00
|
|
|
** needs to be restored if the statement aborts), so we call
|
2021-05-14 09:07:09 +00:00
|
|
|
** sqlite3MayAbort() for all CREATE INDEX statements. */
|
|
|
|
sqlite3MayAbort(pParse);
|
|
|
|
addr2 = sqlite3VdbeCurrentAddr(v);
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
|
|
|
|
if( !pIndex->bAscKeyBug ){
|
|
|
|
/* This OP_SeekEnd opcode makes index insert for a REINDEX go much
|
|
|
|
** faster by avoiding unnecessary seeks. But the optimization does
|
|
|
|
** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
|
|
|
|
** with DESC primary keys, since those indexes have there keys in
|
|
|
|
** a different order from the main table.
|
|
|
|
** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
|
|
|
|
*/
|
|
|
|
sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
|
|
|
|
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
|
|
|
sqlite3ReleaseTempReg(pParse, regRecord);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
|
|
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
|
|
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, iTab);
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdx);
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, iSorter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Allocate heap space to hold an Index object with nCol columns.
|
|
|
|
**
|
|
|
|
** Increase the allocation size to provide an extra nExtra bytes
|
|
|
|
** of 8-byte aligned space after the Index object and return a
|
|
|
|
** pointer to this extra space in *ppExtra.
|
|
|
|
*/
|
|
|
|
Index *sqlite3AllocateIndexObject(
|
|
|
|
sqlite3 *db, /* Database connection */
|
|
|
|
i16 nCol, /* Total number of columns in the index */
|
|
|
|
int nExtra, /* Number of bytes of extra space to alloc */
|
|
|
|
char **ppExtra /* Pointer to the "extra" space */
|
|
|
|
){
|
|
|
|
Index *p; /* Allocated index object */
|
|
|
|
int nByte; /* Bytes of space for Index object + arrays */
|
|
|
|
|
|
|
|
nByte = ROUND8(sizeof(Index)) + /* Index structure */
|
|
|
|
ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
|
|
|
|
ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
|
|
|
|
sizeof(i16)*nCol + /* Index.aiColumn */
|
|
|
|
sizeof(u8)*nCol); /* Index.aSortOrder */
|
|
|
|
p = sqlite3DbMallocZero(db, nByte + nExtra);
|
|
|
|
if( p ){
|
|
|
|
char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
|
|
|
|
p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
|
|
|
|
p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
|
|
|
|
p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
|
|
|
|
p->aSortOrder = (u8*)pExtra;
|
|
|
|
p->nColumn = nCol;
|
|
|
|
p->nKeyCol = nCol - 1;
|
|
|
|
*ppExtra = ((char*)p) + nByte;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** If expression list pList contains an expression that was parsed with
|
|
|
|
** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
|
|
|
|
** pParse and return non-zero. Otherwise, return zero.
|
|
|
|
*/
|
|
|
|
int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
|
|
|
|
if( pList ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pList->nExpr; i++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pList->a[i].fg.bNulls ){
|
|
|
|
u8 sf = pList->a[i].fg.sortFlags;
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
|
2021-05-14 09:07:09 +00:00
|
|
|
(sf==0 || sf==3) ? "FIRST" : "LAST"
|
|
|
|
);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
|
|
|
** and pTblList is the name of the table that is to be indexed. Both will
|
2021-05-14 09:07:09 +00:00
|
|
|
** be NULL for a primary key or an index that is created to satisfy a
|
|
|
|
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
|
|
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
|
|
** currently being constructed by a CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
|
|
** is a primary key or unique-constraint on the most recent column added
|
2022-07-22 04:46:07 +00:00
|
|
|
** to the table currently under construction.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
void sqlite3CreateIndex(
|
|
|
|
Parse *pParse, /* All information about this parse */
|
|
|
|
Token *pName1, /* First part of index name. May be NULL */
|
|
|
|
Token *pName2, /* Second part of index name. May be NULL */
|
|
|
|
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
|
|
|
ExprList *pList, /* A list of columns to be indexed */
|
|
|
|
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
|
|
Token *pStart, /* The CREATE token that begins this statement */
|
|
|
|
Expr *pPIWhere, /* WHERE clause for partial indices */
|
|
|
|
int sortOrder, /* Sort order of primary key when pList==NULL */
|
|
|
|
int ifNotExist, /* Omit error if index already exists */
|
|
|
|
u8 idxType /* The index type */
|
|
|
|
){
|
|
|
|
Table *pTab = 0; /* Table to be indexed */
|
|
|
|
Index *pIndex = 0; /* The index to be created */
|
|
|
|
char *zName = 0; /* Name of the index */
|
|
|
|
int nName; /* Number of characters in zName */
|
|
|
|
int i, j;
|
|
|
|
DbFixer sFix; /* For assigning database names to pTable */
|
|
|
|
int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
Db *pDb; /* The specific table containing the indexed database */
|
|
|
|
int iDb; /* Index of the database that is being written */
|
|
|
|
Token *pName = 0; /* Unqualified name of the index to create */
|
|
|
|
struct ExprList_item *pListItem; /* For looping over pList */
|
|
|
|
int nExtra = 0; /* Space allocated for zExtra[] */
|
|
|
|
int nExtraCol; /* Number of extra columns needed */
|
|
|
|
char *zExtra = 0; /* Extra space after the Index object */
|
|
|
|
Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->pParse==pParse );
|
|
|
|
if( pParse->nErr ){
|
2021-05-14 09:07:09 +00:00
|
|
|
goto exit_create_index;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db->mallocFailed==0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( sqlite3HasExplicitNulls(pParse, pList) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Find the table that is to be indexed. Return early if not found.
|
|
|
|
*/
|
|
|
|
if( pTblName!=0 ){
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* Use the two-part index name to determine the database
|
2021-05-14 09:07:09 +00:00
|
|
|
** to search for the table. 'Fix' the table name to this db
|
|
|
|
** before looking up the table.
|
|
|
|
*/
|
|
|
|
assert( pName1 && pName2 );
|
|
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
|
|
if( iDb<0 ) goto exit_create_index;
|
|
|
|
assert( pName && pName->z );
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
|
|
/* If the index name was unqualified, check if the table
|
|
|
|
** is a temp table. If so, set the database to 1. Do not do this
|
|
|
|
** if initialising a database schema.
|
|
|
|
*/
|
|
|
|
if( !db->init.busy ){
|
|
|
|
pTab = sqlite3SrcListLookup(pParse, pTblName);
|
|
|
|
if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
|
|
|
iDb = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
|
|
|
|
if( sqlite3FixSrcList(&sFix, pTblName) ){
|
|
|
|
/* Because the parser constructs pTblName from a single identifier,
|
|
|
|
** sqlite3FixSrcList can never fail. */
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
|
|
|
|
assert( db->mallocFailed==0 || pTab==0 );
|
|
|
|
if( pTab==0 ) goto exit_create_index;
|
|
|
|
if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse,
|
2021-05-14 09:07:09 +00:00
|
|
|
"cannot create a TEMP index on non-TEMP table \"%s\"",
|
|
|
|
pTab->zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
|
|
}else{
|
|
|
|
assert( pName==0 );
|
|
|
|
assert( pStart==0 );
|
|
|
|
pTab = pParse->pNewTable;
|
|
|
|
if( !pTab ) goto exit_create_index;
|
|
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
|
|
}
|
|
|
|
pDb = &db->aDb[iDb];
|
|
|
|
|
|
|
|
assert( pTab!=0 );
|
2022-07-22 04:46:07 +00:00
|
|
|
if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
|
2021-05-14 09:07:09 +00:00
|
|
|
&& db->init.busy==0
|
|
|
|
&& pTblName!=0
|
|
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
|
|
&& sqlite3UserAuthTable(pTab->zName)==0
|
|
|
|
#endif
|
|
|
|
){
|
|
|
|
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
2022-11-28 20:54:48 +00:00
|
|
|
if( IsView(pTab) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "views may not be indexed");
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
if( IsVirtual(pTab) ){
|
|
|
|
sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Find the name of the index. Make sure there is not already another
|
2022-07-22 04:46:07 +00:00
|
|
|
** index or table with the same name.
|
2021-05-14 09:07:09 +00:00
|
|
|
**
|
|
|
|
** Exception: If we are reading the names of permanent indices from the
|
|
|
|
** sqlite_schema table (because some other process changed the schema) and
|
|
|
|
** one of the index names collides with the name of a temporary table or
|
|
|
|
** index, then we will continue to process this index.
|
|
|
|
**
|
|
|
|
** If pName==0 it means that we are
|
|
|
|
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
|
|
** own name.
|
|
|
|
*/
|
|
|
|
if( pName ){
|
|
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
|
|
if( zName==0 ) goto exit_create_index;
|
|
|
|
assert( pName->z!=0 );
|
|
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( !IN_RENAME_OBJECT ){
|
|
|
|
if( !db->init.busy ){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
|
|
|
|
if( !ifNotExist ){
|
|
|
|
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
|
|
|
}else{
|
|
|
|
assert( !db->init.busy );
|
|
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ForceNotReadOnly(pParse);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
int n;
|
|
|
|
Index *pLoop;
|
|
|
|
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
|
|
zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
|
|
|
|
if( zName==0 ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Automatic index names generated from within sqlite3_declare_vtab()
|
|
|
|
** must have names that are distinct from normal automatic index names.
|
|
|
|
** The following statement converts "sqlite3_autoindex..." into
|
|
|
|
** "sqlite3_butoindex..." in order to make the names distinct.
|
|
|
|
** The "vtab_err.test" test demonstrates the need of this statement. */
|
|
|
|
if( IN_SPECIAL_PARSE ) zName[7]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for authorization to create an index.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
if( !IN_RENAME_OBJECT ){
|
|
|
|
const char *zDb = pDb->zDbSName;
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
i = SQLITE_CREATE_INDEX;
|
|
|
|
if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
|
|
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* If pList==0, it means this routine was called to make a primary
|
|
|
|
** key out of the last column added to the table under construction.
|
|
|
|
** So create a fake list to simulate this.
|
|
|
|
*/
|
|
|
|
if( pList==0 ){
|
|
|
|
Token prevCol;
|
|
|
|
Column *pCol = &pTab->aCol[pTab->nCol-1];
|
|
|
|
pCol->colFlags |= COLFLAG_UNIQUE;
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3TokenInit(&prevCol, pCol->zCnName);
|
2021-05-14 09:07:09 +00:00
|
|
|
pList = sqlite3ExprListAppend(pParse, 0,
|
|
|
|
sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
|
|
|
|
if( pList==0 ) goto exit_create_index;
|
|
|
|
assert( pList->nExpr==1 );
|
|
|
|
sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
|
|
|
|
}else{
|
|
|
|
sqlite3ExprListCheckLength(pParse, pList, "index");
|
|
|
|
if( pParse->nErr ) goto exit_create_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Figure out how many bytes of space are required to store explicitly
|
|
|
|
** specified collation sequence names.
|
|
|
|
*/
|
|
|
|
for(i=0; i<pList->nExpr; i++){
|
|
|
|
Expr *pExpr = pList->a[i].pExpr;
|
|
|
|
assert( pExpr!=0 );
|
|
|
|
if( pExpr->op==TK_COLLATE ){
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
2021-05-14 09:07:09 +00:00
|
|
|
nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/*
|
|
|
|
** Allocate the index structure.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
nName = sqlite3Strlen30(zName);
|
|
|
|
nExtraCol = pPk ? pPk->nKeyCol : 1;
|
|
|
|
assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
|
|
|
|
pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
|
|
|
|
nName + nExtra + 1, &zExtra);
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
|
|
|
|
assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
|
|
|
|
pIndex->zName = zExtra;
|
|
|
|
zExtra += nName + 1;
|
|
|
|
memcpy(pIndex->zName, zName, nName+1);
|
|
|
|
pIndex->pTable = pTab;
|
|
|
|
pIndex->onError = (u8)onError;
|
|
|
|
pIndex->uniqNotNull = onError!=OE_None;
|
|
|
|
pIndex->idxType = idxType;
|
|
|
|
pIndex->pSchema = db->aDb[iDb].pSchema;
|
|
|
|
pIndex->nKeyCol = pList->nExpr;
|
|
|
|
if( pPIWhere ){
|
|
|
|
sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
|
|
|
|
pIndex->pPartIdxWhere = pPIWhere;
|
|
|
|
pPIWhere = 0;
|
|
|
|
}
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
|
|
|
|
|
|
/* Check to see if we should honor DESC requests on index columns
|
|
|
|
*/
|
|
|
|
if( pDb->pSchema->file_format>=4 ){
|
|
|
|
sortOrderMask = -1; /* Honor DESC */
|
|
|
|
}else{
|
|
|
|
sortOrderMask = 0; /* Ignore DESC */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Analyze the list of expressions that form the terms of the index and
|
|
|
|
** report any errors. In the common case where the expression is exactly
|
|
|
|
** a table column, store that column in aiColumn[]. For general expressions,
|
|
|
|
** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
|
|
|
|
**
|
|
|
|
** TODO: Issue a warning if two or more columns of the index are identical.
|
|
|
|
** TODO: Issue a warning if the table primary key is used as part of the
|
|
|
|
** index key.
|
|
|
|
*/
|
|
|
|
pListItem = pList->a;
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
pIndex->aColExpr = pList;
|
|
|
|
pList = 0;
|
|
|
|
}
|
|
|
|
for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
|
|
|
|
Expr *pCExpr; /* The i-th index expression */
|
|
|
|
int requestedSortOrder; /* ASC or DESC on the i-th expression */
|
|
|
|
const char *zColl; /* Collation sequence name */
|
|
|
|
|
|
|
|
sqlite3StringToId(pListItem->pExpr);
|
|
|
|
sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
|
|
|
|
if( pParse->nErr ) goto exit_create_index;
|
|
|
|
pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
|
|
|
|
if( pCExpr->op!=TK_COLUMN ){
|
|
|
|
if( pTab==pParse->pNewTable ){
|
|
|
|
sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
|
|
|
|
"UNIQUE constraints");
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( pIndex->aColExpr==0 ){
|
|
|
|
pIndex->aColExpr = pList;
|
|
|
|
pList = 0;
|
|
|
|
}
|
|
|
|
j = XN_EXPR;
|
|
|
|
pIndex->aiColumn[i] = XN_EXPR;
|
|
|
|
pIndex->uniqNotNull = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
pIndex->bHasExpr = 1;
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
|
|
|
j = pCExpr->iColumn;
|
|
|
|
assert( j<=0x7fff );
|
|
|
|
if( j<0 ){
|
|
|
|
j = pTab->iPKey;
|
|
|
|
}else{
|
|
|
|
if( pTab->aCol[j].notNull==0 ){
|
|
|
|
pIndex->uniqNotNull = 0;
|
|
|
|
}
|
|
|
|
if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
|
|
|
|
pIndex->bHasVCol = 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
pIndex->bHasExpr = 1;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
pIndex->aiColumn[i] = (i16)j;
|
|
|
|
}
|
|
|
|
zColl = 0;
|
|
|
|
if( pListItem->pExpr->op==TK_COLLATE ){
|
|
|
|
int nColl;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
|
2021-05-14 09:07:09 +00:00
|
|
|
zColl = pListItem->pExpr->u.zToken;
|
|
|
|
nColl = sqlite3Strlen30(zColl) + 1;
|
|
|
|
assert( nExtra>=nColl );
|
|
|
|
memcpy(zExtra, zColl, nColl);
|
|
|
|
zColl = zExtra;
|
|
|
|
zExtra += nColl;
|
|
|
|
nExtra -= nColl;
|
|
|
|
}else if( j>=0 ){
|
2022-11-28 20:54:48 +00:00
|
|
|
zColl = sqlite3ColumnColl(&pTab->aCol[j]);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
if( !zColl ) zColl = sqlite3StrBINARY;
|
|
|
|
if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
pIndex->azColl[i] = zColl;
|
2022-11-28 20:54:48 +00:00
|
|
|
requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
|
2021-05-14 09:07:09 +00:00
|
|
|
pIndex->aSortOrder[i] = (u8)requestedSortOrder;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Append the table key to the end of the index. For WITHOUT ROWID
|
|
|
|
** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
|
|
|
|
** normal tables (when pPk==0) this will be the rowid.
|
|
|
|
*/
|
|
|
|
if( pPk ){
|
|
|
|
for(j=0; j<pPk->nKeyCol; j++){
|
|
|
|
int x = pPk->aiColumn[j];
|
|
|
|
assert( x>=0 );
|
|
|
|
if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
|
2022-07-22 04:46:07 +00:00
|
|
|
pIndex->nColumn--;
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
|
|
|
testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
|
|
|
|
pIndex->aiColumn[i] = x;
|
|
|
|
pIndex->azColl[i] = pPk->azColl[j];
|
|
|
|
pIndex->aSortOrder[i] = pPk->aSortOrder[j];
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( i==pIndex->nColumn );
|
|
|
|
}else{
|
|
|
|
pIndex->aiColumn[i] = XN_ROWID;
|
|
|
|
pIndex->azColl[i] = sqlite3StrBINARY;
|
|
|
|
}
|
|
|
|
sqlite3DefaultRowEst(pIndex);
|
|
|
|
if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
|
|
|
|
|
|
|
|
/* If this index contains every column of its table, then mark
|
|
|
|
** it as a covering index */
|
2022-07-22 04:46:07 +00:00
|
|
|
assert( HasRowid(pTab)
|
2021-05-14 09:07:09 +00:00
|
|
|
|| pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
|
|
|
|
recomputeColumnsNotIndexed(pIndex);
|
|
|
|
if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
|
|
|
|
pIndex->isCovering = 1;
|
|
|
|
for(j=0; j<pTab->nCol; j++){
|
|
|
|
if( j==pTab->iPKey ) continue;
|
|
|
|
if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
|
|
|
|
pIndex->isCovering = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( pTab==pParse->pNewTable ){
|
|
|
|
/* This routine has been called to create an automatic index as a
|
|
|
|
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
|
|
|
** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
|
|
|
** i.e. one of:
|
|
|
|
**
|
|
|
|
** CREATE TABLE t(x PRIMARY KEY, y);
|
|
|
|
** CREATE TABLE t(x, y, UNIQUE(x, y));
|
|
|
|
**
|
|
|
|
** Either way, check to see if the table already has such an index. If
|
|
|
|
** so, don't bother creating this one. This only applies to
|
|
|
|
** automatically created indices. Users can do as they wish with
|
|
|
|
** explicit indices.
|
|
|
|
**
|
|
|
|
** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
|
|
|
|
** (and thus suppressing the second one) even if they have different
|
|
|
|
** sort orders.
|
|
|
|
**
|
|
|
|
** If there are different collating sequences or if the columns of
|
|
|
|
** the constraint occur in different orders, then the constraints are
|
|
|
|
** considered distinct and both result in separate indices.
|
|
|
|
*/
|
|
|
|
Index *pIdx;
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
int k;
|
|
|
|
assert( IsUniqueIndex(pIdx) );
|
|
|
|
assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
|
|
|
|
assert( IsUniqueIndex(pIndex) );
|
|
|
|
|
|
|
|
if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
|
|
|
|
for(k=0; k<pIdx->nKeyCol; k++){
|
|
|
|
const char *z1;
|
|
|
|
const char *z2;
|
|
|
|
assert( pIdx->aiColumn[k]>=0 );
|
|
|
|
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
|
|
|
z1 = pIdx->azColl[k];
|
|
|
|
z2 = pIndex->azColl[k];
|
|
|
|
if( sqlite3StrICmp(z1, z2) ) break;
|
|
|
|
}
|
|
|
|
if( k==pIdx->nKeyCol ){
|
|
|
|
if( pIdx->onError!=pIndex->onError ){
|
|
|
|
/* This constraint creates the same index as a previous
|
|
|
|
** constraint specified somewhere in the CREATE TABLE statement.
|
2022-07-22 04:46:07 +00:00
|
|
|
** However the ON CONFLICT clauses are different. If both this
|
2021-05-14 09:07:09 +00:00
|
|
|
** constraint and the previous equivalent constraint have explicit
|
|
|
|
** ON CONFLICT clauses this is an error. Otherwise, use the
|
|
|
|
** explicitly specified behavior for the index.
|
|
|
|
*/
|
|
|
|
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse,
|
2021-05-14 09:07:09 +00:00
|
|
|
"conflicting ON CONFLICT clauses specified", 0);
|
|
|
|
}
|
|
|
|
if( pIdx->onError==OE_Default ){
|
|
|
|
pIdx->onError = pIndex->onError;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
|
|
|
|
if( IN_RENAME_OBJECT ){
|
|
|
|
pIndex->pNext = pParse->pNewIndex;
|
|
|
|
pParse->pNewIndex = pIndex;
|
|
|
|
pIndex = 0;
|
|
|
|
}
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !IN_RENAME_OBJECT ){
|
|
|
|
|
|
|
|
/* Link the new Index structure to its table and to the other
|
2022-07-22 04:46:07 +00:00
|
|
|
** in-memory database structures.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
assert( pParse->nErr==0 );
|
|
|
|
if( db->init.busy ){
|
|
|
|
Index *p;
|
|
|
|
assert( !IN_SPECIAL_PARSE );
|
|
|
|
assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
|
|
|
if( pTblName!=0 ){
|
|
|
|
pIndex->tnum = db->init.newTnum;
|
|
|
|
if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
|
|
|
|
sqlite3ErrorMsg(pParse, "invalid rootpage");
|
|
|
|
pParse->rc = SQLITE_CORRUPT_BKPT;
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
2022-07-22 04:46:07 +00:00
|
|
|
p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
2021-05-14 09:07:09 +00:00
|
|
|
pIndex->zName, pIndex);
|
|
|
|
if( p ){
|
|
|
|
assert( p==pIndex ); /* Malloc must have failed */
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
db->mDbFlags |= DBFLAG_SchemaChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
|
|
|
|
** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
|
|
|
|
** emit code to allocate the index rootpage on disk and make an entry for
|
|
|
|
** the index in the sqlite_schema table and populate the index with
|
|
|
|
** content. But, do not do this if we are simply reading the sqlite_schema
|
|
|
|
** table to parse the schema, or if this index is the PRIMARY KEY index
|
|
|
|
** of a WITHOUT ROWID table.
|
|
|
|
**
|
|
|
|
** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
|
|
|
|
** or UNIQUE index in a CREATE TABLE statement. Since the table
|
|
|
|
** has just been created, it contains no data and the index initialization
|
|
|
|
** step can be skipped.
|
|
|
|
*/
|
|
|
|
else if( HasRowid(pTab) || pTblName!=0 ){
|
|
|
|
Vdbe *v;
|
|
|
|
char *zStmt;
|
|
|
|
int iMem = ++pParse->nMem;
|
|
|
|
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v==0 ) goto exit_create_index;
|
|
|
|
|
|
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
|
|
|
|
/* Create the rootpage for the index using CreateIndex. But before
|
2022-07-22 04:46:07 +00:00
|
|
|
** doing so, code a Noop instruction and store its address in
|
|
|
|
** Index.tnum. This is required in case this index is actually a
|
|
|
|
** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
|
2021-05-14 09:07:09 +00:00
|
|
|
** that case the convertToWithoutRowidTable() routine will replace
|
|
|
|
** the Noop with a Goto to jump over the VDBE code generated below. */
|
|
|
|
pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
|
|
|
|
|
|
|
|
/* Gather the complete text of the CREATE INDEX statement into
|
|
|
|
** the zStmt variable
|
|
|
|
*/
|
|
|
|
assert( pName!=0 || pStart==0 );
|
|
|
|
if( pStart ){
|
|
|
|
int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
|
|
|
|
if( pName->z[n-1]==';' ) n--;
|
|
|
|
/* A named index with an explicit CREATE INDEX statement */
|
|
|
|
zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
|
|
|
|
onError==OE_None ? "" : " UNIQUE", n, pName->z);
|
|
|
|
}else{
|
|
|
|
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
|
|
|
/* zStmt = sqlite3MPrintf(""); */
|
|
|
|
zStmt = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add an entry in sqlite_schema for this index
|
|
|
|
*/
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3NestedParse(pParse,
|
2022-11-28 20:54:48 +00:00
|
|
|
"INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
|
|
|
|
db->aDb[iDb].zDbSName,
|
|
|
|
pIndex->zName,
|
|
|
|
pTab->zName,
|
|
|
|
iMem,
|
|
|
|
zStmt
|
|
|
|
);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3DbFree(db, zStmt);
|
|
|
|
|
|
|
|
/* Fill the index with data and reparse the schema. Code an OP_Expire
|
|
|
|
** to invalidate all pre-compiled statements.
|
|
|
|
*/
|
|
|
|
if( pTblName ){
|
|
|
|
sqlite3RefillIndex(pParse, pIndex, iMem);
|
|
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
sqlite3VdbeAddParseSchemaOp(v, iDb,
|
|
|
|
sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( db->init.busy || pTblName==0 ){
|
|
|
|
pIndex->pNext = pTab->pIndex;
|
|
|
|
pTab->pIndex = pIndex;
|
|
|
|
pIndex = 0;
|
|
|
|
}
|
|
|
|
else if( IN_RENAME_OBJECT ){
|
|
|
|
assert( pParse->pNewIndex==0 );
|
|
|
|
pParse->pNewIndex = pIndex;
|
|
|
|
pIndex = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clean up before exiting */
|
|
|
|
exit_create_index:
|
|
|
|
if( pIndex ) sqlite3FreeIndex(db, pIndex);
|
|
|
|
if( pTab ){
|
|
|
|
/* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
|
|
|
|
** The list was already ordered when this routine was entered, so at this
|
|
|
|
** point at most a single index (the newly added index) will be out of
|
|
|
|
** order. So we have to reorder at most one index. */
|
2022-11-28 20:54:48 +00:00
|
|
|
Index **ppFrom;
|
2021-05-14 09:07:09 +00:00
|
|
|
Index *pThis;
|
|
|
|
for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
|
|
|
|
Index *pNext;
|
|
|
|
if( pThis->onError!=OE_Replace ) continue;
|
|
|
|
while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
|
|
|
|
*ppFrom = pNext;
|
|
|
|
pThis->pNext = pNext->pNext;
|
|
|
|
pNext->pNext = pThis;
|
|
|
|
ppFrom = &pNext->pNext;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/* Verify that all REPLACE indexes really are now at the end
|
|
|
|
** of the index list. In other words, no other index type ever
|
|
|
|
** comes after a REPLACE index on the list. */
|
|
|
|
for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
|
|
|
|
assert( pThis->onError!=OE_Replace
|
|
|
|
|| pThis->pNext==0
|
|
|
|
|| pThis->pNext->onError==OE_Replace );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
sqlite3ExprDelete(db, pPIWhere);
|
|
|
|
sqlite3ExprListDelete(db, pList);
|
|
|
|
sqlite3SrcListDelete(db, pTblName);
|
|
|
|
sqlite3DbFree(db, zName);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Fill the Index.aiRowEst[] array with default information - information
|
|
|
|
** to be used when we have not run the ANALYZE command.
|
|
|
|
**
|
|
|
|
** aiRowEst[0] is supposed to contain the number of elements in the index.
|
|
|
|
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
|
|
|
** number of rows in the table that match any particular value of the
|
|
|
|
** first column of the index. aiRowEst[2] is an estimate of the number
|
|
|
|
** of rows that match any particular combination of the first 2 columns
|
|
|
|
** of the index. And so forth. It must always be the case that
|
|
|
|
*
|
|
|
|
** aiRowEst[N]<=aiRowEst[N-1]
|
|
|
|
** aiRowEst[N]>=1
|
|
|
|
**
|
|
|
|
** Apart from that, we have little to go on besides intuition as to
|
|
|
|
** how aiRowEst[] should be initialized. The numbers generated here
|
|
|
|
** are based on typical values found in actual indices.
|
|
|
|
*/
|
|
|
|
void sqlite3DefaultRowEst(Index *pIdx){
|
|
|
|
/* 10, 9, 8, 7, 6 */
|
|
|
|
static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
|
|
|
|
LogEst *a = pIdx->aiRowLogEst;
|
|
|
|
LogEst x;
|
|
|
|
int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Indexes with default row estimates should not have stat1 data */
|
|
|
|
assert( !pIdx->hasStat1 );
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/* Set the first entry (number of rows in the index) to the estimated
|
2021-05-14 09:07:09 +00:00
|
|
|
** number of rows in the table, or half the number of rows in the table
|
|
|
|
** for a partial index.
|
|
|
|
**
|
|
|
|
** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
|
|
|
|
** table but other parts we are having to guess at, then do not let the
|
|
|
|
** estimated number of rows in the table be less than 1000 (LogEst 99).
|
|
|
|
** Failure to do this can cause the indexes for which we do not have
|
|
|
|
** stat1 data to be ignored by the query planner.
|
|
|
|
*/
|
|
|
|
x = pIdx->pTable->nRowLogEst;
|
|
|
|
assert( 99==sqlite3LogEst(1000) );
|
|
|
|
if( x<99 ){
|
|
|
|
pIdx->pTable->nRowLogEst = x = 99;
|
|
|
|
}
|
2022-09-13 11:14:20 +00:00
|
|
|
if( pIdx->pPartIdxWhere!=0 ) x -= 10; /*assert( 10==sqlite3LogEst(2) );*/
|
2021-05-14 09:07:09 +00:00
|
|
|
a[0] = x;
|
|
|
|
|
|
|
|
/* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
|
|
|
|
** 6 and each subsequent value (if any) is 5. */
|
|
|
|
memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
|
|
|
|
for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
|
|
|
|
a[i] = 23; assert( 23==sqlite3LogEst(5) );
|
|
|
|
}
|
|
|
|
|
|
|
|
assert( 0==sqlite3LogEst(1) );
|
|
|
|
if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine will drop an existing named index. This routine
|
|
|
|
** implements the DROP INDEX statement.
|
|
|
|
*/
|
|
|
|
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
|
|
|
Index *pIndex;
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
int iDb;
|
|
|
|
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( pName->nSrc==1 );
|
|
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
|
|
if( pIndex==0 ){
|
|
|
|
if( !ifExists ){
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
|
2021-05-14 09:07:09 +00:00
|
|
|
}else{
|
|
|
|
sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ForceNotReadOnly(pParse);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
pParse->checkSchema = 1;
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
|
|
|
|
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
|
|
|
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
{
|
|
|
|
int code = SQLITE_DROP_INDEX;
|
|
|
|
Table *pTab = pIndex->pTable;
|
|
|
|
const char *zDb = db->aDb[iDb].zDbSName;
|
|
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Generate code to remove the index and from the schema table */
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
sqlite3NestedParse(pParse,
|
2022-11-28 20:54:48 +00:00
|
|
|
"DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
|
2021-05-14 09:07:09 +00:00
|
|
|
db->aDb[iDb].zDbSName, pIndex->zName
|
|
|
|
);
|
|
|
|
sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
|
|
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
destroyRootPage(pParse, pIndex->tnum, iDb);
|
|
|
|
sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
exit_drop_index:
|
|
|
|
sqlite3SrcListDelete(db, pName);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** pArray is a pointer to an array of objects. Each object in the
|
|
|
|
** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
|
|
|
|
** to extend the array so that there is space for a new object at the end.
|
|
|
|
**
|
|
|
|
** When this function is called, *pnEntry contains the current size of
|
|
|
|
** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
|
|
|
|
** in total).
|
|
|
|
**
|
|
|
|
** If the realloc() is successful (i.e. if no OOM condition occurs), the
|
|
|
|
** space allocated for the new object is zeroed, *pnEntry updated to
|
|
|
|
** reflect the new size of the array and a pointer to the new allocation
|
|
|
|
** returned. *pIdx is set to the index of the new array entry in this case.
|
|
|
|
**
|
|
|
|
** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
|
|
|
|
** unchanged and a copy of pArray returned.
|
|
|
|
*/
|
|
|
|
void *sqlite3ArrayAllocate(
|
|
|
|
sqlite3 *db, /* Connection to notify of malloc failures */
|
|
|
|
void *pArray, /* Array of objects. Might be reallocated */
|
|
|
|
int szEntry, /* Size of each object in the array */
|
|
|
|
int *pnEntry, /* Number of objects currently in use */
|
|
|
|
int *pIdx /* Write the index of a new slot here */
|
|
|
|
){
|
|
|
|
char *z;
|
|
|
|
sqlite3_int64 n = *pIdx = *pnEntry;
|
|
|
|
if( (n & (n-1))==0 ){
|
|
|
|
sqlite3_int64 sz = (n==0) ? 1 : 2*n;
|
|
|
|
void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
|
|
|
|
if( pNew==0 ){
|
|
|
|
*pIdx = -1;
|
|
|
|
return pArray;
|
|
|
|
}
|
|
|
|
pArray = pNew;
|
|
|
|
}
|
|
|
|
z = (char*)pArray;
|
|
|
|
memset(&z[n * szEntry], 0, szEntry);
|
|
|
|
++*pnEntry;
|
|
|
|
return pArray;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Append a new element to the given IdList. Create a new IdList if
|
|
|
|
** need be.
|
|
|
|
**
|
|
|
|
** A new IdList is returned, or NULL if malloc() fails.
|
|
|
|
*/
|
|
|
|
IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
int i;
|
|
|
|
if( pList==0 ){
|
|
|
|
pList = sqlite3DbMallocZero(db, sizeof(IdList) );
|
|
|
|
if( pList==0 ) return 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
}else{
|
|
|
|
IdList *pNew;
|
|
|
|
pNew = sqlite3DbRealloc(db, pList,
|
|
|
|
sizeof(IdList) + pList->nId*sizeof(pList->a));
|
|
|
|
if( pNew==0 ){
|
|
|
|
sqlite3IdListDelete(db, pList);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pList = pNew;
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
i = pList->nId++;
|
2021-05-14 09:07:09 +00:00
|
|
|
pList->a[i].zName = sqlite3NameFromToken(db, pToken);
|
|
|
|
if( IN_RENAME_OBJECT && pList->a[i].zName ){
|
|
|
|
sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
|
|
|
|
}
|
|
|
|
return pList;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Delete an IdList.
|
|
|
|
*/
|
|
|
|
void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
|
|
|
|
int i;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pList==0 ) return;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
|
2021-05-14 09:07:09 +00:00
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
sqlite3DbFree(db, pList->a[i].zName);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3DbNNFreeNN(db, pList);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the index in pList of the identifier named zId. Return -1
|
|
|
|
** if not found.
|
|
|
|
*/
|
|
|
|
int sqlite3IdListIndex(IdList *pList, const char *zName){
|
|
|
|
int i;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pList!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Maximum size of a SrcList object.
|
|
|
|
** The SrcList object is used to represent the FROM clause of a
|
|
|
|
** SELECT statement, and the query planner cannot deal with more
|
|
|
|
** than 64 tables in a join. So any value larger than 64 here
|
|
|
|
** is sufficient for most uses. Smaller values, like say 10, are
|
|
|
|
** appropriate for small and memory-limited applications.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_MAX_SRCLIST
|
|
|
|
# define SQLITE_MAX_SRCLIST 200
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Expand the space allocated for the given SrcList object by
|
|
|
|
** creating nExtra new slots beginning at iStart. iStart is zero based.
|
|
|
|
** New slots are zeroed.
|
|
|
|
**
|
|
|
|
** For example, suppose a SrcList initially contains two entries: A,B.
|
|
|
|
** To append 3 new entries onto the end, do this:
|
|
|
|
**
|
|
|
|
** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
|
|
|
|
**
|
|
|
|
** After the call above it would contain: A, B, nil, nil, nil.
|
|
|
|
** If the iStart argument had been 1 instead of 2, then the result
|
|
|
|
** would have been: A, nil, nil, nil, B. To prepend the new slots,
|
|
|
|
** the iStart value would be 0. The result then would
|
|
|
|
** be: nil, nil, nil, A, B.
|
|
|
|
**
|
|
|
|
** If a memory allocation fails or the SrcList becomes too large, leave
|
|
|
|
** the original SrcList unchanged, return NULL, and leave an error message
|
|
|
|
** in pParse.
|
|
|
|
*/
|
|
|
|
SrcList *sqlite3SrcListEnlarge(
|
|
|
|
Parse *pParse, /* Parsing context into which errors are reported */
|
|
|
|
SrcList *pSrc, /* The SrcList to be enlarged */
|
|
|
|
int nExtra, /* Number of new slots to add to pSrc->a[] */
|
|
|
|
int iStart /* Index in pSrc->a[] of first new slot */
|
|
|
|
){
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Sanity checking on calling parameters */
|
|
|
|
assert( iStart>=0 );
|
|
|
|
assert( nExtra>=1 );
|
|
|
|
assert( pSrc!=0 );
|
|
|
|
assert( iStart<=pSrc->nSrc );
|
|
|
|
|
|
|
|
/* Allocate additional space if needed */
|
|
|
|
if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
|
|
|
|
SrcList *pNew;
|
|
|
|
sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
|
|
|
|
if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
|
|
|
|
sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
|
|
|
|
SQLITE_MAX_SRCLIST);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
|
|
|
|
pNew = sqlite3DbRealloc(db, pSrc,
|
|
|
|
sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
|
|
|
|
if( pNew==0 ){
|
|
|
|
assert( db->mallocFailed );
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pSrc = pNew;
|
|
|
|
pSrc->nAlloc = nAlloc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Move existing slots that come after the newly inserted slots
|
|
|
|
** out of the way */
|
|
|
|
for(i=pSrc->nSrc-1; i>=iStart; i--){
|
|
|
|
pSrc->a[i+nExtra] = pSrc->a[i];
|
|
|
|
}
|
|
|
|
pSrc->nSrc += nExtra;
|
|
|
|
|
|
|
|
/* Zero the newly allocated slots */
|
|
|
|
memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
|
|
|
|
for(i=iStart; i<iStart+nExtra; i++){
|
|
|
|
pSrc->a[i].iCursor = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return a pointer to the enlarged SrcList */
|
|
|
|
return pSrc;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
|
|
** need be. A new entry is created in the SrcList even if pTable is NULL.
|
|
|
|
**
|
|
|
|
** A SrcList is returned, or NULL if there is an OOM error or if the
|
|
|
|
** SrcList grows to large. The returned
|
|
|
|
** SrcList might be the same as the SrcList that was input or it might be
|
|
|
|
** a new one. If an OOM error does occurs, then the prior value of pList
|
|
|
|
** that is input to this routine is automatically freed.
|
|
|
|
**
|
|
|
|
** If pDatabase is not null, it means that the table has an optional
|
|
|
|
** database name prefix. Like this: "database.table". The pDatabase
|
|
|
|
** points to the table name and the pTable points to the database name.
|
|
|
|
** The SrcList.a[].zName field is filled with the table name which might
|
2022-07-22 04:46:07 +00:00
|
|
|
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
2021-05-14 09:07:09 +00:00
|
|
|
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
|
|
** or with NULL if no database is specified.
|
|
|
|
**
|
|
|
|
** In other words, if call like this:
|
|
|
|
**
|
|
|
|
** sqlite3SrcListAppend(D,A,B,0);
|
|
|
|
**
|
|
|
|
** Then B is a table name and the database name is unspecified. If called
|
|
|
|
** like this:
|
|
|
|
**
|
|
|
|
** sqlite3SrcListAppend(D,A,B,C);
|
|
|
|
**
|
|
|
|
** Then C is the table name and B is the database name. If C is defined
|
|
|
|
** then so is B. In other words, we never have a case where:
|
|
|
|
**
|
|
|
|
** sqlite3SrcListAppend(D,A,0,C);
|
|
|
|
**
|
|
|
|
** Both pTable and pDatabase are assumed to be quoted. They are dequoted
|
|
|
|
** before being added to the SrcList.
|
|
|
|
*/
|
|
|
|
SrcList *sqlite3SrcListAppend(
|
|
|
|
Parse *pParse, /* Parsing context, in which errors are reported */
|
|
|
|
SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
|
|
|
|
Token *pTable, /* Table to append */
|
|
|
|
Token *pDatabase /* Database of the table */
|
|
|
|
){
|
|
|
|
SrcItem *pItem;
|
|
|
|
sqlite3 *db;
|
|
|
|
assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
|
|
|
|
assert( pParse!=0 );
|
|
|
|
assert( pParse->db!=0 );
|
|
|
|
db = pParse->db;
|
|
|
|
if( pList==0 ){
|
|
|
|
pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
|
|
|
|
if( pList==0 ) return 0;
|
|
|
|
pList->nAlloc = 1;
|
|
|
|
pList->nSrc = 1;
|
|
|
|
memset(&pList->a[0], 0, sizeof(pList->a[0]));
|
|
|
|
pList->a[0].iCursor = -1;
|
|
|
|
}else{
|
|
|
|
SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
|
|
|
|
if( pNew==0 ){
|
|
|
|
sqlite3SrcListDelete(db, pList);
|
|
|
|
return 0;
|
|
|
|
}else{
|
|
|
|
pList = pNew;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pItem = &pList->a[pList->nSrc-1];
|
|
|
|
if( pDatabase && pDatabase->z==0 ){
|
|
|
|
pDatabase = 0;
|
|
|
|
}
|
|
|
|
if( pDatabase ){
|
|
|
|
pItem->zName = sqlite3NameFromToken(db, pDatabase);
|
|
|
|
pItem->zDatabase = sqlite3NameFromToken(db, pTable);
|
|
|
|
}else{
|
|
|
|
pItem->zName = sqlite3NameFromToken(db, pTable);
|
|
|
|
pItem->zDatabase = 0;
|
|
|
|
}
|
|
|
|
return pList;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Assign VdbeCursor index numbers to all tables in a SrcList
|
|
|
|
*/
|
|
|
|
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
|
|
int i;
|
|
|
|
SrcItem *pItem;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pList || pParse->db->mallocFailed );
|
|
|
|
if( ALWAYS(pList) ){
|
2021-05-14 09:07:09 +00:00
|
|
|
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
|
|
if( pItem->iCursor>=0 ) continue;
|
|
|
|
pItem->iCursor = pParse->nTab++;
|
|
|
|
if( pItem->pSelect ){
|
|
|
|
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Delete an entire SrcList including all its substructure.
|
|
|
|
*/
|
|
|
|
void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
|
|
|
|
int i;
|
|
|
|
SrcItem *pItem;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( db!=0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pList==0 ) return;
|
|
|
|
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase);
|
|
|
|
if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName);
|
|
|
|
if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias);
|
2021-05-14 09:07:09 +00:00
|
|
|
if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
|
|
|
|
if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
|
|
|
|
sqlite3DeleteTable(db, pItem->pTab);
|
|
|
|
if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pItem->fg.isUsing ){
|
|
|
|
sqlite3IdListDelete(db, pItem->u3.pUsing);
|
|
|
|
}else if( pItem->u3.pOn ){
|
|
|
|
sqlite3ExprDelete(db, pItem->u3.pOn);
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3DbNNFreeNN(db, pList);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called by the parser to add a new term to the
|
|
|
|
** end of a growing FROM clause. The "p" parameter is the part of
|
|
|
|
** the FROM clause that has already been constructed. "p" is NULL
|
|
|
|
** if this is the first term of the FROM clause. pTable and pDatabase
|
|
|
|
** are the name of the table and database named in the FROM clause term.
|
|
|
|
** pDatabase is NULL if the database name qualifier is missing - the
|
|
|
|
** usual case. If the term has an alias, then pAlias points to the
|
|
|
|
** alias token. If the term is a subquery, then pSubquery is the
|
|
|
|
** SELECT statement that the subquery encodes. The pTable and
|
|
|
|
** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
|
|
|
** parameters are the content of the ON and USING clauses.
|
|
|
|
**
|
|
|
|
** Return a new SrcList which encodes is the FROM with the new
|
|
|
|
** term added.
|
|
|
|
*/
|
|
|
|
SrcList *sqlite3SrcListAppendFromTerm(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
SrcList *p, /* The left part of the FROM clause already seen */
|
|
|
|
Token *pTable, /* Name of the table to add to the FROM clause */
|
|
|
|
Token *pDatabase, /* Name of the database containing pTable */
|
|
|
|
Token *pAlias, /* The right-hand side of the AS subexpression */
|
|
|
|
Select *pSubquery, /* A subquery used in place of a table name */
|
2022-11-28 20:54:48 +00:00
|
|
|
OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
|
|
|
SrcItem *pItem;
|
|
|
|
sqlite3 *db = pParse->db;
|
2022-11-28 20:54:48 +00:00
|
|
|
if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
|
2022-11-28 20:54:48 +00:00
|
|
|
(pOnUsing->pOn ? "ON" : "USING")
|
2021-05-14 09:07:09 +00:00
|
|
|
);
|
|
|
|
goto append_from_error;
|
|
|
|
}
|
|
|
|
p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
|
|
|
|
if( p==0 ){
|
|
|
|
goto append_from_error;
|
|
|
|
}
|
|
|
|
assert( p->nSrc>0 );
|
|
|
|
pItem = &p->a[p->nSrc-1];
|
|
|
|
assert( (pTable==0)==(pDatabase==0) );
|
|
|
|
assert( pItem->zName==0 || pDatabase!=0 );
|
|
|
|
if( IN_RENAME_OBJECT && pItem->zName ){
|
|
|
|
Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
|
|
|
|
sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
|
|
|
|
}
|
|
|
|
assert( pAlias!=0 );
|
|
|
|
if( pAlias->n ){
|
|
|
|
pItem->zAlias = sqlite3NameFromToken(db, pAlias);
|
|
|
|
}
|
2022-11-28 20:54:48 +00:00
|
|
|
if( pSubquery ){
|
|
|
|
pItem->pSelect = pSubquery;
|
|
|
|
if( pSubquery->selFlags & SF_NestedFrom ){
|
|
|
|
pItem->fg.isNestedFrom = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
|
|
|
|
assert( pItem->fg.isUsing==0 );
|
|
|
|
if( pOnUsing==0 ){
|
|
|
|
pItem->u3.pOn = 0;
|
|
|
|
}else if( pOnUsing->pUsing ){
|
|
|
|
pItem->fg.isUsing = 1;
|
|
|
|
pItem->u3.pUsing = pOnUsing->pUsing;
|
|
|
|
}else{
|
|
|
|
pItem->u3.pOn = pOnUsing->pOn;
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
return p;
|
|
|
|
|
2022-11-28 20:54:48 +00:00
|
|
|
append_from_error:
|
2021-05-14 09:07:09 +00:00
|
|
|
assert( p==0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
sqlite3ClearOnOrUsing(db, pOnUsing);
|
2021-05-14 09:07:09 +00:00
|
|
|
sqlite3SelectDelete(db, pSubquery);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** Add an INDEXED BY or NOT INDEXED clause to the most recently added
|
2021-05-14 09:07:09 +00:00
|
|
|
** element of the source-list passed as the second argument.
|
|
|
|
*/
|
|
|
|
void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
|
|
|
|
assert( pIndexedBy!=0 );
|
|
|
|
if( p && pIndexedBy->n>0 ){
|
|
|
|
SrcItem *pItem;
|
|
|
|
assert( p->nSrc>0 );
|
|
|
|
pItem = &p->a[p->nSrc-1];
|
|
|
|
assert( pItem->fg.notIndexed==0 );
|
|
|
|
assert( pItem->fg.isIndexedBy==0 );
|
|
|
|
assert( pItem->fg.isTabFunc==0 );
|
|
|
|
if( pIndexedBy->n==1 && !pIndexedBy->z ){
|
2022-07-22 04:46:07 +00:00
|
|
|
/* A "NOT INDEXED" clause was supplied. See parse.y
|
2021-05-14 09:07:09 +00:00
|
|
|
** construct "indexed_opt" for details. */
|
|
|
|
pItem->fg.notIndexed = 1;
|
|
|
|
}else{
|
|
|
|
pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
|
|
|
|
pItem->fg.isIndexedBy = 1;
|
2022-11-28 20:54:48 +00:00
|
|
|
assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Append the contents of SrcList p2 to SrcList p1 and return the resulting
|
|
|
|
** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
|
|
|
|
** are deleted by this function.
|
2022-07-22 04:46:07 +00:00
|
|
|
*/
|
2021-05-14 09:07:09 +00:00
|
|
|
SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
|
|
|
|
assert( p1 && p1->nSrc==1 );
|
|
|
|
if( p2 ){
|
|
|
|
SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
|
|
|
|
if( pNew==0 ){
|
|
|
|
sqlite3SrcListDelete(pParse->db, p2);
|
|
|
|
}else{
|
|
|
|
p1 = pNew;
|
|
|
|
memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
|
|
|
|
sqlite3DbFree(pParse->db, p2);
|
2022-11-28 20:54:48 +00:00
|
|
|
p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return p1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add the list of function arguments to the SrcList entry for a
|
|
|
|
** table-valued-function.
|
|
|
|
*/
|
|
|
|
void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
|
|
|
|
if( p ){
|
|
|
|
SrcItem *pItem = &p->a[p->nSrc-1];
|
|
|
|
assert( pItem->fg.notIndexed==0 );
|
|
|
|
assert( pItem->fg.isIndexedBy==0 );
|
|
|
|
assert( pItem->fg.isTabFunc==0 );
|
|
|
|
pItem->u1.pFuncArg = pList;
|
|
|
|
pItem->fg.isTabFunc = 1;
|
|
|
|
}else{
|
|
|
|
sqlite3ExprListDelete(pParse->db, pList);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** When building up a FROM clause in the parser, the join operator
|
|
|
|
** is initially attached to the left operand. But the code generator
|
|
|
|
** expects the join operator to be on the right operand. This routine
|
|
|
|
** Shifts all join operators from left to right for an entire FROM
|
|
|
|
** clause.
|
|
|
|
**
|
|
|
|
** Example: Suppose the join is like this:
|
|
|
|
**
|
|
|
|
** A natural cross join B
|
|
|
|
**
|
|
|
|
** The operator is "natural cross join". The A and B operands are stored
|
|
|
|
** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
|
|
|
** operator with A. This routine shifts that operator over to B.
|
2022-11-28 20:54:48 +00:00
|
|
|
**
|
|
|
|
** Additional changes:
|
|
|
|
**
|
|
|
|
** * All tables to the left of the right-most RIGHT JOIN are tagged with
|
|
|
|
** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
|
|
|
|
** code generator can easily tell that the table is part of
|
|
|
|
** the left operand of at least one RIGHT JOIN.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
2022-11-28 20:54:48 +00:00
|
|
|
void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
|
|
|
|
(void)pParse;
|
|
|
|
if( p && p->nSrc>1 ){
|
|
|
|
int i = p->nSrc-1;
|
|
|
|
u8 allFlags = 0;
|
|
|
|
do{
|
|
|
|
allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
|
|
|
|
}while( (--i)>0 );
|
2021-05-14 09:07:09 +00:00
|
|
|
p->a[0].fg.jointype = 0;
|
2022-11-28 20:54:48 +00:00
|
|
|
|
|
|
|
/* All terms to the left of a RIGHT JOIN should be tagged with the
|
|
|
|
** JT_LTORJ flags */
|
|
|
|
if( allFlags & JT_RIGHT ){
|
|
|
|
for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
|
|
|
|
i--;
|
|
|
|
assert( i>=0 );
|
|
|
|
do{
|
|
|
|
p->a[i].fg.jointype |= JT_LTORJ;
|
|
|
|
}while( (--i)>=0 );
|
|
|
|
}
|
2021-05-14 09:07:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate VDBE code for a BEGIN statement.
|
|
|
|
*/
|
|
|
|
void sqlite3BeginTransaction(Parse *pParse, int type){
|
|
|
|
sqlite3 *db;
|
|
|
|
Vdbe *v;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
assert( pParse!=0 );
|
|
|
|
db = pParse->db;
|
|
|
|
assert( db!=0 );
|
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( !v ) return;
|
|
|
|
if( type!=TK_DEFERRED ){
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
int eTxnType;
|
|
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
|
|
if( pBt && sqlite3BtreeIsReadonly(pBt) ){
|
|
|
|
eTxnType = 0; /* Read txn */
|
|
|
|
}else if( type==TK_EXCLUSIVE ){
|
|
|
|
eTxnType = 2; /* Exclusive txn */
|
|
|
|
}else{
|
|
|
|
eTxnType = 1; /* Write txn */
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
|
|
|
|
sqlite3VdbeUsesBtree(v, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp0(v, OP_AutoCommit);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate VDBE code for a COMMIT or ROLLBACK statement.
|
|
|
|
** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
|
|
|
|
** code is generated for a COMMIT.
|
|
|
|
*/
|
|
|
|
void sqlite3EndTransaction(Parse *pParse, int eType){
|
|
|
|
Vdbe *v;
|
|
|
|
int isRollback;
|
|
|
|
|
|
|
|
assert( pParse!=0 );
|
|
|
|
assert( pParse->db!=0 );
|
|
|
|
assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
|
|
|
|
isRollback = eType==TK_ROLLBACK;
|
2022-07-22 04:46:07 +00:00
|
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
|
2021-05-14 09:07:09 +00:00
|
|
|
isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This function is called by the parser when it parses a command to create,
|
2022-07-22 04:46:07 +00:00
|
|
|
** release or rollback an SQL savepoint.
|
2021-05-14 09:07:09 +00:00
|
|
|
*/
|
|
|
|
void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
|
|
|
|
char *zName = sqlite3NameFromToken(pParse->db, pName);
|
|
|
|
if( zName ){
|
|
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
|
|
|
|
assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
|
|
|
|
#endif
|
|
|
|
if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
|
|
|
|
sqlite3DbFree(pParse->db, zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Make sure the TEMP database is open and available for use. Return
|
|
|
|
** the number of errors. Leave any error messages in the pParse structure.
|
|
|
|
*/
|
|
|
|
int sqlite3OpenTempDatabase(Parse *pParse){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( db->aDb[1].pBt==0 && !pParse->explain ){
|
|
|
|
int rc;
|
|
|
|
Btree *pBt;
|
2022-07-22 04:46:07 +00:00
|
|
|
static const int flags =
|
2021-05-14 09:07:09 +00:00
|
|
|
SQLITE_OPEN_READWRITE |
|
|
|
|
SQLITE_OPEN_CREATE |
|
|
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
|
|
SQLITE_OPEN_TEMP_DB;
|
|
|
|
|
|
|
|
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
|
|
|
"file for storing temporary tables");
|
|
|
|
pParse->rc = rc;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
db->aDb[1].pBt = pBt;
|
|
|
|
assert( db->aDb[1].pSchema );
|
|
|
|
if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
|
|
|
|
sqlite3OomFault(db);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Record the fact that the schema cookie will need to be verified
|
|
|
|
** for database iDb. The code to actually verify the schema cookie
|
|
|
|
** will occur at the end of the top-level VDBE and will be generated
|
|
|
|
** later, by sqlite3FinishCoding().
|
|
|
|
*/
|
|
|
|
static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
|
|
|
|
assert( iDb>=0 && iDb<pToplevel->db->nDb );
|
|
|
|
assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
|
|
|
|
assert( iDb<SQLITE_MAX_DB );
|
|
|
|
assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
|
|
|
|
if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
|
|
|
|
DbMaskSet(pToplevel->cookieMask, iDb);
|
|
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
|
|
sqlite3OpenTempDatabase(pToplevel);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
|
|
|
sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2022-07-22 04:46:07 +00:00
|
|
|
** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
|
2021-05-14 09:07:09 +00:00
|
|
|
** attached database. Otherwise, invoke it for the database named zDb only.
|
|
|
|
*/
|
|
|
|
void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
int i;
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
Db *pDb = &db->aDb[i];
|
|
|
|
if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
|
|
|
|
sqlite3CodeVerifySchema(pParse, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate VDBE code that prepares for doing an operation that
|
|
|
|
** might change the database.
|
|
|
|
**
|
|
|
|
** This routine starts a new transaction if we are not already within
|
|
|
|
** a transaction. If we are already within a transaction, then a checkpoint
|
|
|
|
** is set if the setStatement parameter is true. A checkpoint should
|
|
|
|
** be set for operations that might fail (due to a constraint) part of
|
|
|
|
** the way through and which will need to undo some writes without having to
|
|
|
|
** rollback the whole transaction. For operations where all constraints
|
|
|
|
** can be checked before any changes are made to the database, it is never
|
|
|
|
** necessary to undo a write and the checkpoint should not be set.
|
|
|
|
*/
|
|
|
|
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
|
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
|
|
sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
|
|
|
|
DbMaskSet(pToplevel->writeMask, iDb);
|
|
|
|
pToplevel->isMultiWrite |= setStatement;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Indicate that the statement currently under construction might write
|
|
|
|
** more than one entry (example: deleting one row then inserting another,
|
|
|
|
** inserting multiple rows in a table, or inserting a row and index entries.)
|
|
|
|
** If an abort occurs after some of these writes have completed, then it will
|
|
|
|
** be necessary to undo the completed writes.
|
|
|
|
*/
|
|
|
|
void sqlite3MultiWrite(Parse *pParse){
|
|
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
|
|
pToplevel->isMultiWrite = 1;
|
|
|
|
}
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/*
|
2021-05-14 09:07:09 +00:00
|
|
|
** The code generator calls this routine if is discovers that it is
|
2022-07-22 04:46:07 +00:00
|
|
|
** possible to abort a statement prior to completion. In order to
|
2021-05-14 09:07:09 +00:00
|
|
|
** perform this abort without corrupting the database, we need to make
|
|
|
|
** sure that the statement is protected by a statement transaction.
|
|
|
|
**
|
|
|
|
** Technically, we only need to set the mayAbort flag if the
|
|
|
|
** isMultiWrite flag was previously set. There is a time dependency
|
|
|
|
** such that the abort must occur after the multiwrite. This makes
|
|
|
|
** some statements involving the REPLACE conflict resolution algorithm
|
|
|
|
** go a little faster. But taking advantage of this time dependency
|
2022-07-22 04:46:07 +00:00
|
|
|
** makes it more difficult to prove that the code is correct (in
|
2021-05-14 09:07:09 +00:00
|
|
|
** particular, it prevents us from writing an effective
|
|
|
|
** implementation of sqlite3AssertMayAbort()) and so we have chosen
|
|
|
|
** to take the safe route and skip the optimization.
|
|
|
|
*/
|
|
|
|
void sqlite3MayAbort(Parse *pParse){
|
|
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
|
|
pToplevel->mayAbort = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
|
|
|
|
** error. The onError parameter determines which (if any) of the statement
|
|
|
|
** and/or current transaction is rolled back.
|
|
|
|
*/
|
|
|
|
void sqlite3HaltConstraint(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
int errCode, /* extended error code */
|
|
|
|
int onError, /* Constraint type */
|
|
|
|
char *p4, /* Error message */
|
|
|
|
i8 p4type, /* P4_STATIC or P4_TRANSIENT */
|
|
|
|
u8 p5Errmsg /* P5_ErrMsg type */
|
|
|
|
){
|
|
|
|
Vdbe *v;
|
|
|
|
assert( pParse->pVdbe!=0 );
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
|
|
assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
|
|
|
|
if( onError==OE_Abort ){
|
|
|
|
sqlite3MayAbort(pParse);
|
|
|
|
}
|
|
|
|
sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
|
|
|
|
sqlite3VdbeChangeP5(v, p5Errmsg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
|
|
|
|
*/
|
|
|
|
void sqlite3UniqueConstraint(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
int onError, /* Constraint type */
|
|
|
|
Index *pIdx /* The index that triggers the constraint */
|
|
|
|
){
|
|
|
|
char *zErr;
|
|
|
|
int j;
|
|
|
|
StrAccum errMsg;
|
|
|
|
Table *pTab = pIdx->pTable;
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
|
2021-05-14 09:07:09 +00:00
|
|
|
pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
|
|
|
|
if( pIdx->aColExpr ){
|
|
|
|
sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
|
|
|
|
}else{
|
|
|
|
for(j=0; j<pIdx->nKeyCol; j++){
|
|
|
|
char *zCol;
|
|
|
|
assert( pIdx->aiColumn[j]>=0 );
|
2022-11-28 20:54:48 +00:00
|
|
|
zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
|
2021-05-14 09:07:09 +00:00
|
|
|
if( j ) sqlite3_str_append(&errMsg, ", ", 2);
|
|
|
|
sqlite3_str_appendall(&errMsg, pTab->zName);
|
|
|
|
sqlite3_str_append(&errMsg, ".", 1);
|
|
|
|
sqlite3_str_appendall(&errMsg, zCol);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
zErr = sqlite3StrAccumFinish(&errMsg);
|
2022-07-22 04:46:07 +00:00
|
|
|
sqlite3HaltConstraint(pParse,
|
|
|
|
IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
|
2021-05-14 09:07:09 +00:00
|
|
|
: SQLITE_CONSTRAINT_UNIQUE,
|
|
|
|
onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Code an OP_Halt due to non-unique rowid.
|
|
|
|
*/
|
|
|
|
void sqlite3RowidConstraint(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
int onError, /* Conflict resolution algorithm */
|
2022-07-22 04:46:07 +00:00
|
|
|
Table *pTab /* The table with the non-unique rowid */
|
2021-05-14 09:07:09 +00:00
|
|
|
){
|
|
|
|
char *zMsg;
|
|
|
|
int rc;
|
|
|
|
if( pTab->iPKey>=0 ){
|
|
|
|
zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
|
2022-11-28 20:54:48 +00:00
|
|
|
pTab->aCol[pTab->iPKey].zCnName);
|
2021-05-14 09:07:09 +00:00
|
|
|
rc = SQLITE_CONSTRAINT_PRIMARYKEY;
|
|
|
|
}else{
|
|
|
|
zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
|
|
|
|
rc = SQLITE_CONSTRAINT_ROWID;
|
|
|
|
}
|
|
|
|
sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
|
|
|
|
P5_ConstraintUnique);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Check to see if pIndex uses the collating sequence pColl. Return
|
|
|
|
** true if it does and false if it does not.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
|
|
static int collationMatch(const char *zColl, Index *pIndex){
|
|
|
|
int i;
|
|
|
|
assert( zColl!=0 );
|
|
|
|
for(i=0; i<pIndex->nColumn; i++){
|
|
|
|
const char *z = pIndex->azColl[i];
|
|
|
|
assert( z!=0 || pIndex->aiColumn[i]<0 );
|
|
|
|
if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Recompute all indices of pTab that use the collating sequence pColl.
|
|
|
|
** If pColl==0 then recompute all indices of pTab.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
|
|
static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
|
|
|
if( !IsVirtual(pTab) ){
|
|
|
|
Index *pIndex; /* An index associated with pTab */
|
|
|
|
|
|
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
|
|
if( zColl==0 || collationMatch(zColl, pIndex) ){
|
|
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Recompute all indices of all tables in all databases where the
|
|
|
|
** indices use the collating sequence pColl. If pColl==0 then recompute
|
|
|
|
** all indices everywhere.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
|
|
static void reindexDatabases(Parse *pParse, char const *zColl){
|
|
|
|
Db *pDb; /* A single database */
|
|
|
|
int iDb; /* The database index number */
|
|
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
|
|
HashElem *k; /* For looping over tables in pDb */
|
|
|
|
Table *pTab; /* A table in the database */
|
|
|
|
|
|
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
|
|
|
|
for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
|
|
|
assert( pDb!=0 );
|
|
|
|
for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
|
|
pTab = (Table*)sqliteHashData(k);
|
|
|
|
reindexTable(pParse, pTab, zColl);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code for the REINDEX command.
|
|
|
|
**
|
|
|
|
** REINDEX -- 1
|
|
|
|
** REINDEX <collation> -- 2
|
|
|
|
** REINDEX ?<database>.?<tablename> -- 3
|
|
|
|
** REINDEX ?<database>.?<indexname> -- 4
|
|
|
|
**
|
|
|
|
** Form 1 causes all indices in all attached databases to be rebuilt.
|
|
|
|
** Form 2 rebuilds all indices in all databases that use the named
|
|
|
|
** collating function. Forms 3 and 4 rebuild the named index or all
|
|
|
|
** indices associated with the named table.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
|
|
void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
|
|
|
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
|
|
|
char *z; /* Name of a table or index */
|
|
|
|
const char *zDb; /* Name of the database */
|
|
|
|
Table *pTab; /* A table in the database */
|
|
|
|
Index *pIndex; /* An index associated with pTab */
|
|
|
|
int iDb; /* The database index number */
|
|
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
|
|
Token *pObjName; /* Name of the table or index to be reindexed */
|
|
|
|
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
|
|
** and code in pParse and return NULL. */
|
|
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( pName1==0 ){
|
|
|
|
reindexDatabases(pParse, 0);
|
|
|
|
return;
|
|
|
|
}else if( NEVER(pName2==0) || pName2->z==0 ){
|
|
|
|
char *zColl;
|
|
|
|
assert( pName1->z );
|
|
|
|
zColl = sqlite3NameFromToken(pParse->db, pName1);
|
|
|
|
if( !zColl ) return;
|
|
|
|
pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
|
|
|
if( pColl ){
|
|
|
|
reindexDatabases(pParse, zColl);
|
|
|
|
sqlite3DbFree(db, zColl);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
sqlite3DbFree(db, zColl);
|
|
|
|
}
|
|
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
|
|
|
if( iDb<0 ) return;
|
|
|
|
z = sqlite3NameFromToken(db, pObjName);
|
|
|
|
if( z==0 ) return;
|
|
|
|
zDb = db->aDb[iDb].zDbSName;
|
|
|
|
pTab = sqlite3FindTable(db, z, zDb);
|
|
|
|
if( pTab ){
|
|
|
|
reindexTable(pParse, pTab, 0);
|
|
|
|
sqlite3DbFree(db, z);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pIndex = sqlite3FindIndex(db, z, zDb);
|
|
|
|
sqlite3DbFree(db, z);
|
|
|
|
if( pIndex ){
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return a KeyInfo structure that is appropriate for the given Index.
|
|
|
|
**
|
|
|
|
** The caller should invoke sqlite3KeyInfoUnref() on the returned object
|
|
|
|
** when it has finished using it.
|
|
|
|
*/
|
|
|
|
KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
|
|
|
|
int i;
|
|
|
|
int nCol = pIdx->nColumn;
|
|
|
|
int nKey = pIdx->nKeyCol;
|
|
|
|
KeyInfo *pKey;
|
|
|
|
if( pParse->nErr ) return 0;
|
|
|
|
if( pIdx->uniqNotNull ){
|
|
|
|
pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
|
|
|
|
}else{
|
|
|
|
pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
|
|
|
|
}
|
|
|
|
if( pKey ){
|
|
|
|
assert( sqlite3KeyInfoIsWriteable(pKey) );
|
|
|
|
for(i=0; i<nCol; i++){
|
|
|
|
const char *zColl = pIdx->azColl[i];
|
|
|
|
pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
|
|
|
|
sqlite3LocateCollSeq(pParse, zColl);
|
|
|
|
pKey->aSortFlags[i] = pIdx->aSortOrder[i];
|
|
|
|
assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
|
|
|
|
}
|
|
|
|
if( pParse->nErr ){
|
|
|
|
assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
|
|
|
|
if( pIdx->bNoQuery==0 ){
|
|
|
|
/* Deactivate the index because it contains an unknown collating
|
|
|
|
** sequence. The only way to reactive the index is to reload the
|
|
|
|
** schema. Adding the missing collating sequence later does not
|
|
|
|
** reactive the index. The application had the chance to register
|
|
|
|
** the missing index using the collation-needed callback. For
|
|
|
|
** simplicity, SQLite will not give the application a second chance.
|
|
|
|
*/
|
|
|
|
pIdx->bNoQuery = 1;
|
|
|
|
pParse->rc = SQLITE_ERROR_RETRY;
|
|
|
|
}
|
|
|
|
sqlite3KeyInfoUnref(pKey);
|
|
|
|
pKey = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pKey;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
|
|
/*
|
|
|
|
** Create a new CTE object
|
|
|
|
*/
|
|
|
|
Cte *sqlite3CteNew(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
Token *pName, /* Name of the common-table */
|
|
|
|
ExprList *pArglist, /* Optional column name list for the table */
|
|
|
|
Select *pQuery, /* Query used to initialize the table */
|
|
|
|
u8 eM10d /* The MATERIALIZED flag */
|
|
|
|
){
|
|
|
|
Cte *pNew;
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
|
|
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
|
|
|
|
assert( pNew!=0 || db->mallocFailed );
|
|
|
|
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
sqlite3ExprListDelete(db, pArglist);
|
|
|
|
sqlite3SelectDelete(db, pQuery);
|
|
|
|
}else{
|
|
|
|
pNew->pSelect = pQuery;
|
|
|
|
pNew->pCols = pArglist;
|
|
|
|
pNew->zName = sqlite3NameFromToken(pParse->db, pName);
|
|
|
|
pNew->eM10d = eM10d;
|
|
|
|
}
|
|
|
|
return pNew;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Clear information from a Cte object, but do not deallocate storage
|
|
|
|
** for the object itself.
|
|
|
|
*/
|
|
|
|
static void cteClear(sqlite3 *db, Cte *pCte){
|
|
|
|
assert( pCte!=0 );
|
|
|
|
sqlite3ExprListDelete(db, pCte->pCols);
|
|
|
|
sqlite3SelectDelete(db, pCte->pSelect);
|
|
|
|
sqlite3DbFree(db, pCte->zName);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Free the contents of the CTE object passed as the second argument.
|
|
|
|
*/
|
|
|
|
void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
|
|
|
|
assert( pCte!=0 );
|
|
|
|
cteClear(db, pCte);
|
|
|
|
sqlite3DbFree(db, pCte);
|
|
|
|
}
|
|
|
|
|
2022-07-22 04:46:07 +00:00
|
|
|
/*
|
|
|
|
** This routine is invoked once per CTE by the parser while parsing a
|
2021-05-14 09:07:09 +00:00
|
|
|
** WITH clause. The CTE described by teh third argument is added to
|
|
|
|
** the WITH clause of the second argument. If the second argument is
|
|
|
|
** NULL, then a new WITH argument is created.
|
|
|
|
*/
|
|
|
|
With *sqlite3WithAdd(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
With *pWith, /* Existing WITH clause, or NULL */
|
|
|
|
Cte *pCte /* CTE to add to the WITH clause */
|
|
|
|
){
|
|
|
|
sqlite3 *db = pParse->db;
|
|
|
|
With *pNew;
|
|
|
|
char *zName;
|
|
|
|
|
|
|
|
if( pCte==0 ){
|
|
|
|
return pWith;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check that the CTE name is unique within this WITH clause. If
|
|
|
|
** not, store an error in the Parse structure. */
|
|
|
|
zName = pCte->zName;
|
|
|
|
if( zName && pWith ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pWith->nCte; i++){
|
|
|
|
if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
|
|
|
|
sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( pWith ){
|
|
|
|
sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
|
|
|
|
pNew = sqlite3DbRealloc(db, pWith, nByte);
|
|
|
|
}else{
|
|
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
|
|
|
|
}
|
|
|
|
assert( (pNew!=0 && zName!=0) || db->mallocFailed );
|
|
|
|
|
|
|
|
if( db->mallocFailed ){
|
|
|
|
sqlite3CteDelete(db, pCte);
|
|
|
|
pNew = pWith;
|
|
|
|
}else{
|
|
|
|
pNew->a[pNew->nCte++] = *pCte;
|
|
|
|
sqlite3DbFree(db, pCte);
|
|
|
|
}
|
|
|
|
|
|
|
|
return pNew;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Free the contents of the With object passed as the second argument.
|
|
|
|
*/
|
|
|
|
void sqlite3WithDelete(sqlite3 *db, With *pWith){
|
|
|
|
if( pWith ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pWith->nCte; i++){
|
|
|
|
cteClear(db, &pWith->a[i]);
|
|
|
|
}
|
|
|
|
sqlite3DbFree(db, pWith);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_OMIT_CTE) */
|