python-3.6.zip added from Github

README.cosmo contains the necessary links.
This commit is contained in:
ahgamut 2021-08-08 09:38:33 +05:30 committed by Justine Tunney
parent 75fc601ff5
commit 0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions

140
third_party/python/Lib/__future__.py vendored Normal file
View file

@ -0,0 +1,140 @@
"""Record of phased-in incompatible language changes.
Each line is of the form:
FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"
where, normally, OptionalRelease < MandatoryRelease, and both are 5-tuples
of the same form as sys.version_info:
(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
)
OptionalRelease records the first release in which
from __future__ import FeatureName
was accepted.
In the case of MandatoryReleases that have not yet occurred,
MandatoryRelease predicts the release in which the feature will become part
of the language.
Else MandatoryRelease records when the feature became part of the language;
in releases at or after that, modules no longer need
from __future__ import FeatureName
to use the feature in question, but may continue to use such imports.
MandatoryRelease may also be None, meaning that a planned feature got
dropped.
Instances of class _Feature have two corresponding methods,
.getOptionalRelease() and .getMandatoryRelease().
CompilerFlag is the (bitfield) flag that should be passed in the fourth
argument to the builtin function compile() to enable the feature in
dynamically compiled code. This flag is stored in the .compiler_flag
attribute on _Future instances. These values must match the appropriate
#defines of CO_xxx flags in Include/compile.h.
No feature line is ever to be deleted from this file.
"""
all_feature_names = [
"nested_scopes",
"generators",
"division",
"absolute_import",
"with_statement",
"print_function",
"unicode_literals",
"barry_as_FLUFL",
"generator_stop",
]
__all__ = ["all_feature_names"] + all_feature_names
# The CO_xxx symbols are defined here under the same names used by
# compile.h, so that an editor search will find them here. However,
# they're not exported in __all__, because they don't really belong to
# this module.
CO_NESTED = 0x0010 # nested_scopes
CO_GENERATOR_ALLOWED = 0 # generators (obsolete, was 0x1000)
CO_FUTURE_DIVISION = 0x2000 # division
CO_FUTURE_ABSOLUTE_IMPORT = 0x4000 # perform absolute imports by default
CO_FUTURE_WITH_STATEMENT = 0x8000 # with statement
CO_FUTURE_PRINT_FUNCTION = 0x10000 # print function
CO_FUTURE_UNICODE_LITERALS = 0x20000 # unicode string literals
CO_FUTURE_BARRY_AS_BDFL = 0x40000
CO_FUTURE_GENERATOR_STOP = 0x80000 # StopIteration becomes RuntimeError in generators
class _Feature:
def __init__(self, optionalRelease, mandatoryRelease, compiler_flag):
self.optional = optionalRelease
self.mandatory = mandatoryRelease
self.compiler_flag = compiler_flag
def getOptionalRelease(self):
"""Return first release in which this feature was recognized.
This is a 5-tuple, of the same form as sys.version_info.
"""
return self.optional
def getMandatoryRelease(self):
"""Return release in which this feature will become mandatory.
This is a 5-tuple, of the same form as sys.version_info, or, if
the feature was dropped, is None.
"""
return self.mandatory
def __repr__(self):
return "_Feature" + repr((self.optional,
self.mandatory,
self.compiler_flag))
nested_scopes = _Feature((2, 1, 0, "beta", 1),
(2, 2, 0, "alpha", 0),
CO_NESTED)
generators = _Feature((2, 2, 0, "alpha", 1),
(2, 3, 0, "final", 0),
CO_GENERATOR_ALLOWED)
division = _Feature((2, 2, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_DIVISION)
absolute_import = _Feature((2, 5, 0, "alpha", 1),
(3, 0, 0, "alpha", 0),
CO_FUTURE_ABSOLUTE_IMPORT)
with_statement = _Feature((2, 5, 0, "alpha", 1),
(2, 6, 0, "alpha", 0),
CO_FUTURE_WITH_STATEMENT)
print_function = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_PRINT_FUNCTION)
unicode_literals = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_UNICODE_LITERALS)
barry_as_FLUFL = _Feature((3, 1, 0, "alpha", 2),
(3, 9, 0, "alpha", 0),
CO_FUTURE_BARRY_AS_BDFL)
generator_stop = _Feature((3, 5, 0, "beta", 1),
(3, 7, 0, "alpha", 0),
CO_FUTURE_GENERATOR_STOP)

View file

@ -0,0 +1 @@
# This file exists as a helper for the test.test_frozen module.

34
third_party/python/Lib/_bootlocale.py vendored Normal file
View file

@ -0,0 +1,34 @@
"""A minimal subset of the locale module used at interpreter startup
(imported by the _io module), in order to reduce startup time.
Don't import directly from third-party code; use the `locale` module instead!
"""
import sys
import _locale
if sys.platform.startswith("win"):
def getpreferredencoding(do_setlocale=True):
return _locale._getdefaultlocale()[1]
else:
try:
_locale.CODESET
except AttributeError:
def getpreferredencoding(do_setlocale=True):
# This path for legacy systems needs the more complex
# getdefaultlocale() function, import the full locale module.
import locale
return locale.getpreferredencoding(do_setlocale)
else:
def getpreferredencoding(do_setlocale=True):
assert not do_setlocale
result = _locale.nl_langinfo(_locale.CODESET)
if not result and sys.platform == 'darwin':
# nl_langinfo can return an empty string
# when the setting has an invalid value.
# Default to UTF-8 in that case because
# UTF-8 is the default charset on OSX and
# returning nothing will crash the
# interpreter.
result = 'UTF-8'
return result

1011
third_party/python/Lib/_collections_abc.py vendored Normal file

File diff suppressed because it is too large Load diff

251
third_party/python/Lib/_compat_pickle.py vendored Normal file
View file

@ -0,0 +1,251 @@
# This module is used to map the old Python 2 names to the new names used in
# Python 3 for the pickle module. This needed to make pickle streams
# generated with Python 2 loadable by Python 3.
# This is a copy of lib2to3.fixes.fix_imports.MAPPING. We cannot import
# lib2to3 and use the mapping defined there, because lib2to3 uses pickle.
# Thus, this could cause the module to be imported recursively.
IMPORT_MAPPING = {
'__builtin__' : 'builtins',
'copy_reg': 'copyreg',
'Queue': 'queue',
'SocketServer': 'socketserver',
'ConfigParser': 'configparser',
'repr': 'reprlib',
'tkFileDialog': 'tkinter.filedialog',
'tkSimpleDialog': 'tkinter.simpledialog',
'tkColorChooser': 'tkinter.colorchooser',
'tkCommonDialog': 'tkinter.commondialog',
'Dialog': 'tkinter.dialog',
'Tkdnd': 'tkinter.dnd',
'tkFont': 'tkinter.font',
'tkMessageBox': 'tkinter.messagebox',
'ScrolledText': 'tkinter.scrolledtext',
'Tkconstants': 'tkinter.constants',
'Tix': 'tkinter.tix',
'ttk': 'tkinter.ttk',
'Tkinter': 'tkinter',
'markupbase': '_markupbase',
'_winreg': 'winreg',
'thread': '_thread',
'dummy_thread': '_dummy_thread',
'dbhash': 'dbm.bsd',
'dumbdbm': 'dbm.dumb',
'dbm': 'dbm.ndbm',
'gdbm': 'dbm.gnu',
'xmlrpclib': 'xmlrpc.client',
'SimpleXMLRPCServer': 'xmlrpc.server',
'httplib': 'http.client',
'htmlentitydefs' : 'html.entities',
'HTMLParser' : 'html.parser',
'Cookie': 'http.cookies',
'cookielib': 'http.cookiejar',
'BaseHTTPServer': 'http.server',
'test.test_support': 'test.support',
'commands': 'subprocess',
'urlparse' : 'urllib.parse',
'robotparser' : 'urllib.robotparser',
'urllib2': 'urllib.request',
'anydbm': 'dbm',
'_abcoll' : 'collections.abc',
}
# This contains rename rules that are easy to handle. We ignore the more
# complex stuff (e.g. mapping the names in the urllib and types modules).
# These rules should be run before import names are fixed.
NAME_MAPPING = {
('__builtin__', 'xrange'): ('builtins', 'range'),
('__builtin__', 'reduce'): ('functools', 'reduce'),
('__builtin__', 'intern'): ('sys', 'intern'),
('__builtin__', 'unichr'): ('builtins', 'chr'),
('__builtin__', 'unicode'): ('builtins', 'str'),
('__builtin__', 'long'): ('builtins', 'int'),
('itertools', 'izip'): ('builtins', 'zip'),
('itertools', 'imap'): ('builtins', 'map'),
('itertools', 'ifilter'): ('builtins', 'filter'),
('itertools', 'ifilterfalse'): ('itertools', 'filterfalse'),
('itertools', 'izip_longest'): ('itertools', 'zip_longest'),
('UserDict', 'IterableUserDict'): ('collections', 'UserDict'),
('UserList', 'UserList'): ('collections', 'UserList'),
('UserString', 'UserString'): ('collections', 'UserString'),
('whichdb', 'whichdb'): ('dbm', 'whichdb'),
('_socket', 'fromfd'): ('socket', 'fromfd'),
('_multiprocessing', 'Connection'): ('multiprocessing.connection', 'Connection'),
('multiprocessing.process', 'Process'): ('multiprocessing.context', 'Process'),
('multiprocessing.forking', 'Popen'): ('multiprocessing.popen_fork', 'Popen'),
('urllib', 'ContentTooShortError'): ('urllib.error', 'ContentTooShortError'),
('urllib', 'getproxies'): ('urllib.request', 'getproxies'),
('urllib', 'pathname2url'): ('urllib.request', 'pathname2url'),
('urllib', 'quote_plus'): ('urllib.parse', 'quote_plus'),
('urllib', 'quote'): ('urllib.parse', 'quote'),
('urllib', 'unquote_plus'): ('urllib.parse', 'unquote_plus'),
('urllib', 'unquote'): ('urllib.parse', 'unquote'),
('urllib', 'url2pathname'): ('urllib.request', 'url2pathname'),
('urllib', 'urlcleanup'): ('urllib.request', 'urlcleanup'),
('urllib', 'urlencode'): ('urllib.parse', 'urlencode'),
('urllib', 'urlopen'): ('urllib.request', 'urlopen'),
('urllib', 'urlretrieve'): ('urllib.request', 'urlretrieve'),
('urllib2', 'HTTPError'): ('urllib.error', 'HTTPError'),
('urllib2', 'URLError'): ('urllib.error', 'URLError'),
}
PYTHON2_EXCEPTIONS = (
"ArithmeticError",
"AssertionError",
"AttributeError",
"BaseException",
"BufferError",
"BytesWarning",
"DeprecationWarning",
"EOFError",
"EnvironmentError",
"Exception",
"FloatingPointError",
"FutureWarning",
"GeneratorExit",
"IOError",
"ImportError",
"ImportWarning",
"IndentationError",
"IndexError",
"KeyError",
"KeyboardInterrupt",
"LookupError",
"MemoryError",
"NameError",
"NotImplementedError",
"OSError",
"OverflowError",
"PendingDeprecationWarning",
"ReferenceError",
"RuntimeError",
"RuntimeWarning",
# StandardError is gone in Python 3, so we map it to Exception
"StopIteration",
"SyntaxError",
"SyntaxWarning",
"SystemError",
"SystemExit",
"TabError",
"TypeError",
"UnboundLocalError",
"UnicodeDecodeError",
"UnicodeEncodeError",
"UnicodeError",
"UnicodeTranslateError",
"UnicodeWarning",
"UserWarning",
"ValueError",
"Warning",
"ZeroDivisionError",
)
try:
WindowsError
except NameError:
pass
else:
PYTHON2_EXCEPTIONS += ("WindowsError",)
for excname in PYTHON2_EXCEPTIONS:
NAME_MAPPING[("exceptions", excname)] = ("builtins", excname)
MULTIPROCESSING_EXCEPTIONS = (
'AuthenticationError',
'BufferTooShort',
'ProcessError',
'TimeoutError',
)
for excname in MULTIPROCESSING_EXCEPTIONS:
NAME_MAPPING[("multiprocessing", excname)] = ("multiprocessing.context", excname)
# Same, but for 3.x to 2.x
REVERSE_IMPORT_MAPPING = dict((v, k) for (k, v) in IMPORT_MAPPING.items())
assert len(REVERSE_IMPORT_MAPPING) == len(IMPORT_MAPPING)
REVERSE_NAME_MAPPING = dict((v, k) for (k, v) in NAME_MAPPING.items())
assert len(REVERSE_NAME_MAPPING) == len(NAME_MAPPING)
# Non-mutual mappings.
IMPORT_MAPPING.update({
'cPickle': 'pickle',
'_elementtree': 'xml.etree.ElementTree',
'FileDialog': 'tkinter.filedialog',
'SimpleDialog': 'tkinter.simpledialog',
'DocXMLRPCServer': 'xmlrpc.server',
'SimpleHTTPServer': 'http.server',
'CGIHTTPServer': 'http.server',
# For compatibility with broken pickles saved in old Python 3 versions
'UserDict': 'collections',
'UserList': 'collections',
'UserString': 'collections',
'whichdb': 'dbm',
'StringIO': 'io',
'cStringIO': 'io',
})
REVERSE_IMPORT_MAPPING.update({
'_bz2': 'bz2',
'_dbm': 'dbm',
'_functools': 'functools',
'_gdbm': 'gdbm',
'_pickle': 'pickle',
})
NAME_MAPPING.update({
('__builtin__', 'basestring'): ('builtins', 'str'),
('exceptions', 'StandardError'): ('builtins', 'Exception'),
('UserDict', 'UserDict'): ('collections', 'UserDict'),
('socket', '_socketobject'): ('socket', 'SocketType'),
})
REVERSE_NAME_MAPPING.update({
('_functools', 'reduce'): ('__builtin__', 'reduce'),
('tkinter.filedialog', 'FileDialog'): ('FileDialog', 'FileDialog'),
('tkinter.filedialog', 'LoadFileDialog'): ('FileDialog', 'LoadFileDialog'),
('tkinter.filedialog', 'SaveFileDialog'): ('FileDialog', 'SaveFileDialog'),
('tkinter.simpledialog', 'SimpleDialog'): ('SimpleDialog', 'SimpleDialog'),
('xmlrpc.server', 'ServerHTMLDoc'): ('DocXMLRPCServer', 'ServerHTMLDoc'),
('xmlrpc.server', 'XMLRPCDocGenerator'):
('DocXMLRPCServer', 'XMLRPCDocGenerator'),
('xmlrpc.server', 'DocXMLRPCRequestHandler'):
('DocXMLRPCServer', 'DocXMLRPCRequestHandler'),
('xmlrpc.server', 'DocXMLRPCServer'):
('DocXMLRPCServer', 'DocXMLRPCServer'),
('xmlrpc.server', 'DocCGIXMLRPCRequestHandler'):
('DocXMLRPCServer', 'DocCGIXMLRPCRequestHandler'),
('http.server', 'SimpleHTTPRequestHandler'):
('SimpleHTTPServer', 'SimpleHTTPRequestHandler'),
('http.server', 'CGIHTTPRequestHandler'):
('CGIHTTPServer', 'CGIHTTPRequestHandler'),
('_socket', 'socket'): ('socket', '_socketobject'),
})
PYTHON3_OSERROR_EXCEPTIONS = (
'BrokenPipeError',
'ChildProcessError',
'ConnectionAbortedError',
'ConnectionError',
'ConnectionRefusedError',
'ConnectionResetError',
'FileExistsError',
'FileNotFoundError',
'InterruptedError',
'IsADirectoryError',
'NotADirectoryError',
'PermissionError',
'ProcessLookupError',
'TimeoutError',
)
for excname in PYTHON3_OSERROR_EXCEPTIONS:
REVERSE_NAME_MAPPING[('builtins', excname)] = ('exceptions', 'OSError')
PYTHON3_IMPORTERROR_EXCEPTIONS = (
'ModuleNotFoundError',
)
for excname in PYTHON3_IMPORTERROR_EXCEPTIONS:
REVERSE_NAME_MAPPING[('builtins', excname)] = ('exceptions', 'ImportError')

152
third_party/python/Lib/_compression.py vendored Normal file
View file

@ -0,0 +1,152 @@
"""Internal classes used by the gzip, lzma and bz2 modules"""
import io
BUFFER_SIZE = io.DEFAULT_BUFFER_SIZE # Compressed data read chunk size
class BaseStream(io.BufferedIOBase):
"""Mode-checking helper functions."""
def _check_not_closed(self):
if self.closed:
raise ValueError("I/O operation on closed file")
def _check_can_read(self):
if not self.readable():
raise io.UnsupportedOperation("File not open for reading")
def _check_can_write(self):
if not self.writable():
raise io.UnsupportedOperation("File not open for writing")
def _check_can_seek(self):
if not self.readable():
raise io.UnsupportedOperation("Seeking is only supported "
"on files open for reading")
if not self.seekable():
raise io.UnsupportedOperation("The underlying file object "
"does not support seeking")
class DecompressReader(io.RawIOBase):
"""Adapts the decompressor API to a RawIOBase reader API"""
def readable(self):
return True
def __init__(self, fp, decomp_factory, trailing_error=(), **decomp_args):
self._fp = fp
self._eof = False
self._pos = 0 # Current offset in decompressed stream
# Set to size of decompressed stream once it is known, for SEEK_END
self._size = -1
# Save the decompressor factory and arguments.
# If the file contains multiple compressed streams, each
# stream will need a separate decompressor object. A new decompressor
# object is also needed when implementing a backwards seek().
self._decomp_factory = decomp_factory
self._decomp_args = decomp_args
self._decompressor = self._decomp_factory(**self._decomp_args)
# Exception class to catch from decompressor signifying invalid
# trailing data to ignore
self._trailing_error = trailing_error
def close(self):
self._decompressor = None
return super().close()
def seekable(self):
return self._fp.seekable()
def readinto(self, b):
with memoryview(b) as view, view.cast("B") as byte_view:
data = self.read(len(byte_view))
byte_view[:len(data)] = data
return len(data)
def read(self, size=-1):
if size < 0:
return self.readall()
if not size or self._eof:
return b""
data = None # Default if EOF is encountered
# Depending on the input data, our call to the decompressor may not
# return any data. In this case, try again after reading another block.
while True:
if self._decompressor.eof:
rawblock = (self._decompressor.unused_data or
self._fp.read(BUFFER_SIZE))
if not rawblock:
break
# Continue to next stream.
self._decompressor = self._decomp_factory(
**self._decomp_args)
try:
data = self._decompressor.decompress(rawblock, size)
except self._trailing_error:
# Trailing data isn't a valid compressed stream; ignore it.
break
else:
if self._decompressor.needs_input:
rawblock = self._fp.read(BUFFER_SIZE)
if not rawblock:
raise EOFError("Compressed file ended before the "
"end-of-stream marker was reached")
else:
rawblock = b""
data = self._decompressor.decompress(rawblock, size)
if data:
break
if not data:
self._eof = True
self._size = self._pos
return b""
self._pos += len(data)
return data
# Rewind the file to the beginning of the data stream.
def _rewind(self):
self._fp.seek(0)
self._eof = False
self._pos = 0
self._decompressor = self._decomp_factory(**self._decomp_args)
def seek(self, offset, whence=io.SEEK_SET):
# Recalculate offset as an absolute file position.
if whence == io.SEEK_SET:
pass
elif whence == io.SEEK_CUR:
offset = self._pos + offset
elif whence == io.SEEK_END:
# Seeking relative to EOF - we need to know the file's size.
if self._size < 0:
while self.read(io.DEFAULT_BUFFER_SIZE):
pass
offset = self._size + offset
else:
raise ValueError("Invalid value for whence: {}".format(whence))
# Make it so that offset is the number of bytes to skip forward.
if offset < self._pos:
self._rewind()
else:
offset -= self._pos
# Read and discard data until we reach the desired position.
while offset > 0:
data = self.read(min(io.DEFAULT_BUFFER_SIZE, offset))
if not data:
break
offset -= len(data)
return self._pos
def tell(self):
"""Return the current file position."""
return self._pos

163
third_party/python/Lib/_dummy_thread.py vendored Normal file
View file

@ -0,0 +1,163 @@
"""Drop-in replacement for the thread module.
Meant to be used as a brain-dead substitute so that threaded code does
not need to be rewritten for when the thread module is not present.
Suggested usage is::
try:
import _thread
except ImportError:
import _dummy_thread as _thread
"""
# Exports only things specified by thread documentation;
# skipping obsolete synonyms allocate(), start_new(), exit_thread().
__all__ = ['error', 'start_new_thread', 'exit', 'get_ident', 'allocate_lock',
'interrupt_main', 'LockType']
# A dummy value
TIMEOUT_MAX = 2**31
# NOTE: this module can be imported early in the extension building process,
# and so top level imports of other modules should be avoided. Instead, all
# imports are done when needed on a function-by-function basis. Since threads
# are disabled, the import lock should not be an issue anyway (??).
error = RuntimeError
def start_new_thread(function, args, kwargs={}):
"""Dummy implementation of _thread.start_new_thread().
Compatibility is maintained by making sure that ``args`` is a
tuple and ``kwargs`` is a dictionary. If an exception is raised
and it is SystemExit (which can be done by _thread.exit()) it is
caught and nothing is done; all other exceptions are printed out
by using traceback.print_exc().
If the executed function calls interrupt_main the KeyboardInterrupt will be
raised when the function returns.
"""
if type(args) != type(tuple()):
raise TypeError("2nd arg must be a tuple")
if type(kwargs) != type(dict()):
raise TypeError("3rd arg must be a dict")
global _main
_main = False
try:
function(*args, **kwargs)
except SystemExit:
pass
except:
import traceback
traceback.print_exc()
_main = True
global _interrupt
if _interrupt:
_interrupt = False
raise KeyboardInterrupt
def exit():
"""Dummy implementation of _thread.exit()."""
raise SystemExit
def get_ident():
"""Dummy implementation of _thread.get_ident().
Since this module should only be used when _threadmodule is not
available, it is safe to assume that the current process is the
only thread. Thus a constant can be safely returned.
"""
return -1
def allocate_lock():
"""Dummy implementation of _thread.allocate_lock()."""
return LockType()
def stack_size(size=None):
"""Dummy implementation of _thread.stack_size()."""
if size is not None:
raise error("setting thread stack size not supported")
return 0
def _set_sentinel():
"""Dummy implementation of _thread._set_sentinel()."""
return LockType()
class LockType(object):
"""Class implementing dummy implementation of _thread.LockType.
Compatibility is maintained by maintaining self.locked_status
which is a boolean that stores the state of the lock. Pickling of
the lock, though, should not be done since if the _thread module is
then used with an unpickled ``lock()`` from here problems could
occur from this class not having atomic methods.
"""
def __init__(self):
self.locked_status = False
def acquire(self, waitflag=None, timeout=-1):
"""Dummy implementation of acquire().
For blocking calls, self.locked_status is automatically set to
True and returned appropriately based on value of
``waitflag``. If it is non-blocking, then the value is
actually checked and not set if it is already acquired. This
is all done so that threading.Condition's assert statements
aren't triggered and throw a little fit.
"""
if waitflag is None or waitflag:
self.locked_status = True
return True
else:
if not self.locked_status:
self.locked_status = True
return True
else:
if timeout > 0:
import time
time.sleep(timeout)
return False
__enter__ = acquire
def __exit__(self, typ, val, tb):
self.release()
def release(self):
"""Release the dummy lock."""
# XXX Perhaps shouldn't actually bother to test? Could lead
# to problems for complex, threaded code.
if not self.locked_status:
raise error
self.locked_status = False
return True
def locked(self):
return self.locked_status
def __repr__(self):
return "<%s %s.%s object at %s>" % (
"locked" if self.locked_status else "unlocked",
self.__class__.__module__,
self.__class__.__qualname__,
hex(id(self))
)
# Used to signal that interrupt_main was called in a "thread"
_interrupt = False
# True when not executing in a "thread"
_main = True
def interrupt_main():
"""Set _interrupt flag to True to have start_new_thread raise
KeyboardInterrupt upon exiting."""
if _main:
raise KeyboardInterrupt
else:
global _interrupt
_interrupt = True

395
third_party/python/Lib/_markupbase.py vendored Normal file
View file

@ -0,0 +1,395 @@
"""Shared support for scanning document type declarations in HTML and XHTML.
This module is used as a foundation for the html.parser module. It has no
documented public API and should not be used directly.
"""
import re
_declname_match = re.compile(r'[a-zA-Z][-_.a-zA-Z0-9]*\s*').match
_declstringlit_match = re.compile(r'(\'[^\']*\'|"[^"]*")\s*').match
_commentclose = re.compile(r'--\s*>')
_markedsectionclose = re.compile(r']\s*]\s*>')
# An analysis of the MS-Word extensions is available at
# http://www.planetpublish.com/xmlarena/xap/Thursday/WordtoXML.pdf
_msmarkedsectionclose = re.compile(r']\s*>')
del re
class ParserBase:
"""Parser base class which provides some common support methods used
by the SGML/HTML and XHTML parsers."""
def __init__(self):
if self.__class__ is ParserBase:
raise RuntimeError(
"_markupbase.ParserBase must be subclassed")
def error(self, message):
raise NotImplementedError(
"subclasses of ParserBase must override error()")
def reset(self):
self.lineno = 1
self.offset = 0
def getpos(self):
"""Return current line number and offset."""
return self.lineno, self.offset
# Internal -- update line number and offset. This should be
# called for each piece of data exactly once, in order -- in other
# words the concatenation of all the input strings to this
# function should be exactly the entire input.
def updatepos(self, i, j):
if i >= j:
return j
rawdata = self.rawdata
nlines = rawdata.count("\n", i, j)
if nlines:
self.lineno = self.lineno + nlines
pos = rawdata.rindex("\n", i, j) # Should not fail
self.offset = j-(pos+1)
else:
self.offset = self.offset + j-i
return j
_decl_otherchars = ''
# Internal -- parse declaration (for use by subclasses).
def parse_declaration(self, i):
# This is some sort of declaration; in "HTML as
# deployed," this should only be the document type
# declaration ("<!DOCTYPE html...>").
# ISO 8879:1986, however, has more complex
# declaration syntax for elements in <!...>, including:
# --comment--
# [marked section]
# name in the following list: ENTITY, DOCTYPE, ELEMENT,
# ATTLIST, NOTATION, SHORTREF, USEMAP,
# LINKTYPE, LINK, IDLINK, USELINK, SYSTEM
rawdata = self.rawdata
j = i + 2
assert rawdata[i:j] == "<!", "unexpected call to parse_declaration"
if rawdata[j:j+1] == ">":
# the empty comment <!>
return j + 1
if rawdata[j:j+1] in ("-", ""):
# Start of comment followed by buffer boundary,
# or just a buffer boundary.
return -1
# A simple, practical version could look like: ((name|stringlit) S*) + '>'
n = len(rawdata)
if rawdata[j:j+2] == '--': #comment
# Locate --.*-- as the body of the comment
return self.parse_comment(i)
elif rawdata[j] == '[': #marked section
# Locate [statusWord [...arbitrary SGML...]] as the body of the marked section
# Where statusWord is one of TEMP, CDATA, IGNORE, INCLUDE, RCDATA
# Note that this is extended by Microsoft Office "Save as Web" function
# to include [if...] and [endif].
return self.parse_marked_section(i)
else: #all other declaration elements
decltype, j = self._scan_name(j, i)
if j < 0:
return j
if decltype == "doctype":
self._decl_otherchars = ''
while j < n:
c = rawdata[j]
if c == ">":
# end of declaration syntax
data = rawdata[i+2:j]
if decltype == "doctype":
self.handle_decl(data)
else:
# According to the HTML5 specs sections "8.2.4.44 Bogus
# comment state" and "8.2.4.45 Markup declaration open
# state", a comment token should be emitted.
# Calling unknown_decl provides more flexibility though.
self.unknown_decl(data)
return j + 1
if c in "\"'":
m = _declstringlit_match(rawdata, j)
if not m:
return -1 # incomplete
j = m.end()
elif c in "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ":
name, j = self._scan_name(j, i)
elif c in self._decl_otherchars:
j = j + 1
elif c == "[":
# this could be handled in a separate doctype parser
if decltype == "doctype":
j = self._parse_doctype_subset(j + 1, i)
elif decltype in {"attlist", "linktype", "link", "element"}:
# must tolerate []'d groups in a content model in an element declaration
# also in data attribute specifications of attlist declaration
# also link type declaration subsets in linktype declarations
# also link attribute specification lists in link declarations
self.error("unsupported '[' char in %s declaration" % decltype)
else:
self.error("unexpected '[' char in declaration")
else:
self.error(
"unexpected %r char in declaration" % rawdata[j])
if j < 0:
return j
return -1 # incomplete
# Internal -- parse a marked section
# Override this to handle MS-word extension syntax <![if word]>content<![endif]>
def parse_marked_section(self, i, report=1):
rawdata= self.rawdata
assert rawdata[i:i+3] == '<![', "unexpected call to parse_marked_section()"
sectName, j = self._scan_name( i+3, i )
if j < 0:
return j
if sectName in {"temp", "cdata", "ignore", "include", "rcdata"}:
# look for standard ]]> ending
match= _markedsectionclose.search(rawdata, i+3)
elif sectName in {"if", "else", "endif"}:
# look for MS Office ]> ending
match= _msmarkedsectionclose.search(rawdata, i+3)
else:
self.error('unknown status keyword %r in marked section' % rawdata[i+3:j])
if not match:
return -1
if report:
j = match.start(0)
self.unknown_decl(rawdata[i+3: j])
return match.end(0)
# Internal -- parse comment, return length or -1 if not terminated
def parse_comment(self, i, report=1):
rawdata = self.rawdata
if rawdata[i:i+4] != '<!--':
self.error('unexpected call to parse_comment()')
match = _commentclose.search(rawdata, i+4)
if not match:
return -1
if report:
j = match.start(0)
self.handle_comment(rawdata[i+4: j])
return match.end(0)
# Internal -- scan past the internal subset in a <!DOCTYPE declaration,
# returning the index just past any whitespace following the trailing ']'.
def _parse_doctype_subset(self, i, declstartpos):
rawdata = self.rawdata
n = len(rawdata)
j = i
while j < n:
c = rawdata[j]
if c == "<":
s = rawdata[j:j+2]
if s == "<":
# end of buffer; incomplete
return -1
if s != "<!":
self.updatepos(declstartpos, j + 1)
self.error("unexpected char in internal subset (in %r)" % s)
if (j + 2) == n:
# end of buffer; incomplete
return -1
if (j + 4) > n:
# end of buffer; incomplete
return -1
if rawdata[j:j+4] == "<!--":
j = self.parse_comment(j, report=0)
if j < 0:
return j
continue
name, j = self._scan_name(j + 2, declstartpos)
if j == -1:
return -1
if name not in {"attlist", "element", "entity", "notation"}:
self.updatepos(declstartpos, j + 2)
self.error(
"unknown declaration %r in internal subset" % name)
# handle the individual names
meth = getattr(self, "_parse_doctype_" + name)
j = meth(j, declstartpos)
if j < 0:
return j
elif c == "%":
# parameter entity reference
if (j + 1) == n:
# end of buffer; incomplete
return -1
s, j = self._scan_name(j + 1, declstartpos)
if j < 0:
return j
if rawdata[j] == ";":
j = j + 1
elif c == "]":
j = j + 1
while j < n and rawdata[j].isspace():
j = j + 1
if j < n:
if rawdata[j] == ">":
return j
self.updatepos(declstartpos, j)
self.error("unexpected char after internal subset")
else:
return -1
elif c.isspace():
j = j + 1
else:
self.updatepos(declstartpos, j)
self.error("unexpected char %r in internal subset" % c)
# end of buffer reached
return -1
# Internal -- scan past <!ELEMENT declarations
def _parse_doctype_element(self, i, declstartpos):
name, j = self._scan_name(i, declstartpos)
if j == -1:
return -1
# style content model; just skip until '>'
rawdata = self.rawdata
if '>' in rawdata[j:]:
return rawdata.find(">", j) + 1
return -1
# Internal -- scan past <!ATTLIST declarations
def _parse_doctype_attlist(self, i, declstartpos):
rawdata = self.rawdata
name, j = self._scan_name(i, declstartpos)
c = rawdata[j:j+1]
if c == "":
return -1
if c == ">":
return j + 1
while 1:
# scan a series of attribute descriptions; simplified:
# name type [value] [#constraint]
name, j = self._scan_name(j, declstartpos)
if j < 0:
return j
c = rawdata[j:j+1]
if c == "":
return -1
if c == "(":
# an enumerated type; look for ')'
if ")" in rawdata[j:]:
j = rawdata.find(")", j) + 1
else:
return -1
while rawdata[j:j+1].isspace():
j = j + 1
if not rawdata[j:]:
# end of buffer, incomplete
return -1
else:
name, j = self._scan_name(j, declstartpos)
c = rawdata[j:j+1]
if not c:
return -1
if c in "'\"":
m = _declstringlit_match(rawdata, j)
if m:
j = m.end()
else:
return -1
c = rawdata[j:j+1]
if not c:
return -1
if c == "#":
if rawdata[j:] == "#":
# end of buffer
return -1
name, j = self._scan_name(j + 1, declstartpos)
if j < 0:
return j
c = rawdata[j:j+1]
if not c:
return -1
if c == '>':
# all done
return j + 1
# Internal -- scan past <!NOTATION declarations
def _parse_doctype_notation(self, i, declstartpos):
name, j = self._scan_name(i, declstartpos)
if j < 0:
return j
rawdata = self.rawdata
while 1:
c = rawdata[j:j+1]
if not c:
# end of buffer; incomplete
return -1
if c == '>':
return j + 1
if c in "'\"":
m = _declstringlit_match(rawdata, j)
if not m:
return -1
j = m.end()
else:
name, j = self._scan_name(j, declstartpos)
if j < 0:
return j
# Internal -- scan past <!ENTITY declarations
def _parse_doctype_entity(self, i, declstartpos):
rawdata = self.rawdata
if rawdata[i:i+1] == "%":
j = i + 1
while 1:
c = rawdata[j:j+1]
if not c:
return -1
if c.isspace():
j = j + 1
else:
break
else:
j = i
name, j = self._scan_name(j, declstartpos)
if j < 0:
return j
while 1:
c = self.rawdata[j:j+1]
if not c:
return -1
if c in "'\"":
m = _declstringlit_match(rawdata, j)
if m:
j = m.end()
else:
return -1 # incomplete
elif c == ">":
return j + 1
else:
name, j = self._scan_name(j, declstartpos)
if j < 0:
return j
# Internal -- scan a name token and the new position and the token, or
# return -1 if we've reached the end of the buffer.
def _scan_name(self, i, declstartpos):
rawdata = self.rawdata
n = len(rawdata)
if i == n:
return None, -1
m = _declname_match(rawdata, i)
if m:
s = m.group()
name = s.strip()
if (i + len(s)) == n:
return None, -1 # end of buffer
return name.lower(), m.end()
else:
self.updatepos(declstartpos, i)
self.error("expected name token at %r"
% rawdata[declstartpos:declstartpos+20])
# To be overridden -- handlers for unknown objects
def unknown_decl(self, data):
pass

502
third_party/python/Lib/_osx_support.py vendored Normal file
View file

@ -0,0 +1,502 @@
"""Shared OS X support functions."""
import os
import re
import sys
__all__ = [
'compiler_fixup',
'customize_config_vars',
'customize_compiler',
'get_platform_osx',
]
# configuration variables that may contain universal build flags,
# like "-arch" or "-isdkroot", that may need customization for
# the user environment
_UNIVERSAL_CONFIG_VARS = ('CFLAGS', 'LDFLAGS', 'CPPFLAGS', 'BASECFLAGS',
'BLDSHARED', 'LDSHARED', 'CC', 'CXX',
'PY_CFLAGS', 'PY_LDFLAGS', 'PY_CPPFLAGS',
'PY_CORE_CFLAGS', 'PY_CORE_LDFLAGS')
# configuration variables that may contain compiler calls
_COMPILER_CONFIG_VARS = ('BLDSHARED', 'LDSHARED', 'CC', 'CXX')
# prefix added to original configuration variable names
_INITPRE = '_OSX_SUPPORT_INITIAL_'
def _find_executable(executable, path=None):
"""Tries to find 'executable' in the directories listed in 'path'.
A string listing directories separated by 'os.pathsep'; defaults to
os.environ['PATH']. Returns the complete filename or None if not found.
"""
if path is None:
path = os.environ['PATH']
paths = path.split(os.pathsep)
base, ext = os.path.splitext(executable)
if (sys.platform == 'win32') and (ext != '.exe'):
executable = executable + '.exe'
if not os.path.isfile(executable):
for p in paths:
f = os.path.join(p, executable)
if os.path.isfile(f):
# the file exists, we have a shot at spawn working
return f
return None
else:
return executable
def _read_output(commandstring):
"""Output from successful command execution or None"""
# Similar to os.popen(commandstring, "r").read(),
# but without actually using os.popen because that
# function is not usable during python bootstrap.
# tempfile is also not available then.
import contextlib
try:
import tempfile
fp = tempfile.NamedTemporaryFile()
except ImportError:
fp = open("/tmp/_osx_support.%s"%(
os.getpid(),), "w+b")
with contextlib.closing(fp) as fp:
cmd = "%s 2>/dev/null >'%s'" % (commandstring, fp.name)
return fp.read().decode('utf-8').strip() if not os.system(cmd) else None
def _find_build_tool(toolname):
"""Find a build tool on current path or using xcrun"""
return (_find_executable(toolname)
or _read_output("/usr/bin/xcrun -find %s" % (toolname,))
or ''
)
_SYSTEM_VERSION = None
def _get_system_version():
"""Return the OS X system version as a string"""
# Reading this plist is a documented way to get the system
# version (see the documentation for the Gestalt Manager)
# We avoid using platform.mac_ver to avoid possible bootstrap issues during
# the build of Python itself (distutils is used to build standard library
# extensions).
global _SYSTEM_VERSION
if _SYSTEM_VERSION is None:
_SYSTEM_VERSION = ''
try:
f = open('/System/Library/CoreServices/SystemVersion.plist')
except OSError:
# We're on a plain darwin box, fall back to the default
# behaviour.
pass
else:
try:
m = re.search(r'<key>ProductUserVisibleVersion</key>\s*'
r'<string>(.*?)</string>', f.read())
finally:
f.close()
if m is not None:
_SYSTEM_VERSION = '.'.join(m.group(1).split('.')[:2])
# else: fall back to the default behaviour
return _SYSTEM_VERSION
def _remove_original_values(_config_vars):
"""Remove original unmodified values for testing"""
# This is needed for higher-level cross-platform tests of get_platform.
for k in list(_config_vars):
if k.startswith(_INITPRE):
del _config_vars[k]
def _save_modified_value(_config_vars, cv, newvalue):
"""Save modified and original unmodified value of configuration var"""
oldvalue = _config_vars.get(cv, '')
if (oldvalue != newvalue) and (_INITPRE + cv not in _config_vars):
_config_vars[_INITPRE + cv] = oldvalue
_config_vars[cv] = newvalue
def _supports_universal_builds():
"""Returns True if universal builds are supported on this system"""
# As an approximation, we assume that if we are running on 10.4 or above,
# then we are running with an Xcode environment that supports universal
# builds, in particular -isysroot and -arch arguments to the compiler. This
# is in support of allowing 10.4 universal builds to run on 10.3.x systems.
osx_version = _get_system_version()
if osx_version:
try:
osx_version = tuple(int(i) for i in osx_version.split('.'))
except ValueError:
osx_version = ''
return bool(osx_version >= (10, 4)) if osx_version else False
def _find_appropriate_compiler(_config_vars):
"""Find appropriate C compiler for extension module builds"""
# Issue #13590:
# The OSX location for the compiler varies between OSX
# (or rather Xcode) releases. With older releases (up-to 10.5)
# the compiler is in /usr/bin, with newer releases the compiler
# can only be found inside Xcode.app if the "Command Line Tools"
# are not installed.
#
# Furthermore, the compiler that can be used varies between
# Xcode releases. Up to Xcode 4 it was possible to use 'gcc-4.2'
# as the compiler, after that 'clang' should be used because
# gcc-4.2 is either not present, or a copy of 'llvm-gcc' that
# miscompiles Python.
# skip checks if the compiler was overridden with a CC env variable
if 'CC' in os.environ:
return _config_vars
# The CC config var might contain additional arguments.
# Ignore them while searching.
cc = oldcc = _config_vars['CC'].split()[0]
if not _find_executable(cc):
# Compiler is not found on the shell search PATH.
# Now search for clang, first on PATH (if the Command LIne
# Tools have been installed in / or if the user has provided
# another location via CC). If not found, try using xcrun
# to find an uninstalled clang (within a selected Xcode).
# NOTE: Cannot use subprocess here because of bootstrap
# issues when building Python itself (and os.popen is
# implemented on top of subprocess and is therefore not
# usable as well)
cc = _find_build_tool('clang')
elif os.path.basename(cc).startswith('gcc'):
# Compiler is GCC, check if it is LLVM-GCC
data = _read_output("'%s' --version"
% (cc.replace("'", "'\"'\"'"),))
if data and 'llvm-gcc' in data:
# Found LLVM-GCC, fall back to clang
cc = _find_build_tool('clang')
if not cc:
raise SystemError(
"Cannot locate working compiler")
if cc != oldcc:
# Found a replacement compiler.
# Modify config vars using new compiler, if not already explicitly
# overridden by an env variable, preserving additional arguments.
for cv in _COMPILER_CONFIG_VARS:
if cv in _config_vars and cv not in os.environ:
cv_split = _config_vars[cv].split()
cv_split[0] = cc if cv != 'CXX' else cc + '++'
_save_modified_value(_config_vars, cv, ' '.join(cv_split))
return _config_vars
def _remove_universal_flags(_config_vars):
"""Remove all universal build arguments from config vars"""
for cv in _UNIVERSAL_CONFIG_VARS:
# Do not alter a config var explicitly overridden by env var
if cv in _config_vars and cv not in os.environ:
flags = _config_vars[cv]
flags = re.sub(r'-arch\s+\w+\s', ' ', flags, flags=re.ASCII)
flags = re.sub('-isysroot [^ \t]*', ' ', flags)
_save_modified_value(_config_vars, cv, flags)
return _config_vars
def _remove_unsupported_archs(_config_vars):
"""Remove any unsupported archs from config vars"""
# Different Xcode releases support different sets for '-arch'
# flags. In particular, Xcode 4.x no longer supports the
# PPC architectures.
#
# This code automatically removes '-arch ppc' and '-arch ppc64'
# when these are not supported. That makes it possible to
# build extensions on OSX 10.7 and later with the prebuilt
# 32-bit installer on the python.org website.
# skip checks if the compiler was overridden with a CC env variable
if 'CC' in os.environ:
return _config_vars
if re.search(r'-arch\s+ppc', _config_vars['CFLAGS']) is not None:
# NOTE: Cannot use subprocess here because of bootstrap
# issues when building Python itself
status = os.system(
"""echo 'int main{};' | """
"""'%s' -c -arch ppc -x c -o /dev/null /dev/null 2>/dev/null"""
%(_config_vars['CC'].replace("'", "'\"'\"'"),))
if status:
# The compile failed for some reason. Because of differences
# across Xcode and compiler versions, there is no reliable way
# to be sure why it failed. Assume here it was due to lack of
# PPC support and remove the related '-arch' flags from each
# config variables not explicitly overridden by an environment
# variable. If the error was for some other reason, we hope the
# failure will show up again when trying to compile an extension
# module.
for cv in _UNIVERSAL_CONFIG_VARS:
if cv in _config_vars and cv not in os.environ:
flags = _config_vars[cv]
flags = re.sub(r'-arch\s+ppc\w*\s', ' ', flags)
_save_modified_value(_config_vars, cv, flags)
return _config_vars
def _override_all_archs(_config_vars):
"""Allow override of all archs with ARCHFLAGS env var"""
# NOTE: This name was introduced by Apple in OSX 10.5 and
# is used by several scripting languages distributed with
# that OS release.
if 'ARCHFLAGS' in os.environ:
arch = os.environ['ARCHFLAGS']
for cv in _UNIVERSAL_CONFIG_VARS:
if cv in _config_vars and '-arch' in _config_vars[cv]:
flags = _config_vars[cv]
flags = re.sub(r'-arch\s+\w+\s', ' ', flags)
flags = flags + ' ' + arch
_save_modified_value(_config_vars, cv, flags)
return _config_vars
def _check_for_unavailable_sdk(_config_vars):
"""Remove references to any SDKs not available"""
# If we're on OSX 10.5 or later and the user tries to
# compile an extension using an SDK that is not present
# on the current machine it is better to not use an SDK
# than to fail. This is particularly important with
# the standalone Command Line Tools alternative to a
# full-blown Xcode install since the CLT packages do not
# provide SDKs. If the SDK is not present, it is assumed
# that the header files and dev libs have been installed
# to /usr and /System/Library by either a standalone CLT
# package or the CLT component within Xcode.
cflags = _config_vars.get('CFLAGS', '')
m = re.search(r'-isysroot\s+(\S+)', cflags)
if m is not None:
sdk = m.group(1)
if not os.path.exists(sdk):
for cv in _UNIVERSAL_CONFIG_VARS:
# Do not alter a config var explicitly overridden by env var
if cv in _config_vars and cv not in os.environ:
flags = _config_vars[cv]
flags = re.sub(r'-isysroot\s+\S+(?:\s|$)', ' ', flags)
_save_modified_value(_config_vars, cv, flags)
return _config_vars
def compiler_fixup(compiler_so, cc_args):
"""
This function will strip '-isysroot PATH' and '-arch ARCH' from the
compile flags if the user has specified one them in extra_compile_flags.
This is needed because '-arch ARCH' adds another architecture to the
build, without a way to remove an architecture. Furthermore GCC will
barf if multiple '-isysroot' arguments are present.
"""
stripArch = stripSysroot = False
compiler_so = list(compiler_so)
if not _supports_universal_builds():
# OSX before 10.4.0, these don't support -arch and -isysroot at
# all.
stripArch = stripSysroot = True
else:
stripArch = '-arch' in cc_args
stripSysroot = '-isysroot' in cc_args
if stripArch or 'ARCHFLAGS' in os.environ:
while True:
try:
index = compiler_so.index('-arch')
# Strip this argument and the next one:
del compiler_so[index:index+2]
except ValueError:
break
if 'ARCHFLAGS' in os.environ and not stripArch:
# User specified different -arch flags in the environ,
# see also distutils.sysconfig
compiler_so = compiler_so + os.environ['ARCHFLAGS'].split()
if stripSysroot:
while True:
try:
index = compiler_so.index('-isysroot')
# Strip this argument and the next one:
del compiler_so[index:index+2]
except ValueError:
break
# Check if the SDK that is used during compilation actually exists,
# the universal build requires the usage of a universal SDK and not all
# users have that installed by default.
sysroot = None
if '-isysroot' in cc_args:
idx = cc_args.index('-isysroot')
sysroot = cc_args[idx+1]
elif '-isysroot' in compiler_so:
idx = compiler_so.index('-isysroot')
sysroot = compiler_so[idx+1]
if sysroot and not os.path.isdir(sysroot):
from distutils import log
log.warn("Compiling with an SDK that doesn't seem to exist: %s",
sysroot)
log.warn("Please check your Xcode installation")
return compiler_so
def customize_config_vars(_config_vars):
"""Customize Python build configuration variables.
Called internally from sysconfig with a mutable mapping
containing name/value pairs parsed from the configured
makefile used to build this interpreter. Returns
the mapping updated as needed to reflect the environment
in which the interpreter is running; in the case of
a Python from a binary installer, the installed
environment may be very different from the build
environment, i.e. different OS levels, different
built tools, different available CPU architectures.
This customization is performed whenever
distutils.sysconfig.get_config_vars() is first
called. It may be used in environments where no
compilers are present, i.e. when installing pure
Python dists. Customization of compiler paths
and detection of unavailable archs is deferred
until the first extension module build is
requested (in distutils.sysconfig.customize_compiler).
Currently called from distutils.sysconfig
"""
if not _supports_universal_builds():
# On Mac OS X before 10.4, check if -arch and -isysroot
# are in CFLAGS or LDFLAGS and remove them if they are.
# This is needed when building extensions on a 10.3 system
# using a universal build of python.
_remove_universal_flags(_config_vars)
# Allow user to override all archs with ARCHFLAGS env var
_override_all_archs(_config_vars)
# Remove references to sdks that are not found
_check_for_unavailable_sdk(_config_vars)
return _config_vars
def customize_compiler(_config_vars):
"""Customize compiler path and configuration variables.
This customization is performed when the first
extension module build is requested
in distutils.sysconfig.customize_compiler).
"""
# Find a compiler to use for extension module builds
_find_appropriate_compiler(_config_vars)
# Remove ppc arch flags if not supported here
_remove_unsupported_archs(_config_vars)
# Allow user to override all archs with ARCHFLAGS env var
_override_all_archs(_config_vars)
return _config_vars
def get_platform_osx(_config_vars, osname, release, machine):
"""Filter values for get_platform()"""
# called from get_platform() in sysconfig and distutils.util
#
# For our purposes, we'll assume that the system version from
# distutils' perspective is what MACOSX_DEPLOYMENT_TARGET is set
# to. This makes the compatibility story a bit more sane because the
# machine is going to compile and link as if it were
# MACOSX_DEPLOYMENT_TARGET.
macver = _config_vars.get('MACOSX_DEPLOYMENT_TARGET', '')
macrelease = _get_system_version() or macver
macver = macver or macrelease
if macver:
release = macver
osname = "macosx"
# Use the original CFLAGS value, if available, so that we
# return the same machine type for the platform string.
# Otherwise, distutils may consider this a cross-compiling
# case and disallow installs.
cflags = _config_vars.get(_INITPRE+'CFLAGS',
_config_vars.get('CFLAGS', ''))
if macrelease:
try:
macrelease = tuple(int(i) for i in macrelease.split('.')[0:2])
except ValueError:
macrelease = (10, 0)
else:
# assume no universal support
macrelease = (10, 0)
if (macrelease >= (10, 4)) and '-arch' in cflags.strip():
# The universal build will build fat binaries, but not on
# systems before 10.4
machine = 'fat'
archs = re.findall(r'-arch\s+(\S+)', cflags)
archs = tuple(sorted(set(archs)))
if len(archs) == 1:
machine = archs[0]
elif archs == ('i386', 'ppc'):
machine = 'fat'
elif archs == ('i386', 'x86_64'):
machine = 'intel'
elif archs == ('i386', 'ppc', 'x86_64'):
machine = 'fat3'
elif archs == ('ppc64', 'x86_64'):
machine = 'fat64'
elif archs == ('i386', 'ppc', 'ppc64', 'x86_64'):
machine = 'universal'
else:
raise ValueError(
"Don't know machine value for archs=%r" % (archs,))
elif machine == 'i386':
# On OSX the machine type returned by uname is always the
# 32-bit variant, even if the executable architecture is
# the 64-bit variant
if sys.maxsize >= 2**32:
machine = 'x86_64'
elif machine in ('PowerPC', 'Power_Macintosh'):
# Pick a sane name for the PPC architecture.
# See 'i386' case
if sys.maxsize >= 2**32:
machine = 'ppc64'
else:
machine = 'ppc'
return (osname, release, machine)

6449
third_party/python/Lib/_pydecimal.py vendored Normal file

File diff suppressed because it is too large Load diff

2532
third_party/python/Lib/_pyio.py vendored Normal file

File diff suppressed because it is too large Load diff

103
third_party/python/Lib/_sitebuiltins.py vendored Normal file
View file

@ -0,0 +1,103 @@
"""
The objects used by the site module to add custom builtins.
"""
# Those objects are almost immortal and they keep a reference to their module
# globals. Defining them in the site module would keep too many references
# alive.
# Note this means this module should also avoid keep things alive in its
# globals.
import sys
class Quitter(object):
def __init__(self, name, eof):
self.name = name
self.eof = eof
def __repr__(self):
return 'Use %s() or %s to exit' % (self.name, self.eof)
def __call__(self, code=None):
# Shells like IDLE catch the SystemExit, but listen when their
# stdin wrapper is closed.
try:
sys.stdin.close()
except:
pass
raise SystemExit(code)
class _Printer(object):
"""interactive prompt objects for printing the license text, a list of
contributors and the copyright notice."""
MAXLINES = 23
def __init__(self, name, data, files=(), dirs=()):
import os
self.__name = name
self.__data = data
self.__lines = None
self.__filenames = [os.path.join(dir, filename)
for dir in dirs
for filename in files]
def __setup(self):
if self.__lines:
return
data = None
for filename in self.__filenames:
try:
with open(filename, "r") as fp:
data = fp.read()
break
except OSError:
pass
if not data:
data = self.__data
self.__lines = data.split('\n')
self.__linecnt = len(self.__lines)
def __repr__(self):
self.__setup()
if len(self.__lines) <= self.MAXLINES:
return "\n".join(self.__lines)
else:
return "Type %s() to see the full %s text" % ((self.__name,)*2)
def __call__(self):
self.__setup()
prompt = 'Hit Return for more, or q (and Return) to quit: '
lineno = 0
while 1:
try:
for i in range(lineno, lineno + self.MAXLINES):
print(self.__lines[i])
except IndexError:
break
else:
lineno += self.MAXLINES
key = None
while key is None:
key = input(prompt)
if key not in ('', 'q'):
key = None
if key == 'q':
break
class _Helper(object):
"""Define the builtin 'help'.
This is a wrapper around pydoc.help that provides a helpful message
when 'help' is typed at the Python interactive prompt.
Calling help() at the Python prompt starts an interactive help session.
Calling help(thing) prints help for the python object 'thing'.
"""
def __repr__(self):
return "Type help() for interactive help, " \
"or help(object) for help about object."
def __call__(self, *args, **kwds):
import pydoc
return pydoc.help(*args, **kwds)

576
third_party/python/Lib/_strptime.py vendored Normal file
View file

@ -0,0 +1,576 @@
"""Strptime-related classes and functions.
CLASSES:
LocaleTime -- Discovers and stores locale-specific time information
TimeRE -- Creates regexes for pattern matching a string of text containing
time information
FUNCTIONS:
_getlang -- Figure out what language is being used for the locale
strptime -- Calculates the time struct represented by the passed-in string
"""
import time
import locale
import calendar
from re import compile as re_compile
from re import IGNORECASE
from re import escape as re_escape
from datetime import (date as datetime_date,
timedelta as datetime_timedelta,
timezone as datetime_timezone)
try:
from _thread import allocate_lock as _thread_allocate_lock
except ImportError:
from _dummy_thread import allocate_lock as _thread_allocate_lock
__all__ = []
def _getlang():
# Figure out what the current language is set to.
return locale.getlocale(locale.LC_TIME)
class LocaleTime(object):
"""Stores and handles locale-specific information related to time.
ATTRIBUTES:
f_weekday -- full weekday names (7-item list)
a_weekday -- abbreviated weekday names (7-item list)
f_month -- full month names (13-item list; dummy value in [0], which
is added by code)
a_month -- abbreviated month names (13-item list, dummy value in
[0], which is added by code)
am_pm -- AM/PM representation (2-item list)
LC_date_time -- format string for date/time representation (string)
LC_date -- format string for date representation (string)
LC_time -- format string for time representation (string)
timezone -- daylight- and non-daylight-savings timezone representation
(2-item list of sets)
lang -- Language used by instance (2-item tuple)
"""
def __init__(self):
"""Set all attributes.
Order of methods called matters for dependency reasons.
The locale language is set at the offset and then checked again before
exiting. This is to make sure that the attributes were not set with a
mix of information from more than one locale. This would most likely
happen when using threads where one thread calls a locale-dependent
function while another thread changes the locale while the function in
the other thread is still running. Proper coding would call for
locks to prevent changing the locale while locale-dependent code is
running. The check here is done in case someone does not think about
doing this.
Only other possible issue is if someone changed the timezone and did
not call tz.tzset . That is an issue for the programmer, though,
since changing the timezone is worthless without that call.
"""
self.lang = _getlang()
self.__calc_weekday()
self.__calc_month()
self.__calc_am_pm()
self.__calc_timezone()
self.__calc_date_time()
if _getlang() != self.lang:
raise ValueError("locale changed during initialization")
if time.tzname != self.tzname or time.daylight != self.daylight:
raise ValueError("timezone changed during initialization")
def __pad(self, seq, front):
# Add '' to seq to either the front (is True), else the back.
seq = list(seq)
if front:
seq.insert(0, '')
else:
seq.append('')
return seq
def __calc_weekday(self):
# Set self.a_weekday and self.f_weekday using the calendar
# module.
a_weekday = [calendar.day_abbr[i].lower() for i in range(7)]
f_weekday = [calendar.day_name[i].lower() for i in range(7)]
self.a_weekday = a_weekday
self.f_weekday = f_weekday
def __calc_month(self):
# Set self.f_month and self.a_month using the calendar module.
a_month = [calendar.month_abbr[i].lower() for i in range(13)]
f_month = [calendar.month_name[i].lower() for i in range(13)]
self.a_month = a_month
self.f_month = f_month
def __calc_am_pm(self):
# Set self.am_pm by using time.strftime().
# The magic date (1999,3,17,hour,44,55,2,76,0) is not really that
# magical; just happened to have used it everywhere else where a
# static date was needed.
am_pm = []
for hour in (1, 22):
time_tuple = time.struct_time((1999,3,17,hour,44,55,2,76,0))
am_pm.append(time.strftime("%p", time_tuple).lower())
self.am_pm = am_pm
def __calc_date_time(self):
# Set self.date_time, self.date, & self.time by using
# time.strftime().
# Use (1999,3,17,22,44,55,2,76,0) for magic date because the amount of
# overloaded numbers is minimized. The order in which searches for
# values within the format string is very important; it eliminates
# possible ambiguity for what something represents.
time_tuple = time.struct_time((1999,3,17,22,44,55,2,76,0))
date_time = [None, None, None]
date_time[0] = time.strftime("%c", time_tuple).lower()
date_time[1] = time.strftime("%x", time_tuple).lower()
date_time[2] = time.strftime("%X", time_tuple).lower()
replacement_pairs = [('%', '%%'), (self.f_weekday[2], '%A'),
(self.f_month[3], '%B'), (self.a_weekday[2], '%a'),
(self.a_month[3], '%b'), (self.am_pm[1], '%p'),
('1999', '%Y'), ('99', '%y'), ('22', '%H'),
('44', '%M'), ('55', '%S'), ('76', '%j'),
('17', '%d'), ('03', '%m'), ('3', '%m'),
# '3' needed for when no leading zero.
('2', '%w'), ('10', '%I')]
replacement_pairs.extend([(tz, "%Z") for tz_values in self.timezone
for tz in tz_values])
for offset,directive in ((0,'%c'), (1,'%x'), (2,'%X')):
current_format = date_time[offset]
for old, new in replacement_pairs:
# Must deal with possible lack of locale info
# manifesting itself as the empty string (e.g., Swedish's
# lack of AM/PM info) or a platform returning a tuple of empty
# strings (e.g., MacOS 9 having timezone as ('','')).
if old:
current_format = current_format.replace(old, new)
# If %W is used, then Sunday, 2005-01-03 will fall on week 0 since
# 2005-01-03 occurs before the first Monday of the year. Otherwise
# %U is used.
time_tuple = time.struct_time((1999,1,3,1,1,1,6,3,0))
if '00' in time.strftime(directive, time_tuple):
U_W = '%W'
else:
U_W = '%U'
date_time[offset] = current_format.replace('11', U_W)
self.LC_date_time = date_time[0]
self.LC_date = date_time[1]
self.LC_time = date_time[2]
def __calc_timezone(self):
# Set self.timezone by using time.tzname.
# Do not worry about possibility of time.tzname[0] == time.tzname[1]
# and time.daylight; handle that in strptime.
try:
time.tzset()
except AttributeError:
pass
self.tzname = time.tzname
self.daylight = time.daylight
no_saving = frozenset({"utc", "gmt", self.tzname[0].lower()})
if self.daylight:
has_saving = frozenset({self.tzname[1].lower()})
else:
has_saving = frozenset()
self.timezone = (no_saving, has_saving)
class TimeRE(dict):
"""Handle conversion from format directives to regexes."""
def __init__(self, locale_time=None):
"""Create keys/values.
Order of execution is important for dependency reasons.
"""
if locale_time:
self.locale_time = locale_time
else:
self.locale_time = LocaleTime()
base = super()
base.__init__({
# The " \d" part of the regex is to make %c from ANSI C work
'd': r"(?P<d>3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])",
'f': r"(?P<f>[0-9]{1,6})",
'H': r"(?P<H>2[0-3]|[0-1]\d|\d)",
'I': r"(?P<I>1[0-2]|0[1-9]|[1-9])",
'G': r"(?P<G>\d\d\d\d)",
'j': r"(?P<j>36[0-6]|3[0-5]\d|[1-2]\d\d|0[1-9]\d|00[1-9]|[1-9]\d|0[1-9]|[1-9])",
'm': r"(?P<m>1[0-2]|0[1-9]|[1-9])",
'M': r"(?P<M>[0-5]\d|\d)",
'S': r"(?P<S>6[0-1]|[0-5]\d|\d)",
'U': r"(?P<U>5[0-3]|[0-4]\d|\d)",
'w': r"(?P<w>[0-6])",
'u': r"(?P<u>[1-7])",
'V': r"(?P<V>5[0-3]|0[1-9]|[1-4]\d|\d)",
# W is set below by using 'U'
'y': r"(?P<y>\d\d)",
#XXX: Does 'Y' need to worry about having less or more than
# 4 digits?
'Y': r"(?P<Y>\d\d\d\d)",
'z': r"(?P<z>[+-]\d\d[0-5]\d)",
'A': self.__seqToRE(self.locale_time.f_weekday, 'A'),
'a': self.__seqToRE(self.locale_time.a_weekday, 'a'),
'B': self.__seqToRE(self.locale_time.f_month[1:], 'B'),
'b': self.__seqToRE(self.locale_time.a_month[1:], 'b'),
'p': self.__seqToRE(self.locale_time.am_pm, 'p'),
'Z': self.__seqToRE((tz for tz_names in self.locale_time.timezone
for tz in tz_names),
'Z'),
'%': '%'})
base.__setitem__('W', base.__getitem__('U').replace('U', 'W'))
base.__setitem__('c', self.pattern(self.locale_time.LC_date_time))
base.__setitem__('x', self.pattern(self.locale_time.LC_date))
base.__setitem__('X', self.pattern(self.locale_time.LC_time))
def __seqToRE(self, to_convert, directive):
"""Convert a list to a regex string for matching a directive.
Want possible matching values to be from longest to shortest. This
prevents the possibility of a match occurring for a value that also
a substring of a larger value that should have matched (e.g., 'abc'
matching when 'abcdef' should have been the match).
"""
to_convert = sorted(to_convert, key=len, reverse=True)
for value in to_convert:
if value != '':
break
else:
return ''
regex = '|'.join(re_escape(stuff) for stuff in to_convert)
regex = '(?P<%s>%s' % (directive, regex)
return '%s)' % regex
def pattern(self, format):
"""Return regex pattern for the format string.
Need to make sure that any characters that might be interpreted as
regex syntax are escaped.
"""
processed_format = ''
# The sub() call escapes all characters that might be misconstrued
# as regex syntax. Cannot use re.escape since we have to deal with
# format directives (%m, etc.).
regex_chars = re_compile(r"([\\.^$*+?\(\){}\[\]|])")
format = regex_chars.sub(r"\\\1", format)
whitespace_replacement = re_compile(r'\s+')
format = whitespace_replacement.sub(r'\\s+', format)
while '%' in format:
directive_index = format.index('%')+1
processed_format = "%s%s%s" % (processed_format,
format[:directive_index-1],
self[format[directive_index]])
format = format[directive_index+1:]
return "%s%s" % (processed_format, format)
def compile(self, format):
"""Return a compiled re object for the format string."""
return re_compile(self.pattern(format), IGNORECASE)
_cache_lock = _thread_allocate_lock()
# DO NOT modify _TimeRE_cache or _regex_cache without acquiring the cache lock
# first!
_TimeRE_cache = TimeRE()
_CACHE_MAX_SIZE = 5 # Max number of regexes stored in _regex_cache
_regex_cache = {}
def _calc_julian_from_U_or_W(year, week_of_year, day_of_week, week_starts_Mon):
"""Calculate the Julian day based on the year, week of the year, and day of
the week, with week_start_day representing whether the week of the year
assumes the week starts on Sunday or Monday (6 or 0)."""
first_weekday = datetime_date(year, 1, 1).weekday()
# If we are dealing with the %U directive (week starts on Sunday), it's
# easier to just shift the view to Sunday being the first day of the
# week.
if not week_starts_Mon:
first_weekday = (first_weekday + 1) % 7
day_of_week = (day_of_week + 1) % 7
# Need to watch out for a week 0 (when the first day of the year is not
# the same as that specified by %U or %W).
week_0_length = (7 - first_weekday) % 7
if week_of_year == 0:
return 1 + day_of_week - first_weekday
else:
days_to_week = week_0_length + (7 * (week_of_year - 1))
return 1 + days_to_week + day_of_week
def _calc_julian_from_V(iso_year, iso_week, iso_weekday):
"""Calculate the Julian day based on the ISO 8601 year, week, and weekday.
ISO weeks start on Mondays, with week 01 being the week containing 4 Jan.
ISO week days range from 1 (Monday) to 7 (Sunday).
"""
correction = datetime_date(iso_year, 1, 4).isoweekday() + 3
ordinal = (iso_week * 7) + iso_weekday - correction
# ordinal may be negative or 0 now, which means the date is in the previous
# calendar year
if ordinal < 1:
ordinal += datetime_date(iso_year, 1, 1).toordinal()
iso_year -= 1
ordinal -= datetime_date(iso_year, 1, 1).toordinal()
return iso_year, ordinal
def _strptime(data_string, format="%a %b %d %H:%M:%S %Y"):
"""Return a 2-tuple consisting of a time struct and an int containing
the number of microseconds based on the input string and the
format string."""
for index, arg in enumerate([data_string, format]):
if not isinstance(arg, str):
msg = "strptime() argument {} must be str, not {}"
raise TypeError(msg.format(index, type(arg)))
global _TimeRE_cache, _regex_cache
with _cache_lock:
locale_time = _TimeRE_cache.locale_time
if (_getlang() != locale_time.lang or
time.tzname != locale_time.tzname or
time.daylight != locale_time.daylight):
_TimeRE_cache = TimeRE()
_regex_cache.clear()
locale_time = _TimeRE_cache.locale_time
if len(_regex_cache) > _CACHE_MAX_SIZE:
_regex_cache.clear()
format_regex = _regex_cache.get(format)
if not format_regex:
try:
format_regex = _TimeRE_cache.compile(format)
# KeyError raised when a bad format is found; can be specified as
# \\, in which case it was a stray % but with a space after it
except KeyError as err:
bad_directive = err.args[0]
if bad_directive == "\\":
bad_directive = "%"
del err
raise ValueError("'%s' is a bad directive in format '%s'" %
(bad_directive, format)) from None
# IndexError only occurs when the format string is "%"
except IndexError:
raise ValueError("stray %% in format '%s'" % format) from None
_regex_cache[format] = format_regex
found = format_regex.match(data_string)
if not found:
raise ValueError("time data %r does not match format %r" %
(data_string, format))
if len(data_string) != found.end():
raise ValueError("unconverted data remains: %s" %
data_string[found.end():])
iso_year = year = None
month = day = 1
hour = minute = second = fraction = 0
tz = -1
tzoffset = None
# Default to -1 to signify that values not known; not critical to have,
# though
iso_week = week_of_year = None
week_of_year_start = None
# weekday and julian defaulted to None so as to signal need to calculate
# values
weekday = julian = None
found_dict = found.groupdict()
for group_key in found_dict.keys():
# Directives not explicitly handled below:
# c, x, X
# handled by making out of other directives
# U, W
# worthless without day of the week
if group_key == 'y':
year = int(found_dict['y'])
# Open Group specification for strptime() states that a %y
#value in the range of [00, 68] is in the century 2000, while
#[69,99] is in the century 1900
if year <= 68:
year += 2000
else:
year += 1900
elif group_key == 'Y':
year = int(found_dict['Y'])
elif group_key == 'G':
iso_year = int(found_dict['G'])
elif group_key == 'm':
month = int(found_dict['m'])
elif group_key == 'B':
month = locale_time.f_month.index(found_dict['B'].lower())
elif group_key == 'b':
month = locale_time.a_month.index(found_dict['b'].lower())
elif group_key == 'd':
day = int(found_dict['d'])
elif group_key == 'H':
hour = int(found_dict['H'])
elif group_key == 'I':
hour = int(found_dict['I'])
ampm = found_dict.get('p', '').lower()
# If there was no AM/PM indicator, we'll treat this like AM
if ampm in ('', locale_time.am_pm[0]):
# We're in AM so the hour is correct unless we're
# looking at 12 midnight.
# 12 midnight == 12 AM == hour 0
if hour == 12:
hour = 0
elif ampm == locale_time.am_pm[1]:
# We're in PM so we need to add 12 to the hour unless
# we're looking at 12 noon.
# 12 noon == 12 PM == hour 12
if hour != 12:
hour += 12
elif group_key == 'M':
minute = int(found_dict['M'])
elif group_key == 'S':
second = int(found_dict['S'])
elif group_key == 'f':
s = found_dict['f']
# Pad to always return microseconds.
s += "0" * (6 - len(s))
fraction = int(s)
elif group_key == 'A':
weekday = locale_time.f_weekday.index(found_dict['A'].lower())
elif group_key == 'a':
weekday = locale_time.a_weekday.index(found_dict['a'].lower())
elif group_key == 'w':
weekday = int(found_dict['w'])
if weekday == 0:
weekday = 6
else:
weekday -= 1
elif group_key == 'u':
weekday = int(found_dict['u'])
weekday -= 1
elif group_key == 'j':
julian = int(found_dict['j'])
elif group_key in ('U', 'W'):
week_of_year = int(found_dict[group_key])
if group_key == 'U':
# U starts week on Sunday.
week_of_year_start = 6
else:
# W starts week on Monday.
week_of_year_start = 0
elif group_key == 'V':
iso_week = int(found_dict['V'])
elif group_key == 'z':
z = found_dict['z']
tzoffset = int(z[1:3]) * 60 + int(z[3:5])
if z.startswith("-"):
tzoffset = -tzoffset
elif group_key == 'Z':
# Since -1 is default value only need to worry about setting tz if
# it can be something other than -1.
found_zone = found_dict['Z'].lower()
for value, tz_values in enumerate(locale_time.timezone):
if found_zone in tz_values:
# Deal with bad locale setup where timezone names are the
# same and yet time.daylight is true; too ambiguous to
# be able to tell what timezone has daylight savings
if (time.tzname[0] == time.tzname[1] and
time.daylight and found_zone not in ("utc", "gmt")):
break
else:
tz = value
break
# Deal with the cases where ambiguities arize
# don't assume default values for ISO week/year
if year is None and iso_year is not None:
if iso_week is None or weekday is None:
raise ValueError("ISO year directive '%G' must be used with "
"the ISO week directive '%V' and a weekday "
"directive ('%A', '%a', '%w', or '%u').")
if julian is not None:
raise ValueError("Day of the year directive '%j' is not "
"compatible with ISO year directive '%G'. "
"Use '%Y' instead.")
elif week_of_year is None and iso_week is not None:
if weekday is None:
raise ValueError("ISO week directive '%V' must be used with "
"the ISO year directive '%G' and a weekday "
"directive ('%A', '%a', '%w', or '%u').")
else:
raise ValueError("ISO week directive '%V' is incompatible with "
"the year directive '%Y'. Use the ISO year '%G' "
"instead.")
leap_year_fix = False
if year is None and month == 2 and day == 29:
year = 1904 # 1904 is first leap year of 20th century
leap_year_fix = True
elif year is None:
year = 1900
# If we know the week of the year and what day of that week, we can figure
# out the Julian day of the year.
if julian is None and weekday is not None:
if week_of_year is not None:
week_starts_Mon = True if week_of_year_start == 0 else False
julian = _calc_julian_from_U_or_W(year, week_of_year, weekday,
week_starts_Mon)
elif iso_year is not None and iso_week is not None:
year, julian = _calc_julian_from_V(iso_year, iso_week, weekday + 1)
if julian is not None and julian <= 0:
year -= 1
yday = 366 if calendar.isleap(year) else 365
julian += yday
if julian is None:
# Cannot pre-calculate datetime_date() since can change in Julian
# calculation and thus could have different value for the day of
# the week calculation.
# Need to add 1 to result since first day of the year is 1, not 0.
julian = datetime_date(year, month, day).toordinal() - \
datetime_date(year, 1, 1).toordinal() + 1
else: # Assume that if they bothered to include Julian day (or if it was
# calculated above with year/week/weekday) it will be accurate.
datetime_result = datetime_date.fromordinal(
(julian - 1) +
datetime_date(year, 1, 1).toordinal())
year = datetime_result.year
month = datetime_result.month
day = datetime_result.day
if weekday is None:
weekday = datetime_date(year, month, day).weekday()
# Add timezone info
tzname = found_dict.get("Z")
if tzoffset is not None:
gmtoff = tzoffset * 60
else:
gmtoff = None
if leap_year_fix:
# the caller didn't supply a year but asked for Feb 29th. We couldn't
# use the default of 1900 for computations. We set it back to ensure
# that February 29th is smaller than March 1st.
year = 1900
return (year, month, day,
hour, minute, second,
weekday, julian, tz, tzname, gmtoff), fraction
def _strptime_time(data_string, format="%a %b %d %H:%M:%S %Y"):
"""Return a time struct based on the input string and the
format string."""
tt = _strptime(data_string, format)[0]
return time.struct_time(tt[:time._STRUCT_TM_ITEMS])
def _strptime_datetime(cls, data_string, format="%a %b %d %H:%M:%S %Y"):
"""Return a class cls instance based on the input string and the
format string."""
tt, fraction = _strptime(data_string, format)
tzname, gmtoff = tt[-2:]
args = tt[:6] + (fraction,)
if gmtoff is not None:
tzdelta = datetime_timedelta(seconds=gmtoff)
if tzname:
tz = datetime_timezone(tzdelta, tzname)
else:
tz = datetime_timezone(tzdelta)
args += (tz,)
return cls(*args)

View file

@ -0,0 +1,242 @@
"""Thread-local objects.
(Note that this module provides a Python version of the threading.local
class. Depending on the version of Python you're using, there may be a
faster one available. You should always import the `local` class from
`threading`.)
Thread-local objects support the management of thread-local data.
If you have data that you want to be local to a thread, simply create
a thread-local object and use its attributes:
>>> mydata = local()
>>> mydata.number = 42
>>> mydata.number
42
You can also access the local-object's dictionary:
>>> mydata.__dict__
{'number': 42}
>>> mydata.__dict__.setdefault('widgets', [])
[]
>>> mydata.widgets
[]
What's important about thread-local objects is that their data are
local to a thread. If we access the data in a different thread:
>>> log = []
>>> def f():
... items = sorted(mydata.__dict__.items())
... log.append(items)
... mydata.number = 11
... log.append(mydata.number)
>>> import threading
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[], 11]
we get different data. Furthermore, changes made in the other thread
don't affect data seen in this thread:
>>> mydata.number
42
Of course, values you get from a local object, including a __dict__
attribute, are for whatever thread was current at the time the
attribute was read. For that reason, you generally don't want to save
these values across threads, as they apply only to the thread they
came from.
You can create custom local objects by subclassing the local class:
>>> class MyLocal(local):
... number = 2
... def __init__(self, **kw):
... self.__dict__.update(kw)
... def squared(self):
... return self.number ** 2
This can be useful to support default values, methods and
initialization. Note that if you define an __init__ method, it will be
called each time the local object is used in a separate thread. This
is necessary to initialize each thread's dictionary.
Now if we create a local object:
>>> mydata = MyLocal(color='red')
Now we have a default number:
>>> mydata.number
2
an initial color:
>>> mydata.color
'red'
>>> del mydata.color
And a method that operates on the data:
>>> mydata.squared()
4
As before, we can access the data in a separate thread:
>>> log = []
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[('color', 'red')], 11]
without affecting this thread's data:
>>> mydata.number
2
>>> mydata.color
Traceback (most recent call last):
...
AttributeError: 'MyLocal' object has no attribute 'color'
Note that subclasses can define slots, but they are not thread
local. They are shared across threads:
>>> class MyLocal(local):
... __slots__ = 'number'
>>> mydata = MyLocal()
>>> mydata.number = 42
>>> mydata.color = 'red'
So, the separate thread:
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
affects what we see:
>>> mydata.number
11
>>> del mydata
"""
from weakref import ref
from contextlib import contextmanager
__all__ = ["local"]
# We need to use objects from the threading module, but the threading
# module may also want to use our `local` class, if support for locals
# isn't compiled in to the `thread` module. This creates potential problems
# with circular imports. For that reason, we don't import `threading`
# until the bottom of this file (a hack sufficient to worm around the
# potential problems). Note that all platforms on CPython do have support
# for locals in the `thread` module, and there is no circular import problem
# then, so problems introduced by fiddling the order of imports here won't
# manifest.
class _localimpl:
"""A class managing thread-local dicts"""
__slots__ = 'key', 'dicts', 'localargs', 'locallock', '__weakref__'
def __init__(self):
# The key used in the Thread objects' attribute dicts.
# We keep it a string for speed but make it unlikely to clash with
# a "real" attribute.
self.key = '_threading_local._localimpl.' + str(id(self))
# { id(Thread) -> (ref(Thread), thread-local dict) }
self.dicts = {}
def get_dict(self):
"""Return the dict for the current thread. Raises KeyError if none
defined."""
thread = current_thread()
return self.dicts[id(thread)][1]
def create_dict(self):
"""Create a new dict for the current thread, and return it."""
localdict = {}
key = self.key
thread = current_thread()
idt = id(thread)
def local_deleted(_, key=key):
# When the localimpl is deleted, remove the thread attribute.
thread = wrthread()
if thread is not None:
del thread.__dict__[key]
def thread_deleted(_, idt=idt):
# When the thread is deleted, remove the local dict.
# Note that this is suboptimal if the thread object gets
# caught in a reference loop. We would like to be called
# as soon as the OS-level thread ends instead.
local = wrlocal()
if local is not None:
dct = local.dicts.pop(idt)
wrlocal = ref(self, local_deleted)
wrthread = ref(thread, thread_deleted)
thread.__dict__[key] = wrlocal
self.dicts[idt] = wrthread, localdict
return localdict
@contextmanager
def _patch(self):
impl = object.__getattribute__(self, '_local__impl')
try:
dct = impl.get_dict()
except KeyError:
dct = impl.create_dict()
args, kw = impl.localargs
self.__init__(*args, **kw)
with impl.locallock:
object.__setattr__(self, '__dict__', dct)
yield
class local:
__slots__ = '_local__impl', '__dict__'
def __new__(cls, *args, **kw):
if (args or kw) and (cls.__init__ is object.__init__):
raise TypeError("Initialization arguments are not supported")
self = object.__new__(cls)
impl = _localimpl()
impl.localargs = (args, kw)
impl.locallock = RLock()
object.__setattr__(self, '_local__impl', impl)
# We need to create the thread dict in anticipation of
# __init__ being called, to make sure we don't call it
# again ourselves.
impl.create_dict()
return self
def __getattribute__(self, name):
with _patch(self):
return object.__getattribute__(self, name)
def __setattr__(self, name, value):
if name == '__dict__':
raise AttributeError(
"%r object attribute '__dict__' is read-only"
% self.__class__.__name__)
with _patch(self):
return object.__setattr__(self, name, value)
def __delattr__(self, name):
if name == '__dict__':
raise AttributeError(
"%r object attribute '__dict__' is read-only"
% self.__class__.__name__)
with _patch(self):
return object.__delattr__(self, name)
from threading import current_thread, RLock

196
third_party/python/Lib/_weakrefset.py vendored Normal file
View file

@ -0,0 +1,196 @@
# Access WeakSet through the weakref module.
# This code is separated-out because it is needed
# by abc.py to load everything else at startup.
from _weakref import ref
__all__ = ['WeakSet']
class _IterationGuard:
# This context manager registers itself in the current iterators of the
# weak container, such as to delay all removals until the context manager
# exits.
# This technique should be relatively thread-safe (since sets are).
def __init__(self, weakcontainer):
# Don't create cycles
self.weakcontainer = ref(weakcontainer)
def __enter__(self):
w = self.weakcontainer()
if w is not None:
w._iterating.add(self)
return self
def __exit__(self, e, t, b):
w = self.weakcontainer()
if w is not None:
s = w._iterating
s.remove(self)
if not s:
w._commit_removals()
class WeakSet:
def __init__(self, data=None):
self.data = set()
def _remove(item, selfref=ref(self)):
self = selfref()
if self is not None:
if self._iterating:
self._pending_removals.append(item)
else:
self.data.discard(item)
self._remove = _remove
# A list of keys to be removed
self._pending_removals = []
self._iterating = set()
if data is not None:
self.update(data)
def _commit_removals(self):
l = self._pending_removals
discard = self.data.discard
while l:
discard(l.pop())
def __iter__(self):
with _IterationGuard(self):
for itemref in self.data:
item = itemref()
if item is not None:
# Caveat: the iterator will keep a strong reference to
# `item` until it is resumed or closed.
yield item
def __len__(self):
return len(self.data) - len(self._pending_removals)
def __contains__(self, item):
try:
wr = ref(item)
except TypeError:
return False
return wr in self.data
def __reduce__(self):
return (self.__class__, (list(self),),
getattr(self, '__dict__', None))
def add(self, item):
if self._pending_removals:
self._commit_removals()
self.data.add(ref(item, self._remove))
def clear(self):
if self._pending_removals:
self._commit_removals()
self.data.clear()
def copy(self):
return self.__class__(self)
def pop(self):
if self._pending_removals:
self._commit_removals()
while True:
try:
itemref = self.data.pop()
except KeyError:
raise KeyError('pop from empty WeakSet')
item = itemref()
if item is not None:
return item
def remove(self, item):
if self._pending_removals:
self._commit_removals()
self.data.remove(ref(item))
def discard(self, item):
if self._pending_removals:
self._commit_removals()
self.data.discard(ref(item))
def update(self, other):
if self._pending_removals:
self._commit_removals()
for element in other:
self.add(element)
def __ior__(self, other):
self.update(other)
return self
def difference(self, other):
newset = self.copy()
newset.difference_update(other)
return newset
__sub__ = difference
def difference_update(self, other):
self.__isub__(other)
def __isub__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.difference_update(ref(item) for item in other)
return self
def intersection(self, other):
return self.__class__(item for item in other if item in self)
__and__ = intersection
def intersection_update(self, other):
self.__iand__(other)
def __iand__(self, other):
if self._pending_removals:
self._commit_removals()
self.data.intersection_update(ref(item) for item in other)
return self
def issubset(self, other):
return self.data.issubset(ref(item) for item in other)
__le__ = issubset
def __lt__(self, other):
return self.data < set(ref(item) for item in other)
def issuperset(self, other):
return self.data.issuperset(ref(item) for item in other)
__ge__ = issuperset
def __gt__(self, other):
return self.data > set(ref(item) for item in other)
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.data == set(ref(item) for item in other)
def symmetric_difference(self, other):
newset = self.copy()
newset.symmetric_difference_update(other)
return newset
__xor__ = symmetric_difference
def symmetric_difference_update(self, other):
self.__ixor__(other)
def __ixor__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.symmetric_difference_update(ref(item, self._remove) for item in other)
return self
def union(self, other):
return self.__class__(e for s in (self, other) for e in s)
__or__ = union
def isdisjoint(self, other):
return len(self.intersection(other)) == 0

250
third_party/python/Lib/abc.py vendored Normal file
View file

@ -0,0 +1,250 @@
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Abstract Base Classes (ABCs) according to PEP 3119."""
from _weakrefset import WeakSet
def abstractmethod(funcobj):
"""A decorator indicating abstract methods.
Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract methods are overridden.
The abstract methods can be called using any of the normal
'super' call mechanisms.
Usage:
class C(metaclass=ABCMeta):
@abstractmethod
def my_abstract_method(self, ...):
...
"""
funcobj.__isabstractmethod__ = True
return funcobj
class abstractclassmethod(classmethod):
"""
A decorator indicating abstract classmethods.
Similar to abstractmethod.
Usage:
class C(metaclass=ABCMeta):
@abstractclassmethod
def my_abstract_classmethod(cls, ...):
...
'abstractclassmethod' is deprecated. Use 'classmethod' with
'abstractmethod' instead.
"""
__isabstractmethod__ = True
def __init__(self, callable):
callable.__isabstractmethod__ = True
super().__init__(callable)
class abstractstaticmethod(staticmethod):
"""
A decorator indicating abstract staticmethods.
Similar to abstractmethod.
Usage:
class C(metaclass=ABCMeta):
@abstractstaticmethod
def my_abstract_staticmethod(...):
...
'abstractstaticmethod' is deprecated. Use 'staticmethod' with
'abstractmethod' instead.
"""
__isabstractmethod__ = True
def __init__(self, callable):
callable.__isabstractmethod__ = True
super().__init__(callable)
class abstractproperty(property):
"""
A decorator indicating abstract properties.
Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract properties are overridden.
The abstract properties can be called using any of the normal
'super' call mechanisms.
Usage:
class C(metaclass=ABCMeta):
@abstractproperty
def my_abstract_property(self):
...
This defines a read-only property; you can also define a read-write
abstract property using the 'long' form of property declaration:
class C(metaclass=ABCMeta):
def getx(self): ...
def setx(self, value): ...
x = abstractproperty(getx, setx)
'abstractproperty' is deprecated. Use 'property' with 'abstractmethod'
instead.
"""
__isabstractmethod__ = True
class ABCMeta(type):
"""Metaclass for defining Abstract Base Classes (ABCs).
Use this metaclass to create an ABC. An ABC can be subclassed
directly, and then acts as a mix-in class. You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).
"""
# A global counter that is incremented each time a class is
# registered as a virtual subclass of anything. It forces the
# negative cache to be cleared before its next use.
# Note: this counter is private. Use `abc.get_cache_token()` for
# external code.
_abc_invalidation_counter = 0
def __new__(mcls, name, bases, namespace, **kwargs):
cls = super().__new__(mcls, name, bases, namespace, **kwargs)
# Compute set of abstract method names
abstracts = {name
for name, value in namespace.items()
if getattr(value, "__isabstractmethod__", False)}
for base in bases:
for name in getattr(base, "__abstractmethods__", set()):
value = getattr(cls, name, None)
if getattr(value, "__isabstractmethod__", False):
abstracts.add(name)
cls.__abstractmethods__ = frozenset(abstracts)
# Set up inheritance registry
cls._abc_registry = WeakSet()
cls._abc_cache = WeakSet()
cls._abc_negative_cache = WeakSet()
cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
return cls
def register(cls, subclass):
"""Register a virtual subclass of an ABC.
Returns the subclass, to allow usage as a class decorator.
"""
if not isinstance(subclass, type):
raise TypeError("Can only register classes")
if issubclass(subclass, cls):
return subclass # Already a subclass
# Subtle: test for cycles *after* testing for "already a subclass";
# this means we allow X.register(X) and interpret it as a no-op.
if issubclass(cls, subclass):
# This would create a cycle, which is bad for the algorithm below
raise RuntimeError("Refusing to create an inheritance cycle")
cls._abc_registry.add(subclass)
ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache
return subclass
def _dump_registry(cls, file=None):
"""Debug helper to print the ABC registry."""
print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file)
print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file)
for name in sorted(cls.__dict__):
if name.startswith("_abc_"):
value = getattr(cls, name)
if isinstance(value, WeakSet):
value = set(value)
print("%s: %r" % (name, value), file=file)
def __instancecheck__(cls, instance):
"""Override for isinstance(instance, cls)."""
# Inline the cache checking
subclass = instance.__class__
if subclass in cls._abc_cache:
return True
subtype = type(instance)
if subtype is subclass:
if (cls._abc_negative_cache_version ==
ABCMeta._abc_invalidation_counter and
subclass in cls._abc_negative_cache):
return False
# Fall back to the subclass check.
return cls.__subclasscheck__(subclass)
return any(cls.__subclasscheck__(c) for c in {subclass, subtype})
def __subclasscheck__(cls, subclass):
"""Override for issubclass(subclass, cls)."""
# Check cache
if subclass in cls._abc_cache:
return True
# Check negative cache; may have to invalidate
if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
# Invalidate the negative cache
cls._abc_negative_cache = WeakSet()
cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
elif subclass in cls._abc_negative_cache:
return False
# Check the subclass hook
ok = cls.__subclasshook__(subclass)
if ok is not NotImplemented:
assert isinstance(ok, bool)
if ok:
cls._abc_cache.add(subclass)
else:
cls._abc_negative_cache.add(subclass)
return ok
# Check if it's a direct subclass
if cls in getattr(subclass, '__mro__', ()):
cls._abc_cache.add(subclass)
return True
# Check if it's a subclass of a registered class (recursive)
for rcls in cls._abc_registry:
if issubclass(subclass, rcls):
cls._abc_cache.add(subclass)
return True
# Check if it's a subclass of a subclass (recursive)
for scls in cls.__subclasses__():
if issubclass(subclass, scls):
cls._abc_cache.add(subclass)
return True
# No dice; update negative cache
cls._abc_negative_cache.add(subclass)
return False
class ABC(metaclass=ABCMeta):
"""Helper class that provides a standard way to create an ABC using
inheritance.
"""
pass
def get_cache_token():
"""Returns the current ABC cache token.
The token is an opaque object (supporting equality testing) identifying the
current version of the ABC cache for virtual subclasses. The token changes
with every call to ``register()`` on any ABC.
"""
return ABCMeta._abc_invalidation_counter

944
third_party/python/Lib/aifc.py vendored Normal file
View file

@ -0,0 +1,944 @@
"""Stuff to parse AIFF-C and AIFF files.
Unless explicitly stated otherwise, the description below is true
both for AIFF-C files and AIFF files.
An AIFF-C file has the following structure.
+-----------------+
| FORM |
+-----------------+
| <size> |
+----+------------+
| | AIFC |
| +------------+
| | <chunks> |
| | . |
| | . |
| | . |
+----+------------+
An AIFF file has the string "AIFF" instead of "AIFC".
A chunk consists of an identifier (4 bytes) followed by a size (4 bytes,
big endian order), followed by the data. The size field does not include
the size of the 8 byte header.
The following chunk types are recognized.
FVER
<version number of AIFF-C defining document> (AIFF-C only).
MARK
<# of markers> (2 bytes)
list of markers:
<marker ID> (2 bytes, must be > 0)
<position> (4 bytes)
<marker name> ("pstring")
COMM
<# of channels> (2 bytes)
<# of sound frames> (4 bytes)
<size of the samples> (2 bytes)
<sampling frequency> (10 bytes, IEEE 80-bit extended
floating point)
in AIFF-C files only:
<compression type> (4 bytes)
<human-readable version of compression type> ("pstring")
SSND
<offset> (4 bytes, not used by this program)
<blocksize> (4 bytes, not used by this program)
<sound data>
A pstring consists of 1 byte length, a string of characters, and 0 or 1
byte pad to make the total length even.
Usage.
Reading AIFF files:
f = aifc.open(file, 'r')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods read(), seek(), and close().
In some types of audio files, if the setpos() method is not used,
the seek() method is not necessary.
This returns an instance of a class with the following public methods:
getnchannels() -- returns number of audio channels (1 for
mono, 2 for stereo)
getsampwidth() -- returns sample width in bytes
getframerate() -- returns sampling frequency
getnframes() -- returns number of audio frames
getcomptype() -- returns compression type ('NONE' for AIFF files)
getcompname() -- returns human-readable version of
compression type ('not compressed' for AIFF files)
getparams() -- returns a namedtuple consisting of all of the
above in the above order
getmarkers() -- get the list of marks in the audio file or None
if there are no marks
getmark(id) -- get mark with the specified id (raises an error
if the mark does not exist)
readframes(n) -- returns at most n frames of audio
rewind() -- rewind to the beginning of the audio stream
setpos(pos) -- seek to the specified position
tell() -- return the current position
close() -- close the instance (make it unusable)
The position returned by tell(), the position given to setpos() and
the position of marks are all compatible and have nothing to do with
the actual position in the file.
The close() method is called automatically when the class instance
is destroyed.
Writing AIFF files:
f = aifc.open(file, 'w')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods write(), tell(), seek(), and
close().
This returns an instance of a class with the following public methods:
aiff() -- create an AIFF file (AIFF-C default)
aifc() -- create an AIFF-C file
setnchannels(n) -- set the number of channels
setsampwidth(n) -- set the sample width
setframerate(n) -- set the frame rate
setnframes(n) -- set the number of frames
setcomptype(type, name)
-- set the compression type and the
human-readable compression type
setparams(tuple)
-- set all parameters at once
setmark(id, pos, name)
-- add specified mark to the list of marks
tell() -- return current position in output file (useful
in combination with setmark())
writeframesraw(data)
-- write audio frames without pathing up the
file header
writeframes(data)
-- write audio frames and patch up the file header
close() -- patch up the file header and close the
output file
You should set the parameters before the first writeframesraw or
writeframes. The total number of frames does not need to be set,
but when it is set to the correct value, the header does not have to
be patched up.
It is best to first set all parameters, perhaps possibly the
compression type, and then write audio frames using writeframesraw.
When all frames have been written, either call writeframes(b'') or
close() to patch up the sizes in the header.
Marks can be added anytime. If there are any marks, you must call
close() after all frames have been written.
The close() method is called automatically when the class instance
is destroyed.
When a file is opened with the extension '.aiff', an AIFF file is
written, otherwise an AIFF-C file is written. This default can be
changed by calling aiff() or aifc() before the first writeframes or
writeframesraw.
"""
import struct
import builtins
import warnings
__all__ = ["Error", "open", "openfp"]
class Error(Exception):
pass
_AIFC_version = 0xA2805140 # Version 1 of AIFF-C
def _read_long(file):
try:
return struct.unpack('>l', file.read(4))[0]
except struct.error:
raise EOFError
def _read_ulong(file):
try:
return struct.unpack('>L', file.read(4))[0]
except struct.error:
raise EOFError
def _read_short(file):
try:
return struct.unpack('>h', file.read(2))[0]
except struct.error:
raise EOFError
def _read_ushort(file):
try:
return struct.unpack('>H', file.read(2))[0]
except struct.error:
raise EOFError
def _read_string(file):
length = ord(file.read(1))
if length == 0:
data = b''
else:
data = file.read(length)
if length & 1 == 0:
dummy = file.read(1)
return data
_HUGE_VAL = 1.79769313486231e+308 # See <limits.h>
def _read_float(f): # 10 bytes
expon = _read_short(f) # 2 bytes
sign = 1
if expon < 0:
sign = -1
expon = expon + 0x8000
himant = _read_ulong(f) # 4 bytes
lomant = _read_ulong(f) # 4 bytes
if expon == himant == lomant == 0:
f = 0.0
elif expon == 0x7FFF:
f = _HUGE_VAL
else:
expon = expon - 16383
f = (himant * 0x100000000 + lomant) * pow(2.0, expon - 63)
return sign * f
def _write_short(f, x):
f.write(struct.pack('>h', x))
def _write_ushort(f, x):
f.write(struct.pack('>H', x))
def _write_long(f, x):
f.write(struct.pack('>l', x))
def _write_ulong(f, x):
f.write(struct.pack('>L', x))
def _write_string(f, s):
if len(s) > 255:
raise ValueError("string exceeds maximum pstring length")
f.write(struct.pack('B', len(s)))
f.write(s)
if len(s) & 1 == 0:
f.write(b'\x00')
def _write_float(f, x):
import math
if x < 0:
sign = 0x8000
x = x * -1
else:
sign = 0
if x == 0:
expon = 0
himant = 0
lomant = 0
else:
fmant, expon = math.frexp(x)
if expon > 16384 or fmant >= 1 or fmant != fmant: # Infinity or NaN
expon = sign|0x7FFF
himant = 0
lomant = 0
else: # Finite
expon = expon + 16382
if expon < 0: # denormalized
fmant = math.ldexp(fmant, expon)
expon = 0
expon = expon | sign
fmant = math.ldexp(fmant, 32)
fsmant = math.floor(fmant)
himant = int(fsmant)
fmant = math.ldexp(fmant - fsmant, 32)
fsmant = math.floor(fmant)
lomant = int(fsmant)
_write_ushort(f, expon)
_write_ulong(f, himant)
_write_ulong(f, lomant)
from chunk import Chunk
from collections import namedtuple
_aifc_params = namedtuple('_aifc_params',
'nchannels sampwidth framerate nframes comptype compname')
_aifc_params.nchannels.__doc__ = 'Number of audio channels (1 for mono, 2 for stereo)'
_aifc_params.sampwidth.__doc__ = 'Sample width in bytes'
_aifc_params.framerate.__doc__ = 'Sampling frequency'
_aifc_params.nframes.__doc__ = 'Number of audio frames'
_aifc_params.comptype.__doc__ = 'Compression type ("NONE" for AIFF files)'
_aifc_params.compname.__doc__ = ("""\
A human-readable version of the compression type
('not compressed' for AIFF files)""")
class Aifc_read:
# Variables used in this class:
#
# These variables are available to the user though appropriate
# methods of this class:
# _file -- the open file with methods read(), close(), and seek()
# set through the __init__() method
# _nchannels -- the number of audio channels
# available through the getnchannels() method
# _nframes -- the number of audio frames
# available through the getnframes() method
# _sampwidth -- the number of bytes per audio sample
# available through the getsampwidth() method
# _framerate -- the sampling frequency
# available through the getframerate() method
# _comptype -- the AIFF-C compression type ('NONE' if AIFF)
# available through the getcomptype() method
# _compname -- the human-readable AIFF-C compression type
# available through the getcomptype() method
# _markers -- the marks in the audio file
# available through the getmarkers() and getmark()
# methods
# _soundpos -- the position in the audio stream
# available through the tell() method, set through the
# setpos() method
#
# These variables are used internally only:
# _version -- the AIFF-C version number
# _decomp -- the decompressor from builtin module cl
# _comm_chunk_read -- 1 iff the COMM chunk has been read
# _aifc -- 1 iff reading an AIFF-C file
# _ssnd_seek_needed -- 1 iff positioned correctly in audio
# file for readframes()
# _ssnd_chunk -- instantiation of a chunk class for the SSND chunk
# _framesize -- size of one frame in the file
_file = None # Set here since __del__ checks it
def initfp(self, file):
self._version = 0
self._convert = None
self._markers = []
self._soundpos = 0
self._file = file
chunk = Chunk(file)
if chunk.getname() != b'FORM':
raise Error('file does not start with FORM id')
formdata = chunk.read(4)
if formdata == b'AIFF':
self._aifc = 0
elif formdata == b'AIFC':
self._aifc = 1
else:
raise Error('not an AIFF or AIFF-C file')
self._comm_chunk_read = 0
self._ssnd_chunk = None
while 1:
self._ssnd_seek_needed = 1
try:
chunk = Chunk(self._file)
except EOFError:
break
chunkname = chunk.getname()
if chunkname == b'COMM':
self._read_comm_chunk(chunk)
self._comm_chunk_read = 1
elif chunkname == b'SSND':
self._ssnd_chunk = chunk
dummy = chunk.read(8)
self._ssnd_seek_needed = 0
elif chunkname == b'FVER':
self._version = _read_ulong(chunk)
elif chunkname == b'MARK':
self._readmark(chunk)
chunk.skip()
if not self._comm_chunk_read or not self._ssnd_chunk:
raise Error('COMM chunk and/or SSND chunk missing')
def __init__(self, f):
if isinstance(f, str):
file_object = builtins.open(f, 'rb')
try:
self.initfp(file_object)
except:
file_object.close()
raise
else:
# assume it is an open file object already
self.initfp(f)
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
#
# User visible methods.
#
def getfp(self):
return self._file
def rewind(self):
self._ssnd_seek_needed = 1
self._soundpos = 0
def close(self):
file = self._file
if file is not None:
self._file = None
file.close()
def tell(self):
return self._soundpos
def getnchannels(self):
return self._nchannels
def getnframes(self):
return self._nframes
def getsampwidth(self):
return self._sampwidth
def getframerate(self):
return self._framerate
def getcomptype(self):
return self._comptype
def getcompname(self):
return self._compname
## def getversion(self):
## return self._version
def getparams(self):
return _aifc_params(self.getnchannels(), self.getsampwidth(),
self.getframerate(), self.getnframes(),
self.getcomptype(), self.getcompname())
def getmarkers(self):
if len(self._markers) == 0:
return None
return self._markers
def getmark(self, id):
for marker in self._markers:
if id == marker[0]:
return marker
raise Error('marker {0!r} does not exist'.format(id))
def setpos(self, pos):
if pos < 0 or pos > self._nframes:
raise Error('position not in range')
self._soundpos = pos
self._ssnd_seek_needed = 1
def readframes(self, nframes):
if self._ssnd_seek_needed:
self._ssnd_chunk.seek(0)
dummy = self._ssnd_chunk.read(8)
pos = self._soundpos * self._framesize
if pos:
self._ssnd_chunk.seek(pos + 8)
self._ssnd_seek_needed = 0
if nframes == 0:
return b''
data = self._ssnd_chunk.read(nframes * self._framesize)
if self._convert and data:
data = self._convert(data)
self._soundpos = self._soundpos + len(data) // (self._nchannels
* self._sampwidth)
return data
#
# Internal methods.
#
def _alaw2lin(self, data):
import audioop
return audioop.alaw2lin(data, 2)
def _ulaw2lin(self, data):
import audioop
return audioop.ulaw2lin(data, 2)
def _adpcm2lin(self, data):
import audioop
if not hasattr(self, '_adpcmstate'):
# first time
self._adpcmstate = None
data, self._adpcmstate = audioop.adpcm2lin(data, 2, self._adpcmstate)
return data
def _read_comm_chunk(self, chunk):
self._nchannels = _read_short(chunk)
self._nframes = _read_long(chunk)
self._sampwidth = (_read_short(chunk) + 7) // 8
self._framerate = int(_read_float(chunk))
self._framesize = self._nchannels * self._sampwidth
if self._aifc:
#DEBUG: SGI's soundeditor produces a bad size :-(
kludge = 0
if chunk.chunksize == 18:
kludge = 1
warnings.warn('Warning: bad COMM chunk size')
chunk.chunksize = 23
#DEBUG end
self._comptype = chunk.read(4)
#DEBUG start
if kludge:
length = ord(chunk.file.read(1))
if length & 1 == 0:
length = length + 1
chunk.chunksize = chunk.chunksize + length
chunk.file.seek(-1, 1)
#DEBUG end
self._compname = _read_string(chunk)
if self._comptype != b'NONE':
if self._comptype == b'G722':
self._convert = self._adpcm2lin
elif self._comptype in (b'ulaw', b'ULAW'):
self._convert = self._ulaw2lin
elif self._comptype in (b'alaw', b'ALAW'):
self._convert = self._alaw2lin
else:
raise Error('unsupported compression type')
self._sampwidth = 2
else:
self._comptype = b'NONE'
self._compname = b'not compressed'
def _readmark(self, chunk):
nmarkers = _read_short(chunk)
# Some files appear to contain invalid counts.
# Cope with this by testing for EOF.
try:
for i in range(nmarkers):
id = _read_short(chunk)
pos = _read_long(chunk)
name = _read_string(chunk)
if pos or name:
# some files appear to have
# dummy markers consisting of
# a position 0 and name ''
self._markers.append((id, pos, name))
except EOFError:
w = ('Warning: MARK chunk contains only %s marker%s instead of %s' %
(len(self._markers), '' if len(self._markers) == 1 else 's',
nmarkers))
warnings.warn(w)
class Aifc_write:
# Variables used in this class:
#
# These variables are user settable through appropriate methods
# of this class:
# _file -- the open file with methods write(), close(), tell(), seek()
# set through the __init__() method
# _comptype -- the AIFF-C compression type ('NONE' in AIFF)
# set through the setcomptype() or setparams() method
# _compname -- the human-readable AIFF-C compression type
# set through the setcomptype() or setparams() method
# _nchannels -- the number of audio channels
# set through the setnchannels() or setparams() method
# _sampwidth -- the number of bytes per audio sample
# set through the setsampwidth() or setparams() method
# _framerate -- the sampling frequency
# set through the setframerate() or setparams() method
# _nframes -- the number of audio frames written to the header
# set through the setnframes() or setparams() method
# _aifc -- whether we're writing an AIFF-C file or an AIFF file
# set through the aifc() method, reset through the
# aiff() method
#
# These variables are used internally only:
# _version -- the AIFF-C version number
# _comp -- the compressor from builtin module cl
# _nframeswritten -- the number of audio frames actually written
# _datalength -- the size of the audio samples written to the header
# _datawritten -- the size of the audio samples actually written
_file = None # Set here since __del__ checks it
def __init__(self, f):
if isinstance(f, str):
file_object = builtins.open(f, 'wb')
try:
self.initfp(file_object)
except:
file_object.close()
raise
# treat .aiff file extensions as non-compressed audio
if f.endswith('.aiff'):
self._aifc = 0
else:
# assume it is an open file object already
self.initfp(f)
def initfp(self, file):
self._file = file
self._version = _AIFC_version
self._comptype = b'NONE'
self._compname = b'not compressed'
self._convert = None
self._nchannels = 0
self._sampwidth = 0
self._framerate = 0
self._nframes = 0
self._nframeswritten = 0
self._datawritten = 0
self._datalength = 0
self._markers = []
self._marklength = 0
self._aifc = 1 # AIFF-C is default
def __del__(self):
self.close()
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
#
# User visible methods.
#
def aiff(self):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
self._aifc = 0
def aifc(self):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
self._aifc = 1
def setnchannels(self, nchannels):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
if nchannels < 1:
raise Error('bad # of channels')
self._nchannels = nchannels
def getnchannels(self):
if not self._nchannels:
raise Error('number of channels not set')
return self._nchannels
def setsampwidth(self, sampwidth):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
if sampwidth < 1 or sampwidth > 4:
raise Error('bad sample width')
self._sampwidth = sampwidth
def getsampwidth(self):
if not self._sampwidth:
raise Error('sample width not set')
return self._sampwidth
def setframerate(self, framerate):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
if framerate <= 0:
raise Error('bad frame rate')
self._framerate = framerate
def getframerate(self):
if not self._framerate:
raise Error('frame rate not set')
return self._framerate
def setnframes(self, nframes):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
self._nframes = nframes
def getnframes(self):
return self._nframeswritten
def setcomptype(self, comptype, compname):
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
if comptype not in (b'NONE', b'ulaw', b'ULAW',
b'alaw', b'ALAW', b'G722'):
raise Error('unsupported compression type')
self._comptype = comptype
self._compname = compname
def getcomptype(self):
return self._comptype
def getcompname(self):
return self._compname
## def setversion(self, version):
## if self._nframeswritten:
## raise Error, 'cannot change parameters after starting to write'
## self._version = version
def setparams(self, params):
nchannels, sampwidth, framerate, nframes, comptype, compname = params
if self._nframeswritten:
raise Error('cannot change parameters after starting to write')
if comptype not in (b'NONE', b'ulaw', b'ULAW',
b'alaw', b'ALAW', b'G722'):
raise Error('unsupported compression type')
self.setnchannels(nchannels)
self.setsampwidth(sampwidth)
self.setframerate(framerate)
self.setnframes(nframes)
self.setcomptype(comptype, compname)
def getparams(self):
if not self._nchannels or not self._sampwidth or not self._framerate:
raise Error('not all parameters set')
return _aifc_params(self._nchannels, self._sampwidth, self._framerate,
self._nframes, self._comptype, self._compname)
def setmark(self, id, pos, name):
if id <= 0:
raise Error('marker ID must be > 0')
if pos < 0:
raise Error('marker position must be >= 0')
if not isinstance(name, bytes):
raise Error('marker name must be bytes')
for i in range(len(self._markers)):
if id == self._markers[i][0]:
self._markers[i] = id, pos, name
return
self._markers.append((id, pos, name))
def getmark(self, id):
for marker in self._markers:
if id == marker[0]:
return marker
raise Error('marker {0!r} does not exist'.format(id))
def getmarkers(self):
if len(self._markers) == 0:
return None
return self._markers
def tell(self):
return self._nframeswritten
def writeframesraw(self, data):
if not isinstance(data, (bytes, bytearray)):
data = memoryview(data).cast('B')
self._ensure_header_written(len(data))
nframes = len(data) // (self._sampwidth * self._nchannels)
if self._convert:
data = self._convert(data)
self._file.write(data)
self._nframeswritten = self._nframeswritten + nframes
self._datawritten = self._datawritten + len(data)
def writeframes(self, data):
self.writeframesraw(data)
if self._nframeswritten != self._nframes or \
self._datalength != self._datawritten:
self._patchheader()
def close(self):
if self._file is None:
return
try:
self._ensure_header_written(0)
if self._datawritten & 1:
# quick pad to even size
self._file.write(b'\x00')
self._datawritten = self._datawritten + 1
self._writemarkers()
if self._nframeswritten != self._nframes or \
self._datalength != self._datawritten or \
self._marklength:
self._patchheader()
finally:
# Prevent ref cycles
self._convert = None
f = self._file
self._file = None
f.close()
#
# Internal methods.
#
def _lin2alaw(self, data):
import audioop
return audioop.lin2alaw(data, 2)
def _lin2ulaw(self, data):
import audioop
return audioop.lin2ulaw(data, 2)
def _lin2adpcm(self, data):
import audioop
if not hasattr(self, '_adpcmstate'):
self._adpcmstate = None
data, self._adpcmstate = audioop.lin2adpcm(data, 2, self._adpcmstate)
return data
def _ensure_header_written(self, datasize):
if not self._nframeswritten:
if self._comptype in (b'ULAW', b'ulaw', b'ALAW', b'alaw', b'G722'):
if not self._sampwidth:
self._sampwidth = 2
if self._sampwidth != 2:
raise Error('sample width must be 2 when compressing '
'with ulaw/ULAW, alaw/ALAW or G7.22 (ADPCM)')
if not self._nchannels:
raise Error('# channels not specified')
if not self._sampwidth:
raise Error('sample width not specified')
if not self._framerate:
raise Error('sampling rate not specified')
self._write_header(datasize)
def _init_compression(self):
if self._comptype == b'G722':
self._convert = self._lin2adpcm
elif self._comptype in (b'ulaw', b'ULAW'):
self._convert = self._lin2ulaw
elif self._comptype in (b'alaw', b'ALAW'):
self._convert = self._lin2alaw
def _write_header(self, initlength):
if self._aifc and self._comptype != b'NONE':
self._init_compression()
self._file.write(b'FORM')
if not self._nframes:
self._nframes = initlength // (self._nchannels * self._sampwidth)
self._datalength = self._nframes * self._nchannels * self._sampwidth
if self._datalength & 1:
self._datalength = self._datalength + 1
if self._aifc:
if self._comptype in (b'ulaw', b'ULAW', b'alaw', b'ALAW'):
self._datalength = self._datalength // 2
if self._datalength & 1:
self._datalength = self._datalength + 1
elif self._comptype == b'G722':
self._datalength = (self._datalength + 3) // 4
if self._datalength & 1:
self._datalength = self._datalength + 1
try:
self._form_length_pos = self._file.tell()
except (AttributeError, OSError):
self._form_length_pos = None
commlength = self._write_form_length(self._datalength)
if self._aifc:
self._file.write(b'AIFC')
self._file.write(b'FVER')
_write_ulong(self._file, 4)
_write_ulong(self._file, self._version)
else:
self._file.write(b'AIFF')
self._file.write(b'COMM')
_write_ulong(self._file, commlength)
_write_short(self._file, self._nchannels)
if self._form_length_pos is not None:
self._nframes_pos = self._file.tell()
_write_ulong(self._file, self._nframes)
if self._comptype in (b'ULAW', b'ulaw', b'ALAW', b'alaw', b'G722'):
_write_short(self._file, 8)
else:
_write_short(self._file, self._sampwidth * 8)
_write_float(self._file, self._framerate)
if self._aifc:
self._file.write(self._comptype)
_write_string(self._file, self._compname)
self._file.write(b'SSND')
if self._form_length_pos is not None:
self._ssnd_length_pos = self._file.tell()
_write_ulong(self._file, self._datalength + 8)
_write_ulong(self._file, 0)
_write_ulong(self._file, 0)
def _write_form_length(self, datalength):
if self._aifc:
commlength = 18 + 5 + len(self._compname)
if commlength & 1:
commlength = commlength + 1
verslength = 12
else:
commlength = 18
verslength = 0
_write_ulong(self._file, 4 + verslength + self._marklength + \
8 + commlength + 16 + datalength)
return commlength
def _patchheader(self):
curpos = self._file.tell()
if self._datawritten & 1:
datalength = self._datawritten + 1
self._file.write(b'\x00')
else:
datalength = self._datawritten
if datalength == self._datalength and \
self._nframes == self._nframeswritten and \
self._marklength == 0:
self._file.seek(curpos, 0)
return
self._file.seek(self._form_length_pos, 0)
dummy = self._write_form_length(datalength)
self._file.seek(self._nframes_pos, 0)
_write_ulong(self._file, self._nframeswritten)
self._file.seek(self._ssnd_length_pos, 0)
_write_ulong(self._file, datalength + 8)
self._file.seek(curpos, 0)
self._nframes = self._nframeswritten
self._datalength = datalength
def _writemarkers(self):
if len(self._markers) == 0:
return
self._file.write(b'MARK')
length = 2
for marker in self._markers:
id, pos, name = marker
length = length + len(name) + 1 + 6
if len(name) & 1 == 0:
length = length + 1
_write_ulong(self._file, length)
self._marklength = length + 8
_write_short(self._file, len(self._markers))
for marker in self._markers:
id, pos, name = marker
_write_short(self._file, id)
_write_ulong(self._file, pos)
_write_string(self._file, name)
def open(f, mode=None):
if mode is None:
if hasattr(f, 'mode'):
mode = f.mode
else:
mode = 'rb'
if mode in ('r', 'rb'):
return Aifc_read(f)
elif mode in ('w', 'wb'):
return Aifc_write(f)
else:
raise Error("mode must be 'r', 'rb', 'w', or 'wb'")
openfp = open # B/W compatibility
if __name__ == '__main__':
import sys
if not sys.argv[1:]:
sys.argv.append('/usr/demos/data/audio/bach.aiff')
fn = sys.argv[1]
with open(fn, 'r') as f:
print("Reading", fn)
print("nchannels =", f.getnchannels())
print("nframes =", f.getnframes())
print("sampwidth =", f.getsampwidth())
print("framerate =", f.getframerate())
print("comptype =", f.getcomptype())
print("compname =", f.getcompname())
if sys.argv[2:]:
gn = sys.argv[2]
print("Writing", gn)
with open(gn, 'w') as g:
g.setparams(f.getparams())
while 1:
data = f.readframes(1024)
if not data:
break
g.writeframes(data)
print("Done.")

17
third_party/python/Lib/antigravity.py vendored Normal file
View file

@ -0,0 +1,17 @@
import webbrowser
import hashlib
webbrowser.open("https://xkcd.com/353/")
def geohash(latitude, longitude, datedow):
'''Compute geohash() using the Munroe algorithm.
>>> geohash(37.421542, -122.085589, b'2005-05-26-10458.68')
37.857713 -122.544543
'''
# https://xkcd.com/426/
h = hashlib.md5(datedow).hexdigest()
p, q = [('%f' % float.fromhex('0.' + x)) for x in (h[:16], h[16:32])]
print('%d%s %d%s' % (latitude, p[1:], longitude, q[1:]))

2393
third_party/python/Lib/argparse.py vendored Normal file

File diff suppressed because it is too large Load diff

322
third_party/python/Lib/ast.py vendored Normal file
View file

@ -0,0 +1,322 @@
"""
ast
~~~
The `ast` module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with
each Python release; this module helps to find out programmatically what
the current grammar looks like and allows modifications of it.
An abstract syntax tree can be generated by passing `ast.PyCF_ONLY_AST` as
a flag to the `compile()` builtin function or by using the `parse()`
function from this module. The result will be a tree of objects whose
classes all inherit from `ast.AST`.
A modified abstract syntax tree can be compiled into a Python code object
using the built-in `compile()` function.
Additionally various helper functions are provided that make working with
the trees simpler. The main intention of the helper functions and this
module in general is to provide an easy to use interface for libraries
that work tightly with the python syntax (template engines for example).
:copyright: Copyright 2008 by Armin Ronacher.
:license: Python License.
"""
from _ast import *
def parse(source, filename='<unknown>', mode='exec'):
"""
Parse the source into an AST node.
Equivalent to compile(source, filename, mode, PyCF_ONLY_AST).
"""
return compile(source, filename, mode, PyCF_ONLY_AST)
_NUM_TYPES = (int, float, complex)
def literal_eval(node_or_string):
"""
Safely evaluate an expression node or a string containing a Python
expression. The string or node provided may only consist of the following
Python literal structures: strings, bytes, numbers, tuples, lists, dicts,
sets, booleans, and None.
"""
if isinstance(node_or_string, str):
node_or_string = parse(node_or_string, mode='eval')
if isinstance(node_or_string, Expression):
node_or_string = node_or_string.body
def _convert(node):
if isinstance(node, Constant):
return node.value
elif isinstance(node, (Str, Bytes)):
return node.s
elif isinstance(node, Num):
return node.n
elif isinstance(node, Tuple):
return tuple(map(_convert, node.elts))
elif isinstance(node, List):
return list(map(_convert, node.elts))
elif isinstance(node, Set):
return set(map(_convert, node.elts))
elif isinstance(node, Dict):
return dict((_convert(k), _convert(v)) for k, v
in zip(node.keys, node.values))
elif isinstance(node, NameConstant):
return node.value
elif isinstance(node, UnaryOp) and isinstance(node.op, (UAdd, USub)):
operand = _convert(node.operand)
if isinstance(operand, _NUM_TYPES):
if isinstance(node.op, UAdd):
return + operand
else:
return - operand
elif isinstance(node, BinOp) and isinstance(node.op, (Add, Sub)):
left = _convert(node.left)
right = _convert(node.right)
if isinstance(left, _NUM_TYPES) and isinstance(right, _NUM_TYPES):
if isinstance(node.op, Add):
return left + right
else:
return left - right
raise ValueError('malformed node or string: ' + repr(node))
return _convert(node_or_string)
def dump(node, annotate_fields=True, include_attributes=False):
"""
Return a formatted dump of the tree in *node*. This is mainly useful for
debugging purposes. The returned string will show the names and the values
for fields. This makes the code impossible to evaluate, so if evaluation is
wanted *annotate_fields* must be set to False. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted,
*include_attributes* can be set to True.
"""
def _format(node):
if isinstance(node, AST):
fields = [(a, _format(b)) for a, b in iter_fields(node)]
rv = '%s(%s' % (node.__class__.__name__, ', '.join(
('%s=%s' % field for field in fields)
if annotate_fields else
(b for a, b in fields)
))
if include_attributes and node._attributes:
rv += fields and ', ' or ' '
rv += ', '.join('%s=%s' % (a, _format(getattr(node, a)))
for a in node._attributes)
return rv + ')'
elif isinstance(node, list):
return '[%s]' % ', '.join(_format(x) for x in node)
return repr(node)
if not isinstance(node, AST):
raise TypeError('expected AST, got %r' % node.__class__.__name__)
return _format(node)
def copy_location(new_node, old_node):
"""
Copy source location (`lineno` and `col_offset` attributes) from
*old_node* to *new_node* if possible, and return *new_node*.
"""
for attr in 'lineno', 'col_offset':
if attr in old_node._attributes and attr in new_node._attributes \
and hasattr(old_node, attr):
setattr(new_node, attr, getattr(old_node, attr))
return new_node
def fix_missing_locations(node):
"""
When you compile a node tree with compile(), the compiler expects lineno and
col_offset attributes for every node that supports them. This is rather
tedious to fill in for generated nodes, so this helper adds these attributes
recursively where not already set, by setting them to the values of the
parent node. It works recursively starting at *node*.
"""
def _fix(node, lineno, col_offset):
if 'lineno' in node._attributes:
if not hasattr(node, 'lineno'):
node.lineno = lineno
else:
lineno = node.lineno
if 'col_offset' in node._attributes:
if not hasattr(node, 'col_offset'):
node.col_offset = col_offset
else:
col_offset = node.col_offset
for child in iter_child_nodes(node):
_fix(child, lineno, col_offset)
_fix(node, 1, 0)
return node
def increment_lineno(node, n=1):
"""
Increment the line number of each node in the tree starting at *node* by *n*.
This is useful to "move code" to a different location in a file.
"""
for child in walk(node):
if 'lineno' in child._attributes:
child.lineno = getattr(child, 'lineno', 0) + n
return node
def iter_fields(node):
"""
Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
that is present on *node*.
"""
for field in node._fields:
try:
yield field, getattr(node, field)
except AttributeError:
pass
def iter_child_nodes(node):
"""
Yield all direct child nodes of *node*, that is, all fields that are nodes
and all items of fields that are lists of nodes.
"""
for name, field in iter_fields(node):
if isinstance(field, AST):
yield field
elif isinstance(field, list):
for item in field:
if isinstance(item, AST):
yield item
def get_docstring(node, clean=True):
"""
Return the docstring for the given node or None if no docstring can
be found. If the node provided does not have docstrings a TypeError
will be raised.
"""
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
raise TypeError("%r can't have docstrings" % node.__class__.__name__)
if not(node.body and isinstance(node.body[0], Expr)):
return
node = node.body[0].value
if isinstance(node, Str):
text = node.s
elif isinstance(node, Constant) and isinstance(node.value, str):
text = node.value
else:
return
if clean:
import inspect
text = inspect.cleandoc(text)
return text
def walk(node):
"""
Recursively yield all descendant nodes in the tree starting at *node*
(including *node* itself), in no specified order. This is useful if you
only want to modify nodes in place and don't care about the context.
"""
from collections import deque
todo = deque([node])
while todo:
node = todo.popleft()
todo.extend(iter_child_nodes(node))
yield node
class NodeVisitor(object):
"""
A node visitor base class that walks the abstract syntax tree and calls a
visitor function for every node found. This function may return a value
which is forwarded by the `visit` method.
This class is meant to be subclassed, with the subclass adding visitor
methods.
Per default the visitor functions for the nodes are ``'visit_'`` +
class name of the node. So a `TryFinally` node visit function would
be `visit_TryFinally`. This behavior can be changed by overriding
the `visit` method. If no visitor function exists for a node
(return value `None`) the `generic_visit` visitor is used instead.
Don't use the `NodeVisitor` if you want to apply changes to nodes during
traversing. For this a special visitor exists (`NodeTransformer`) that
allows modifications.
"""
def visit(self, node):
"""Visit a node."""
method = 'visit_' + node.__class__.__name__
visitor = getattr(self, method, self.generic_visit)
return visitor(node)
def generic_visit(self, node):
"""Called if no explicit visitor function exists for a node."""
for field, value in iter_fields(node):
if isinstance(value, list):
for item in value:
if isinstance(item, AST):
self.visit(item)
elif isinstance(value, AST):
self.visit(value)
class NodeTransformer(NodeVisitor):
"""
A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
allows modification of nodes.
The `NodeTransformer` will walk the AST and use the return value of the
visitor methods to replace or remove the old node. If the return value of
the visitor method is ``None``, the node will be removed from its location,
otherwise it is replaced with the return value. The return value may be the
original node in which case no replacement takes place.
Here is an example transformer that rewrites all occurrences of name lookups
(``foo``) to ``data['foo']``::
class RewriteName(NodeTransformer):
def visit_Name(self, node):
return copy_location(Subscript(
value=Name(id='data', ctx=Load()),
slice=Index(value=Str(s=node.id)),
ctx=node.ctx
), node)
Keep in mind that if the node you're operating on has child nodes you must
either transform the child nodes yourself or call the :meth:`generic_visit`
method for the node first.
For nodes that were part of a collection of statements (that applies to all
statement nodes), the visitor may also return a list of nodes rather than
just a single node.
Usually you use the transformer like this::
node = YourTransformer().visit(node)
"""
def generic_visit(self, node):
for field, old_value in iter_fields(node):
if isinstance(old_value, list):
new_values = []
for value in old_value:
if isinstance(value, AST):
value = self.visit(value)
if value is None:
continue
elif not isinstance(value, AST):
new_values.extend(value)
continue
new_values.append(value)
old_value[:] = new_values
elif isinstance(old_value, AST):
new_node = self.visit(old_value)
if new_node is None:
delattr(node, field)
else:
setattr(node, field, new_node)
return node

307
third_party/python/Lib/asynchat.py vendored Normal file
View file

@ -0,0 +1,307 @@
# -*- Mode: Python; tab-width: 4 -*-
# Id: asynchat.py,v 2.26 2000/09/07 22:29:26 rushing Exp
# Author: Sam Rushing <rushing@nightmare.com>
# ======================================================================
# Copyright 1996 by Sam Rushing
#
# All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================
r"""A class supporting chat-style (command/response) protocols.
This class adds support for 'chat' style protocols - where one side
sends a 'command', and the other sends a response (examples would be
the common internet protocols - smtp, nntp, ftp, etc..).
The handle_read() method looks at the input stream for the current
'terminator' (usually '\r\n' for single-line responses, '\r\n.\r\n'
for multi-line output), calling self.found_terminator() on its
receipt.
for example:
Say you build an async nntp client using this class. At the start
of the connection, you'll have self.terminator set to '\r\n', in
order to process the single-line greeting. Just before issuing a
'LIST' command you'll set it to '\r\n.\r\n'. The output of the LIST
command will be accumulated (using your own 'collect_incoming_data'
method) up to the terminator, and then control will be returned to
you - by calling your self.found_terminator() method.
"""
import asyncore
from collections import deque
class async_chat(asyncore.dispatcher):
"""This is an abstract class. You must derive from this class, and add
the two methods collect_incoming_data() and found_terminator()"""
# these are overridable defaults
ac_in_buffer_size = 65536
ac_out_buffer_size = 65536
# we don't want to enable the use of encoding by default, because that is a
# sign of an application bug that we don't want to pass silently
use_encoding = 0
encoding = 'latin-1'
def __init__(self, sock=None, map=None):
# for string terminator matching
self.ac_in_buffer = b''
# we use a list here rather than io.BytesIO for a few reasons...
# del lst[:] is faster than bio.truncate(0)
# lst = [] is faster than bio.truncate(0)
self.incoming = []
# we toss the use of the "simple producer" and replace it with
# a pure deque, which the original fifo was a wrapping of
self.producer_fifo = deque()
asyncore.dispatcher.__init__(self, sock, map)
def collect_incoming_data(self, data):
raise NotImplementedError("must be implemented in subclass")
def _collect_incoming_data(self, data):
self.incoming.append(data)
def _get_data(self):
d = b''.join(self.incoming)
del self.incoming[:]
return d
def found_terminator(self):
raise NotImplementedError("must be implemented in subclass")
def set_terminator(self, term):
"""Set the input delimiter.
Can be a fixed string of any length, an integer, or None.
"""
if isinstance(term, str) and self.use_encoding:
term = bytes(term, self.encoding)
elif isinstance(term, int) and term < 0:
raise ValueError('the number of received bytes must be positive')
self.terminator = term
def get_terminator(self):
return self.terminator
# grab some more data from the socket,
# throw it to the collector method,
# check for the terminator,
# if found, transition to the next state.
def handle_read(self):
try:
data = self.recv(self.ac_in_buffer_size)
except BlockingIOError:
return
except OSError as why:
self.handle_error()
return
if isinstance(data, str) and self.use_encoding:
data = bytes(str, self.encoding)
self.ac_in_buffer = self.ac_in_buffer + data
# Continue to search for self.terminator in self.ac_in_buffer,
# while calling self.collect_incoming_data. The while loop
# is necessary because we might read several data+terminator
# combos with a single recv(4096).
while self.ac_in_buffer:
lb = len(self.ac_in_buffer)
terminator = self.get_terminator()
if not terminator:
# no terminator, collect it all
self.collect_incoming_data(self.ac_in_buffer)
self.ac_in_buffer = b''
elif isinstance(terminator, int):
# numeric terminator
n = terminator
if lb < n:
self.collect_incoming_data(self.ac_in_buffer)
self.ac_in_buffer = b''
self.terminator = self.terminator - lb
else:
self.collect_incoming_data(self.ac_in_buffer[:n])
self.ac_in_buffer = self.ac_in_buffer[n:]
self.terminator = 0
self.found_terminator()
else:
# 3 cases:
# 1) end of buffer matches terminator exactly:
# collect data, transition
# 2) end of buffer matches some prefix:
# collect data to the prefix
# 3) end of buffer does not match any prefix:
# collect data
terminator_len = len(terminator)
index = self.ac_in_buffer.find(terminator)
if index != -1:
# we found the terminator
if index > 0:
# don't bother reporting the empty string
# (source of subtle bugs)
self.collect_incoming_data(self.ac_in_buffer[:index])
self.ac_in_buffer = self.ac_in_buffer[index+terminator_len:]
# This does the Right Thing if the terminator
# is changed here.
self.found_terminator()
else:
# check for a prefix of the terminator
index = find_prefix_at_end(self.ac_in_buffer, terminator)
if index:
if index != lb:
# we found a prefix, collect up to the prefix
self.collect_incoming_data(self.ac_in_buffer[:-index])
self.ac_in_buffer = self.ac_in_buffer[-index:]
break
else:
# no prefix, collect it all
self.collect_incoming_data(self.ac_in_buffer)
self.ac_in_buffer = b''
def handle_write(self):
self.initiate_send()
def handle_close(self):
self.close()
def push(self, data):
if not isinstance(data, (bytes, bytearray, memoryview)):
raise TypeError('data argument must be byte-ish (%r)',
type(data))
sabs = self.ac_out_buffer_size
if len(data) > sabs:
for i in range(0, len(data), sabs):
self.producer_fifo.append(data[i:i+sabs])
else:
self.producer_fifo.append(data)
self.initiate_send()
def push_with_producer(self, producer):
self.producer_fifo.append(producer)
self.initiate_send()
def readable(self):
"predicate for inclusion in the readable for select()"
# cannot use the old predicate, it violates the claim of the
# set_terminator method.
# return (len(self.ac_in_buffer) <= self.ac_in_buffer_size)
return 1
def writable(self):
"predicate for inclusion in the writable for select()"
return self.producer_fifo or (not self.connected)
def close_when_done(self):
"automatically close this channel once the outgoing queue is empty"
self.producer_fifo.append(None)
def initiate_send(self):
while self.producer_fifo and self.connected:
first = self.producer_fifo[0]
# handle empty string/buffer or None entry
if not first:
del self.producer_fifo[0]
if first is None:
self.handle_close()
return
# handle classic producer behavior
obs = self.ac_out_buffer_size
try:
data = first[:obs]
except TypeError:
data = first.more()
if data:
self.producer_fifo.appendleft(data)
else:
del self.producer_fifo[0]
continue
if isinstance(data, str) and self.use_encoding:
data = bytes(data, self.encoding)
# send the data
try:
num_sent = self.send(data)
except OSError:
self.handle_error()
return
if num_sent:
if num_sent < len(data) or obs < len(first):
self.producer_fifo[0] = first[num_sent:]
else:
del self.producer_fifo[0]
# we tried to send some actual data
return
def discard_buffers(self):
# Emergencies only!
self.ac_in_buffer = b''
del self.incoming[:]
self.producer_fifo.clear()
class simple_producer:
def __init__(self, data, buffer_size=512):
self.data = data
self.buffer_size = buffer_size
def more(self):
if len(self.data) > self.buffer_size:
result = self.data[:self.buffer_size]
self.data = self.data[self.buffer_size:]
return result
else:
result = self.data
self.data = b''
return result
# Given 'haystack', see if any prefix of 'needle' is at its end. This
# assumes an exact match has already been checked. Return the number of
# characters matched.
# for example:
# f_p_a_e("qwerty\r", "\r\n") => 1
# f_p_a_e("qwertydkjf", "\r\n") => 0
# f_p_a_e("qwerty\r\n", "\r\n") => <undefined>
# this could maybe be made faster with a computed regex?
# [answer: no; circa Python-2.0, Jan 2001]
# new python: 28961/s
# old python: 18307/s
# re: 12820/s
# regex: 14035/s
def find_prefix_at_end(haystack, needle):
l = len(needle) - 1
while l and not haystack.endswith(needle[:l]):
l -= 1
return l

View file

@ -0,0 +1,50 @@
"""The asyncio package, tracking PEP 3156."""
import sys
# The selectors module is in the stdlib in Python 3.4 but not in 3.3.
# Do this first, so the other submodules can use "from . import selectors".
# Prefer asyncio/selectors.py over the stdlib one, as ours may be newer.
try:
from . import selectors
except ImportError:
import selectors # Will also be exported.
if sys.platform == 'win32':
# Similar thing for _overlapped.
try:
from . import _overlapped
except ImportError:
import _overlapped # Will also be exported.
# This relies on each of the submodules having an __all__ variable.
from .base_events import *
from .coroutines import *
from .events import *
from .futures import *
from .locks import *
from .protocols import *
from .queues import *
from .streams import *
from .subprocess import *
from .tasks import *
from .transports import *
__all__ = (base_events.__all__ +
coroutines.__all__ +
events.__all__ +
futures.__all__ +
locks.__all__ +
protocols.__all__ +
queues.__all__ +
streams.__all__ +
subprocess.__all__ +
tasks.__all__ +
transports.__all__)
if sys.platform == 'win32': # pragma: no cover
from .windows_events import *
__all__ += windows_events.__all__
else:
from .unix_events import * # pragma: no cover
__all__ += unix_events.__all__

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,71 @@
__all__ = []
import concurrent.futures._base
import reprlib
from . import events
Error = concurrent.futures._base.Error
CancelledError = concurrent.futures.CancelledError
TimeoutError = concurrent.futures.TimeoutError
class InvalidStateError(Error):
"""The operation is not allowed in this state."""
# States for Future.
_PENDING = 'PENDING'
_CANCELLED = 'CANCELLED'
_FINISHED = 'FINISHED'
def isfuture(obj):
"""Check for a Future.
This returns True when obj is a Future instance or is advertising
itself as duck-type compatible by setting _asyncio_future_blocking.
See comment in Future for more details.
"""
return (hasattr(obj.__class__, '_asyncio_future_blocking') and
obj._asyncio_future_blocking is not None)
def _format_callbacks(cb):
"""helper function for Future.__repr__"""
size = len(cb)
if not size:
cb = ''
def format_cb(callback):
return events._format_callback_source(callback, ())
if size == 1:
cb = format_cb(cb[0])
elif size == 2:
cb = '{}, {}'.format(format_cb(cb[0]), format_cb(cb[1]))
elif size > 2:
cb = '{}, <{} more>, {}'.format(format_cb(cb[0]),
size - 2,
format_cb(cb[-1]))
return 'cb=[%s]' % cb
def _future_repr_info(future):
# (Future) -> str
"""helper function for Future.__repr__"""
info = [future._state.lower()]
if future._state == _FINISHED:
if future._exception is not None:
info.append('exception={!r}'.format(future._exception))
else:
# use reprlib to limit the length of the output, especially
# for very long strings
result = reprlib.repr(future._result)
info.append('result={}'.format(result))
if future._callbacks:
info.append(_format_callbacks(future._callbacks))
if future._source_traceback:
frame = future._source_traceback[-1]
info.append('created at %s:%s' % (frame[0], frame[1]))
return info

View file

@ -0,0 +1,293 @@
import collections
import subprocess
import warnings
from . import compat
from . import protocols
from . import transports
from .coroutines import coroutine
from .log import logger
class BaseSubprocessTransport(transports.SubprocessTransport):
def __init__(self, loop, protocol, args, shell,
stdin, stdout, stderr, bufsize,
waiter=None, extra=None, **kwargs):
super().__init__(extra)
self._closed = False
self._protocol = protocol
self._loop = loop
self._proc = None
self._pid = None
self._returncode = None
self._exit_waiters = []
self._pending_calls = collections.deque()
self._pipes = {}
self._finished = False
if stdin == subprocess.PIPE:
self._pipes[0] = None
if stdout == subprocess.PIPE:
self._pipes[1] = None
if stderr == subprocess.PIPE:
self._pipes[2] = None
# Create the child process: set the _proc attribute
try:
self._start(args=args, shell=shell, stdin=stdin, stdout=stdout,
stderr=stderr, bufsize=bufsize, **kwargs)
except:
self.close()
raise
self._pid = self._proc.pid
self._extra['subprocess'] = self._proc
if self._loop.get_debug():
if isinstance(args, (bytes, str)):
program = args
else:
program = args[0]
logger.debug('process %r created: pid %s',
program, self._pid)
self._loop.create_task(self._connect_pipes(waiter))
def __repr__(self):
info = [self.__class__.__name__]
if self._closed:
info.append('closed')
if self._pid is not None:
info.append('pid=%s' % self._pid)
if self._returncode is not None:
info.append('returncode=%s' % self._returncode)
elif self._pid is not None:
info.append('running')
else:
info.append('not started')
stdin = self._pipes.get(0)
if stdin is not None:
info.append('stdin=%s' % stdin.pipe)
stdout = self._pipes.get(1)
stderr = self._pipes.get(2)
if stdout is not None and stderr is stdout:
info.append('stdout=stderr=%s' % stdout.pipe)
else:
if stdout is not None:
info.append('stdout=%s' % stdout.pipe)
if stderr is not None:
info.append('stderr=%s' % stderr.pipe)
return '<%s>' % ' '.join(info)
def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs):
raise NotImplementedError
def set_protocol(self, protocol):
self._protocol = protocol
def get_protocol(self):
return self._protocol
def is_closing(self):
return self._closed
def close(self):
if self._closed:
return
self._closed = True
for proto in self._pipes.values():
if proto is None:
continue
proto.pipe.close()
if (self._proc is not None
# the child process finished?
and self._returncode is None
# the child process finished but the transport was not notified yet?
and self._proc.poll() is None
):
if self._loop.get_debug():
logger.warning('Close running child process: kill %r', self)
try:
self._proc.kill()
except ProcessLookupError:
pass
# Don't clear the _proc reference yet: _post_init() may still run
# On Python 3.3 and older, objects with a destructor part of a reference
# cycle are never destroyed. It's not more the case on Python 3.4 thanks
# to the PEP 442.
if compat.PY34:
def __del__(self):
if not self._closed:
warnings.warn("unclosed transport %r" % self, ResourceWarning,
source=self)
self.close()
def get_pid(self):
return self._pid
def get_returncode(self):
return self._returncode
def get_pipe_transport(self, fd):
if fd in self._pipes:
return self._pipes[fd].pipe
else:
return None
def _check_proc(self):
if self._proc is None:
raise ProcessLookupError()
def send_signal(self, signal):
self._check_proc()
self._proc.send_signal(signal)
def terminate(self):
self._check_proc()
self._proc.terminate()
def kill(self):
self._check_proc()
self._proc.kill()
@coroutine
def _connect_pipes(self, waiter):
try:
proc = self._proc
loop = self._loop
if proc.stdin is not None:
_, pipe = yield from loop.connect_write_pipe(
lambda: WriteSubprocessPipeProto(self, 0),
proc.stdin)
self._pipes[0] = pipe
if proc.stdout is not None:
_, pipe = yield from loop.connect_read_pipe(
lambda: ReadSubprocessPipeProto(self, 1),
proc.stdout)
self._pipes[1] = pipe
if proc.stderr is not None:
_, pipe = yield from loop.connect_read_pipe(
lambda: ReadSubprocessPipeProto(self, 2),
proc.stderr)
self._pipes[2] = pipe
assert self._pending_calls is not None
loop.call_soon(self._protocol.connection_made, self)
for callback, data in self._pending_calls:
loop.call_soon(callback, *data)
self._pending_calls = None
except Exception as exc:
if waiter is not None and not waiter.cancelled():
waiter.set_exception(exc)
else:
if waiter is not None and not waiter.cancelled():
waiter.set_result(None)
def _call(self, cb, *data):
if self._pending_calls is not None:
self._pending_calls.append((cb, data))
else:
self._loop.call_soon(cb, *data)
def _pipe_connection_lost(self, fd, exc):
self._call(self._protocol.pipe_connection_lost, fd, exc)
self._try_finish()
def _pipe_data_received(self, fd, data):
self._call(self._protocol.pipe_data_received, fd, data)
def _process_exited(self, returncode):
assert returncode is not None, returncode
assert self._returncode is None, self._returncode
if self._loop.get_debug():
logger.info('%r exited with return code %r',
self, returncode)
self._returncode = returncode
if self._proc.returncode is None:
# asyncio uses a child watcher: copy the status into the Popen
# object. On Python 3.6, it is required to avoid a ResourceWarning.
self._proc.returncode = returncode
self._call(self._protocol.process_exited)
self._try_finish()
# wake up futures waiting for wait()
for waiter in self._exit_waiters:
if not waiter.cancelled():
waiter.set_result(returncode)
self._exit_waiters = None
@coroutine
def _wait(self):
"""Wait until the process exit and return the process return code.
This method is a coroutine."""
if self._returncode is not None:
return self._returncode
waiter = self._loop.create_future()
self._exit_waiters.append(waiter)
return (yield from waiter)
def _try_finish(self):
assert not self._finished
if self._returncode is None:
return
if all(p is not None and p.disconnected
for p in self._pipes.values()):
self._finished = True
self._call(self._call_connection_lost, None)
def _call_connection_lost(self, exc):
try:
self._protocol.connection_lost(exc)
finally:
self._loop = None
self._proc = None
self._protocol = None
class WriteSubprocessPipeProto(protocols.BaseProtocol):
def __init__(self, proc, fd):
self.proc = proc
self.fd = fd
self.pipe = None
self.disconnected = False
def connection_made(self, transport):
self.pipe = transport
def __repr__(self):
return ('<%s fd=%s pipe=%r>'
% (self.__class__.__name__, self.fd, self.pipe))
def connection_lost(self, exc):
self.disconnected = True
self.proc._pipe_connection_lost(self.fd, exc)
self.proc = None
def pause_writing(self):
self.proc._protocol.pause_writing()
def resume_writing(self):
self.proc._protocol.resume_writing()
class ReadSubprocessPipeProto(WriteSubprocessPipeProto,
protocols.Protocol):
def data_received(self, data):
self.proc._pipe_data_received(self.fd, data)

View file

@ -0,0 +1,76 @@
import linecache
import traceback
from . import base_futures
from . import coroutines
def _task_repr_info(task):
info = base_futures._future_repr_info(task)
if task._must_cancel:
# replace status
info[0] = 'cancelling'
coro = coroutines._format_coroutine(task._coro)
info.insert(1, 'coro=<%s>' % coro)
if task._fut_waiter is not None:
info.insert(2, 'wait_for=%r' % task._fut_waiter)
return info
def _task_get_stack(task, limit):
frames = []
try:
# 'async def' coroutines
f = task._coro.cr_frame
except AttributeError:
f = task._coro.gi_frame
if f is not None:
while f is not None:
if limit is not None:
if limit <= 0:
break
limit -= 1
frames.append(f)
f = f.f_back
frames.reverse()
elif task._exception is not None:
tb = task._exception.__traceback__
while tb is not None:
if limit is not None:
if limit <= 0:
break
limit -= 1
frames.append(tb.tb_frame)
tb = tb.tb_next
return frames
def _task_print_stack(task, limit, file):
extracted_list = []
checked = set()
for f in task.get_stack(limit=limit):
lineno = f.f_lineno
co = f.f_code
filename = co.co_filename
name = co.co_name
if filename not in checked:
checked.add(filename)
linecache.checkcache(filename)
line = linecache.getline(filename, lineno, f.f_globals)
extracted_list.append((filename, lineno, name, line))
exc = task._exception
if not extracted_list:
print('No stack for %r' % task, file=file)
elif exc is not None:
print('Traceback for %r (most recent call last):' % task,
file=file)
else:
print('Stack for %r (most recent call last):' % task,
file=file)
traceback.print_list(extracted_list, file=file)
if exc is not None:
for line in traceback.format_exception_only(exc.__class__, exc):
print(line, file=file, end='')

View file

@ -0,0 +1,18 @@
"""Compatibility helpers for the different Python versions."""
import sys
PY34 = sys.version_info >= (3, 4)
PY35 = sys.version_info >= (3, 5)
PY352 = sys.version_info >= (3, 5, 2)
def flatten_list_bytes(list_of_data):
"""Concatenate a sequence of bytes-like objects."""
if not PY34:
# On Python 3.3 and older, bytes.join() doesn't handle
# memoryview.
list_of_data = (
bytes(data) if isinstance(data, memoryview) else data
for data in list_of_data)
return b''.join(list_of_data)

View file

@ -0,0 +1,12 @@
"""Constants."""
# After the connection is lost, log warnings after this many write()s.
LOG_THRESHOLD_FOR_CONNLOST_WRITES = 5
# Seconds to wait before retrying accept().
ACCEPT_RETRY_DELAY = 1
# Number of stack entries to capture in debug mode.
# The large the number, the slower the operation in debug mode
# (see extract_stack() in events.py)
DEBUG_STACK_DEPTH = 10

View file

@ -0,0 +1,353 @@
__all__ = ['coroutine',
'iscoroutinefunction', 'iscoroutine']
import functools
import inspect
import opcode
import os
import sys
import traceback
import types
from . import compat
from . import constants
from . import events
from . import base_futures
from .log import logger
# Opcode of "yield from" instruction
_YIELD_FROM = opcode.opmap['YIELD_FROM']
# If you set _DEBUG to true, @coroutine will wrap the resulting
# generator objects in a CoroWrapper instance (defined below). That
# instance will log a message when the generator is never iterated
# over, which may happen when you forget to use "yield from" with a
# coroutine call. Note that the value of the _DEBUG flag is taken
# when the decorator is used, so to be of any use it must be set
# before you define your coroutines. A downside of using this feature
# is that tracebacks show entries for the CoroWrapper.__next__ method
# when _DEBUG is true.
_DEBUG = (not sys.flags.ignore_environment and
bool(os.environ.get('PYTHONASYNCIODEBUG')))
try:
_types_coroutine = types.coroutine
_types_CoroutineType = types.CoroutineType
except AttributeError:
# Python 3.4
_types_coroutine = None
_types_CoroutineType = None
try:
_inspect_iscoroutinefunction = inspect.iscoroutinefunction
except AttributeError:
# Python 3.4
_inspect_iscoroutinefunction = lambda func: False
try:
from collections.abc import Coroutine as _CoroutineABC, \
Awaitable as _AwaitableABC
except ImportError:
_CoroutineABC = _AwaitableABC = None
# Check for CPython issue #21209
def has_yield_from_bug():
class MyGen:
def __init__(self):
self.send_args = None
def __iter__(self):
return self
def __next__(self):
return 42
def send(self, *what):
self.send_args = what
return None
def yield_from_gen(gen):
yield from gen
value = (1, 2, 3)
gen = MyGen()
coro = yield_from_gen(gen)
next(coro)
coro.send(value)
return gen.send_args != (value,)
_YIELD_FROM_BUG = has_yield_from_bug()
del has_yield_from_bug
def debug_wrapper(gen):
# This function is called from 'sys.set_coroutine_wrapper'.
# We only wrap here coroutines defined via 'async def' syntax.
# Generator-based coroutines are wrapped in @coroutine
# decorator.
return CoroWrapper(gen, None)
class CoroWrapper:
# Wrapper for coroutine object in _DEBUG mode.
def __init__(self, gen, func=None):
assert inspect.isgenerator(gen) or inspect.iscoroutine(gen), gen
self.gen = gen
self.func = func # Used to unwrap @coroutine decorator
self._source_traceback = events.extract_stack(sys._getframe(1))
self.__name__ = getattr(gen, '__name__', None)
self.__qualname__ = getattr(gen, '__qualname__', None)
def __repr__(self):
coro_repr = _format_coroutine(self)
if self._source_traceback:
frame = self._source_traceback[-1]
coro_repr += ', created at %s:%s' % (frame[0], frame[1])
return '<%s %s>' % (self.__class__.__name__, coro_repr)
def __iter__(self):
return self
def __next__(self):
return self.gen.send(None)
if _YIELD_FROM_BUG:
# For for CPython issue #21209: using "yield from" and a custom
# generator, generator.send(tuple) unpacks the tuple instead of passing
# the tuple unchanged. Check if the caller is a generator using "yield
# from" to decide if the parameter should be unpacked or not.
def send(self, *value):
frame = sys._getframe()
caller = frame.f_back
assert caller.f_lasti >= 0
if caller.f_code.co_code[caller.f_lasti] != _YIELD_FROM:
value = value[0]
return self.gen.send(value)
else:
def send(self, value):
return self.gen.send(value)
def throw(self, type, value=None, traceback=None):
return self.gen.throw(type, value, traceback)
def close(self):
return self.gen.close()
@property
def gi_frame(self):
return self.gen.gi_frame
@property
def gi_running(self):
return self.gen.gi_running
@property
def gi_code(self):
return self.gen.gi_code
if compat.PY35:
def __await__(self):
cr_await = getattr(self.gen, 'cr_await', None)
if cr_await is not None:
raise RuntimeError(
"Cannot await on coroutine {!r} while it's "
"awaiting for {!r}".format(self.gen, cr_await))
return self
@property
def gi_yieldfrom(self):
return self.gen.gi_yieldfrom
@property
def cr_await(self):
return self.gen.cr_await
@property
def cr_running(self):
return self.gen.cr_running
@property
def cr_code(self):
return self.gen.cr_code
@property
def cr_frame(self):
return self.gen.cr_frame
def __del__(self):
# Be careful accessing self.gen.frame -- self.gen might not exist.
gen = getattr(self, 'gen', None)
frame = getattr(gen, 'gi_frame', None)
if frame is None:
frame = getattr(gen, 'cr_frame', None)
if frame is not None and frame.f_lasti == -1:
msg = '%r was never yielded from' % self
tb = getattr(self, '_source_traceback', ())
if tb:
tb = ''.join(traceback.format_list(tb))
msg += (f'\nCoroutine object created at '
f'(most recent call last, truncated to '
f'{constants.DEBUG_STACK_DEPTH} last lines):\n')
msg += tb.rstrip()
logger.error(msg)
def coroutine(func):
"""Decorator to mark coroutines.
If the coroutine is not yielded from before it is destroyed,
an error message is logged.
"""
if _inspect_iscoroutinefunction(func):
# In Python 3.5 that's all we need to do for coroutines
# defined with "async def".
# Wrapping in CoroWrapper will happen via
# 'sys.set_coroutine_wrapper' function.
return func
if inspect.isgeneratorfunction(func):
coro = func
else:
@functools.wraps(func)
def coro(*args, **kw):
res = func(*args, **kw)
if (base_futures.isfuture(res) or inspect.isgenerator(res) or
isinstance(res, CoroWrapper)):
res = yield from res
elif _AwaitableABC is not None:
# If 'func' returns an Awaitable (new in 3.5) we
# want to run it.
try:
await_meth = res.__await__
except AttributeError:
pass
else:
if isinstance(res, _AwaitableABC):
res = yield from await_meth()
return res
if not _DEBUG:
if _types_coroutine is None:
wrapper = coro
else:
wrapper = _types_coroutine(coro)
else:
@functools.wraps(func)
def wrapper(*args, **kwds):
w = CoroWrapper(coro(*args, **kwds), func=func)
if w._source_traceback:
del w._source_traceback[-1]
# Python < 3.5 does not implement __qualname__
# on generator objects, so we set it manually.
# We use getattr as some callables (such as
# functools.partial may lack __qualname__).
w.__name__ = getattr(func, '__name__', None)
w.__qualname__ = getattr(func, '__qualname__', None)
return w
wrapper._is_coroutine = _is_coroutine # For iscoroutinefunction().
return wrapper
# A marker for iscoroutinefunction.
_is_coroutine = object()
def iscoroutinefunction(func):
"""Return True if func is a decorated coroutine function."""
return (getattr(func, '_is_coroutine', None) is _is_coroutine or
_inspect_iscoroutinefunction(func))
_COROUTINE_TYPES = (types.GeneratorType, CoroWrapper)
if _CoroutineABC is not None:
_COROUTINE_TYPES += (_CoroutineABC,)
if _types_CoroutineType is not None:
# Prioritize native coroutine check to speed-up
# asyncio.iscoroutine.
_COROUTINE_TYPES = (_types_CoroutineType,) + _COROUTINE_TYPES
def iscoroutine(obj):
"""Return True if obj is a coroutine object."""
return isinstance(obj, _COROUTINE_TYPES)
def _format_coroutine(coro):
assert iscoroutine(coro)
if not hasattr(coro, 'cr_code') and not hasattr(coro, 'gi_code'):
# Most likely a built-in type or a Cython coroutine.
# Built-in types might not have __qualname__ or __name__.
coro_name = getattr(
coro, '__qualname__',
getattr(coro, '__name__', type(coro).__name__))
coro_name = '{}()'.format(coro_name)
running = False
try:
running = coro.cr_running
except AttributeError:
try:
running = coro.gi_running
except AttributeError:
pass
if running:
return '{} running'.format(coro_name)
else:
return coro_name
coro_name = None
if isinstance(coro, CoroWrapper):
func = coro.func
coro_name = coro.__qualname__
if coro_name is not None:
coro_name = '{}()'.format(coro_name)
else:
func = coro
if coro_name is None:
coro_name = events._format_callback(func, (), {})
coro_code = None
if hasattr(coro, 'cr_code') and coro.cr_code:
coro_code = coro.cr_code
elif hasattr(coro, 'gi_code') and coro.gi_code:
coro_code = coro.gi_code
coro_frame = None
if hasattr(coro, 'cr_frame') and coro.cr_frame:
coro_frame = coro.cr_frame
elif hasattr(coro, 'gi_frame') and coro.gi_frame:
coro_frame = coro.gi_frame
filename = '<empty co_filename>'
if coro_code and coro_code.co_filename:
filename = coro_code.co_filename
lineno = 0
coro_repr = coro_name
if (isinstance(coro, CoroWrapper) and
not inspect.isgeneratorfunction(coro.func) and
coro.func is not None):
source = events._get_function_source(coro.func)
if source is not None:
filename, lineno = source
if coro_frame is None:
coro_repr = ('%s done, defined at %s:%s'
% (coro_name, filename, lineno))
else:
coro_repr = ('%s running, defined at %s:%s'
% (coro_name, filename, lineno))
elif coro_frame is not None:
lineno = coro_frame.f_lineno
coro_repr = ('%s running at %s:%s'
% (coro_name, filename, lineno))
elif coro_code:
lineno = coro_code.co_firstlineno
coro_repr = ('%s done, defined at %s:%s'
% (coro_name, filename, lineno))
return coro_repr

715
third_party/python/Lib/asyncio/events.py vendored Normal file
View file

@ -0,0 +1,715 @@
"""Event loop and event loop policy."""
__all__ = ['AbstractEventLoopPolicy',
'AbstractEventLoop', 'AbstractServer',
'Handle', 'TimerHandle',
'get_event_loop_policy', 'set_event_loop_policy',
'get_event_loop', 'set_event_loop', 'new_event_loop',
'get_child_watcher', 'set_child_watcher',
'_set_running_loop', '_get_running_loop',
]
import functools
import inspect
import os
import reprlib
import socket
import subprocess
import sys
import threading
import traceback
from . import compat
from . import constants
def _get_function_source(func):
if compat.PY34:
func = inspect.unwrap(func)
elif hasattr(func, '__wrapped__'):
func = func.__wrapped__
if inspect.isfunction(func):
code = func.__code__
return (code.co_filename, code.co_firstlineno)
if isinstance(func, functools.partial):
return _get_function_source(func.func)
if compat.PY34 and isinstance(func, functools.partialmethod):
return _get_function_source(func.func)
return None
def _format_args_and_kwargs(args, kwargs):
"""Format function arguments and keyword arguments.
Special case for a single parameter: ('hello',) is formatted as ('hello').
"""
# use reprlib to limit the length of the output
items = []
if args:
items.extend(reprlib.repr(arg) for arg in args)
if kwargs:
items.extend('{}={}'.format(k, reprlib.repr(v))
for k, v in kwargs.items())
return '(' + ', '.join(items) + ')'
def _format_callback(func, args, kwargs, suffix=''):
if isinstance(func, functools.partial):
suffix = _format_args_and_kwargs(args, kwargs) + suffix
return _format_callback(func.func, func.args, func.keywords, suffix)
if hasattr(func, '__qualname__') and func.__qualname__:
func_repr = func.__qualname__
elif hasattr(func, '__name__') and func.__name__:
func_repr = func.__name__
else:
func_repr = repr(func)
func_repr += _format_args_and_kwargs(args, kwargs)
if suffix:
func_repr += suffix
return func_repr
def _format_callback_source(func, args):
func_repr = _format_callback(func, args, None)
source = _get_function_source(func)
if source:
func_repr += ' at %s:%s' % source
return func_repr
def extract_stack(f=None, limit=None):
"""Replacement for traceback.extract_stack() that only does the
necessary work for asyncio debug mode.
"""
if f is None:
f = sys._getframe().f_back
if limit is None:
# Limit the amount of work to a reasonable amount, as extract_stack()
# can be called for each coroutine and future in debug mode.
limit = constants.DEBUG_STACK_DEPTH
stack = traceback.StackSummary.extract(traceback.walk_stack(f),
limit=limit,
lookup_lines=False)
stack.reverse()
return stack
class Handle:
"""Object returned by callback registration methods."""
__slots__ = ('_callback', '_args', '_cancelled', '_loop',
'_source_traceback', '_repr', '__weakref__')
def __init__(self, callback, args, loop):
self._loop = loop
self._callback = callback
self._args = args
self._cancelled = False
self._repr = None
if self._loop.get_debug():
self._source_traceback = extract_stack(sys._getframe(1))
else:
self._source_traceback = None
def _repr_info(self):
info = [self.__class__.__name__]
if self._cancelled:
info.append('cancelled')
if self._callback is not None:
info.append(_format_callback_source(self._callback, self._args))
if self._source_traceback:
frame = self._source_traceback[-1]
info.append('created at %s:%s' % (frame[0], frame[1]))
return info
def __repr__(self):
if self._repr is not None:
return self._repr
info = self._repr_info()
return '<%s>' % ' '.join(info)
def cancel(self):
if not self._cancelled:
self._cancelled = True
if self._loop.get_debug():
# Keep a representation in debug mode to keep callback and
# parameters. For example, to log the warning
# "Executing <Handle...> took 2.5 second"
self._repr = repr(self)
self._callback = None
self._args = None
def _run(self):
try:
self._callback(*self._args)
except Exception as exc:
cb = _format_callback_source(self._callback, self._args)
msg = 'Exception in callback {}'.format(cb)
context = {
'message': msg,
'exception': exc,
'handle': self,
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
self = None # Needed to break cycles when an exception occurs.
class TimerHandle(Handle):
"""Object returned by timed callback registration methods."""
__slots__ = ['_scheduled', '_when']
def __init__(self, when, callback, args, loop):
assert when is not None
super().__init__(callback, args, loop)
if self._source_traceback:
del self._source_traceback[-1]
self._when = when
self._scheduled = False
def _repr_info(self):
info = super()._repr_info()
pos = 2 if self._cancelled else 1
info.insert(pos, 'when=%s' % self._when)
return info
def __hash__(self):
return hash(self._when)
def __lt__(self, other):
return self._when < other._when
def __le__(self, other):
if self._when < other._when:
return True
return self.__eq__(other)
def __gt__(self, other):
return self._when > other._when
def __ge__(self, other):
if self._when > other._when:
return True
return self.__eq__(other)
def __eq__(self, other):
if isinstance(other, TimerHandle):
return (self._when == other._when and
self._callback == other._callback and
self._args == other._args and
self._cancelled == other._cancelled)
return NotImplemented
def __ne__(self, other):
equal = self.__eq__(other)
return NotImplemented if equal is NotImplemented else not equal
def cancel(self):
if not self._cancelled:
self._loop._timer_handle_cancelled(self)
super().cancel()
class AbstractServer:
"""Abstract server returned by create_server()."""
def close(self):
"""Stop serving. This leaves existing connections open."""
return NotImplemented
def wait_closed(self):
"""Coroutine to wait until service is closed."""
return NotImplemented
class AbstractEventLoop:
"""Abstract event loop."""
# Running and stopping the event loop.
def run_forever(self):
"""Run the event loop until stop() is called."""
raise NotImplementedError
def run_until_complete(self, future):
"""Run the event loop until a Future is done.
Return the Future's result, or raise its exception.
"""
raise NotImplementedError
def stop(self):
"""Stop the event loop as soon as reasonable.
Exactly how soon that is may depend on the implementation, but
no more I/O callbacks should be scheduled.
"""
raise NotImplementedError
def is_running(self):
"""Return whether the event loop is currently running."""
raise NotImplementedError
def is_closed(self):
"""Returns True if the event loop was closed."""
raise NotImplementedError
def close(self):
"""Close the loop.
The loop should not be running.
This is idempotent and irreversible.
No other methods should be called after this one.
"""
raise NotImplementedError
def shutdown_asyncgens(self):
"""Shutdown all active asynchronous generators."""
raise NotImplementedError
# Methods scheduling callbacks. All these return Handles.
def _timer_handle_cancelled(self, handle):
"""Notification that a TimerHandle has been cancelled."""
raise NotImplementedError
def call_soon(self, callback, *args):
return self.call_later(0, callback, *args)
def call_later(self, delay, callback, *args):
raise NotImplementedError
def call_at(self, when, callback, *args):
raise NotImplementedError
def time(self):
raise NotImplementedError
def create_future(self):
raise NotImplementedError
# Method scheduling a coroutine object: create a task.
def create_task(self, coro):
raise NotImplementedError
# Methods for interacting with threads.
def call_soon_threadsafe(self, callback, *args):
raise NotImplementedError
def run_in_executor(self, executor, func, *args):
raise NotImplementedError
def set_default_executor(self, executor):
raise NotImplementedError
# Network I/O methods returning Futures.
def getaddrinfo(self, host, port, *, family=0, type=0, proto=0, flags=0):
raise NotImplementedError
def getnameinfo(self, sockaddr, flags=0):
raise NotImplementedError
def create_connection(self, protocol_factory, host=None, port=None, *,
ssl=None, family=0, proto=0, flags=0, sock=None,
local_addr=None, server_hostname=None):
raise NotImplementedError
def create_server(self, protocol_factory, host=None, port=None, *,
family=socket.AF_UNSPEC, flags=socket.AI_PASSIVE,
sock=None, backlog=100, ssl=None, reuse_address=None,
reuse_port=None):
"""A coroutine which creates a TCP server bound to host and port.
The return value is a Server object which can be used to stop
the service.
If host is an empty string or None all interfaces are assumed
and a list of multiple sockets will be returned (most likely
one for IPv4 and another one for IPv6). The host parameter can also be a
sequence (e.g. list) of hosts to bind to.
family can be set to either AF_INET or AF_INET6 to force the
socket to use IPv4 or IPv6. If not set it will be determined
from host (defaults to AF_UNSPEC).
flags is a bitmask for getaddrinfo().
sock can optionally be specified in order to use a preexisting
socket object.
backlog is the maximum number of queued connections passed to
listen() (defaults to 100).
ssl can be set to an SSLContext to enable SSL over the
accepted connections.
reuse_address tells the kernel to reuse a local socket in
TIME_WAIT state, without waiting for its natural timeout to
expire. If not specified will automatically be set to True on
UNIX.
reuse_port tells the kernel to allow this endpoint to be bound to
the same port as other existing endpoints are bound to, so long as
they all set this flag when being created. This option is not
supported on Windows.
"""
raise NotImplementedError
def create_unix_connection(self, protocol_factory, path, *,
ssl=None, sock=None,
server_hostname=None):
raise NotImplementedError
def create_unix_server(self, protocol_factory, path, *,
sock=None, backlog=100, ssl=None):
"""A coroutine which creates a UNIX Domain Socket server.
The return value is a Server object, which can be used to stop
the service.
path is a str, representing a file systsem path to bind the
server socket to.
sock can optionally be specified in order to use a preexisting
socket object.
backlog is the maximum number of queued connections passed to
listen() (defaults to 100).
ssl can be set to an SSLContext to enable SSL over the
accepted connections.
"""
raise NotImplementedError
def create_datagram_endpoint(self, protocol_factory,
local_addr=None, remote_addr=None, *,
family=0, proto=0, flags=0,
reuse_address=None, reuse_port=None,
allow_broadcast=None, sock=None):
"""A coroutine which creates a datagram endpoint.
This method will try to establish the endpoint in the background.
When successful, the coroutine returns a (transport, protocol) pair.
protocol_factory must be a callable returning a protocol instance.
socket family AF_INET or socket.AF_INET6 depending on host (or
family if specified), socket type SOCK_DGRAM.
reuse_address tells the kernel to reuse a local socket in
TIME_WAIT state, without waiting for its natural timeout to
expire. If not specified it will automatically be set to True on
UNIX.
reuse_port tells the kernel to allow this endpoint to be bound to
the same port as other existing endpoints are bound to, so long as
they all set this flag when being created. This option is not
supported on Windows and some UNIX's. If the
:py:data:`~socket.SO_REUSEPORT` constant is not defined then this
capability is unsupported.
allow_broadcast tells the kernel to allow this endpoint to send
messages to the broadcast address.
sock can optionally be specified in order to use a preexisting
socket object.
"""
raise NotImplementedError
# Pipes and subprocesses.
def connect_read_pipe(self, protocol_factory, pipe):
"""Register read pipe in event loop. Set the pipe to non-blocking mode.
protocol_factory should instantiate object with Protocol interface.
pipe is a file-like object.
Return pair (transport, protocol), where transport supports the
ReadTransport interface."""
# The reason to accept file-like object instead of just file descriptor
# is: we need to own pipe and close it at transport finishing
# Can got complicated errors if pass f.fileno(),
# close fd in pipe transport then close f and vise versa.
raise NotImplementedError
def connect_write_pipe(self, protocol_factory, pipe):
"""Register write pipe in event loop.
protocol_factory should instantiate object with BaseProtocol interface.
Pipe is file-like object already switched to nonblocking.
Return pair (transport, protocol), where transport support
WriteTransport interface."""
# The reason to accept file-like object instead of just file descriptor
# is: we need to own pipe and close it at transport finishing
# Can got complicated errors if pass f.fileno(),
# close fd in pipe transport then close f and vise versa.
raise NotImplementedError
def subprocess_shell(self, protocol_factory, cmd, *, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
**kwargs):
raise NotImplementedError
def subprocess_exec(self, protocol_factory, *args, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
**kwargs):
raise NotImplementedError
# Ready-based callback registration methods.
# The add_*() methods return None.
# The remove_*() methods return True if something was removed,
# False if there was nothing to delete.
def add_reader(self, fd, callback, *args):
raise NotImplementedError
def remove_reader(self, fd):
raise NotImplementedError
def add_writer(self, fd, callback, *args):
raise NotImplementedError
def remove_writer(self, fd):
raise NotImplementedError
# Completion based I/O methods returning Futures.
def sock_recv(self, sock, nbytes):
raise NotImplementedError
def sock_sendall(self, sock, data):
raise NotImplementedError
def sock_connect(self, sock, address):
raise NotImplementedError
def sock_accept(self, sock):
raise NotImplementedError
# Signal handling.
def add_signal_handler(self, sig, callback, *args):
raise NotImplementedError
def remove_signal_handler(self, sig):
raise NotImplementedError
# Task factory.
def set_task_factory(self, factory):
raise NotImplementedError
def get_task_factory(self):
raise NotImplementedError
# Error handlers.
def get_exception_handler(self):
raise NotImplementedError
def set_exception_handler(self, handler):
raise NotImplementedError
def default_exception_handler(self, context):
raise NotImplementedError
def call_exception_handler(self, context):
raise NotImplementedError
# Debug flag management.
def get_debug(self):
raise NotImplementedError
def set_debug(self, enabled):
raise NotImplementedError
class AbstractEventLoopPolicy:
"""Abstract policy for accessing the event loop."""
def get_event_loop(self):
"""Get the event loop for the current context.
Returns an event loop object implementing the BaseEventLoop interface,
or raises an exception in case no event loop has been set for the
current context and the current policy does not specify to create one.
It should never return None."""
raise NotImplementedError
def set_event_loop(self, loop):
"""Set the event loop for the current context to loop."""
raise NotImplementedError
def new_event_loop(self):
"""Create and return a new event loop object according to this
policy's rules. If there's need to set this loop as the event loop for
the current context, set_event_loop must be called explicitly."""
raise NotImplementedError
# Child processes handling (Unix only).
def get_child_watcher(self):
"Get the watcher for child processes."
raise NotImplementedError
def set_child_watcher(self, watcher):
"""Set the watcher for child processes."""
raise NotImplementedError
class BaseDefaultEventLoopPolicy(AbstractEventLoopPolicy):
"""Default policy implementation for accessing the event loop.
In this policy, each thread has its own event loop. However, we
only automatically create an event loop by default for the main
thread; other threads by default have no event loop.
Other policies may have different rules (e.g. a single global
event loop, or automatically creating an event loop per thread, or
using some other notion of context to which an event loop is
associated).
"""
_loop_factory = None
class _Local(threading.local):
_loop = None
_set_called = False
def __init__(self):
self._local = self._Local()
def get_event_loop(self):
"""Get the event loop.
This may be None or an instance of EventLoop.
"""
if (self._local._loop is None and
not self._local._set_called and
isinstance(threading.current_thread(), threading._MainThread)):
self.set_event_loop(self.new_event_loop())
if self._local._loop is None:
raise RuntimeError('There is no current event loop in thread %r.'
% threading.current_thread().name)
return self._local._loop
def set_event_loop(self, loop):
"""Set the event loop."""
self._local._set_called = True
assert loop is None or isinstance(loop, AbstractEventLoop)
self._local._loop = loop
def new_event_loop(self):
"""Create a new event loop.
You must call set_event_loop() to make this the current event
loop.
"""
return self._loop_factory()
# Event loop policy. The policy itself is always global, even if the
# policy's rules say that there is an event loop per thread (or other
# notion of context). The default policy is installed by the first
# call to get_event_loop_policy().
_event_loop_policy = None
# Lock for protecting the on-the-fly creation of the event loop policy.
_lock = threading.Lock()
# A TLS for the running event loop, used by _get_running_loop.
class _RunningLoop(threading.local):
loop_pid = (None, None)
_running_loop = _RunningLoop()
def _get_running_loop():
"""Return the running event loop or None.
This is a low-level function intended to be used by event loops.
This function is thread-specific.
"""
running_loop, pid = _running_loop.loop_pid
if running_loop is not None and pid == os.getpid():
return running_loop
def _set_running_loop(loop):
"""Set the running event loop.
This is a low-level function intended to be used by event loops.
This function is thread-specific.
"""
_running_loop.loop_pid = (loop, os.getpid())
def _init_event_loop_policy():
global _event_loop_policy
with _lock:
if _event_loop_policy is None: # pragma: no branch
from . import DefaultEventLoopPolicy
_event_loop_policy = DefaultEventLoopPolicy()
def get_event_loop_policy():
"""Get the current event loop policy."""
if _event_loop_policy is None:
_init_event_loop_policy()
return _event_loop_policy
def set_event_loop_policy(policy):
"""Set the current event loop policy.
If policy is None, the default policy is restored."""
global _event_loop_policy
assert policy is None or isinstance(policy, AbstractEventLoopPolicy)
_event_loop_policy = policy
def get_event_loop():
"""Return an asyncio event loop.
When called from a coroutine or a callback (e.g. scheduled with call_soon
or similar API), this function will always return the running event loop.
If there is no running event loop set, the function will return
the result of `get_event_loop_policy().get_event_loop()` call.
"""
current_loop = _get_running_loop()
if current_loop is not None:
return current_loop
return get_event_loop_policy().get_event_loop()
def set_event_loop(loop):
"""Equivalent to calling get_event_loop_policy().set_event_loop(loop)."""
get_event_loop_policy().set_event_loop(loop)
def new_event_loop():
"""Equivalent to calling get_event_loop_policy().new_event_loop()."""
return get_event_loop_policy().new_event_loop()
def get_child_watcher():
"""Equivalent to calling get_event_loop_policy().get_child_watcher()."""
return get_event_loop_policy().get_child_watcher()
def set_child_watcher(watcher):
"""Equivalent to calling
get_event_loop_policy().set_child_watcher(watcher)."""
return get_event_loop_policy().set_child_watcher(watcher)

View file

@ -0,0 +1,442 @@
"""A Future class similar to the one in PEP 3148."""
__all__ = ['CancelledError', 'TimeoutError', 'InvalidStateError',
'Future', 'wrap_future', 'isfuture']
import concurrent.futures
import logging
import sys
import traceback
from . import base_futures
from . import compat
from . import events
CancelledError = base_futures.CancelledError
InvalidStateError = base_futures.InvalidStateError
TimeoutError = base_futures.TimeoutError
isfuture = base_futures.isfuture
_PENDING = base_futures._PENDING
_CANCELLED = base_futures._CANCELLED
_FINISHED = base_futures._FINISHED
STACK_DEBUG = logging.DEBUG - 1 # heavy-duty debugging
class _TracebackLogger:
"""Helper to log a traceback upon destruction if not cleared.
This solves a nasty problem with Futures and Tasks that have an
exception set: if nobody asks for the exception, the exception is
never logged. This violates the Zen of Python: 'Errors should
never pass silently. Unless explicitly silenced.'
However, we don't want to log the exception as soon as
set_exception() is called: if the calling code is written
properly, it will get the exception and handle it properly. But
we *do* want to log it if result() or exception() was never called
-- otherwise developers waste a lot of time wondering why their
buggy code fails silently.
An earlier attempt added a __del__() method to the Future class
itself, but this backfired because the presence of __del__()
prevents garbage collection from breaking cycles. A way out of
this catch-22 is to avoid having a __del__() method on the Future
class itself, but instead to have a reference to a helper object
with a __del__() method that logs the traceback, where we ensure
that the helper object doesn't participate in cycles, and only the
Future has a reference to it.
The helper object is added when set_exception() is called. When
the Future is collected, and the helper is present, the helper
object is also collected, and its __del__() method will log the
traceback. When the Future's result() or exception() method is
called (and a helper object is present), it removes the helper
object, after calling its clear() method to prevent it from
logging.
One downside is that we do a fair amount of work to extract the
traceback from the exception, even when it is never logged. It
would seem cheaper to just store the exception object, but that
references the traceback, which references stack frames, which may
reference the Future, which references the _TracebackLogger, and
then the _TracebackLogger would be included in a cycle, which is
what we're trying to avoid! As an optimization, we don't
immediately format the exception; we only do the work when
activate() is called, which call is delayed until after all the
Future's callbacks have run. Since usually a Future has at least
one callback (typically set by 'yield from') and usually that
callback extracts the callback, thereby removing the need to
format the exception.
PS. I don't claim credit for this solution. I first heard of it
in a discussion about closing files when they are collected.
"""
__slots__ = ('loop', 'source_traceback', 'exc', 'tb')
def __init__(self, future, exc):
self.loop = future._loop
self.source_traceback = future._source_traceback
self.exc = exc
self.tb = None
def activate(self):
exc = self.exc
if exc is not None:
self.exc = None
self.tb = traceback.format_exception(exc.__class__, exc,
exc.__traceback__)
def clear(self):
self.exc = None
self.tb = None
def __del__(self):
if self.tb:
msg = 'Future/Task exception was never retrieved\n'
if self.source_traceback:
src = ''.join(traceback.format_list(self.source_traceback))
msg += 'Future/Task created at (most recent call last):\n'
msg += '%s\n' % src.rstrip()
msg += ''.join(self.tb).rstrip()
self.loop.call_exception_handler({'message': msg})
class Future:
"""This class is *almost* compatible with concurrent.futures.Future.
Differences:
- This class is not thread-safe.
- result() and exception() do not take a timeout argument and
raise an exception when the future isn't done yet.
- Callbacks registered with add_done_callback() are always called
via the event loop's call_soon().
- This class is not compatible with the wait() and as_completed()
methods in the concurrent.futures package.
(In Python 3.4 or later we may be able to unify the implementations.)
"""
# Class variables serving as defaults for instance variables.
_state = _PENDING
_result = None
_exception = None
_loop = None
_source_traceback = None
# This field is used for a dual purpose:
# - Its presence is a marker to declare that a class implements
# the Future protocol (i.e. is intended to be duck-type compatible).
# The value must also be not-None, to enable a subclass to declare
# that it is not compatible by setting this to None.
# - It is set by __iter__() below so that Task._step() can tell
# the difference between `yield from Future()` (correct) vs.
# `yield Future()` (incorrect).
_asyncio_future_blocking = False
_log_traceback = False
def __init__(self, *, loop=None):
"""Initialize the future.
The optional event_loop argument allows explicitly setting the event
loop object used by the future. If it's not provided, the future uses
the default event loop.
"""
if loop is None:
self._loop = events.get_event_loop()
else:
self._loop = loop
self._callbacks = []
if self._loop.get_debug():
self._source_traceback = events.extract_stack(sys._getframe(1))
_repr_info = base_futures._future_repr_info
def __repr__(self):
return '<%s %s>' % (self.__class__.__name__, ' '.join(self._repr_info()))
# On Python 3.3 and older, objects with a destructor part of a reference
# cycle are never destroyed. It's not more the case on Python 3.4 thanks
# to the PEP 442.
if compat.PY34:
def __del__(self):
if not self._log_traceback:
# set_exception() was not called, or result() or exception()
# has consumed the exception
return
exc = self._exception
context = {
'message': ('%s exception was never retrieved'
% self.__class__.__name__),
'exception': exc,
'future': self,
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
def cancel(self):
"""Cancel the future and schedule callbacks.
If the future is already done or cancelled, return False. Otherwise,
change the future's state to cancelled, schedule the callbacks and
return True.
"""
self._log_traceback = False
if self._state != _PENDING:
return False
self._state = _CANCELLED
self._schedule_callbacks()
return True
def _schedule_callbacks(self):
"""Internal: Ask the event loop to call all callbacks.
The callbacks are scheduled to be called as soon as possible. Also
clears the callback list.
"""
callbacks = self._callbacks[:]
if not callbacks:
return
self._callbacks[:] = []
for callback in callbacks:
self._loop.call_soon(callback, self)
def cancelled(self):
"""Return True if the future was cancelled."""
return self._state == _CANCELLED
# Don't implement running(); see http://bugs.python.org/issue18699
def done(self):
"""Return True if the future is done.
Done means either that a result / exception are available, or that the
future was cancelled.
"""
return self._state != _PENDING
def result(self):
"""Return the result this future represents.
If the future has been cancelled, raises CancelledError. If the
future's result isn't yet available, raises InvalidStateError. If
the future is done and has an exception set, this exception is raised.
"""
if self._state == _CANCELLED:
raise CancelledError
if self._state != _FINISHED:
raise InvalidStateError('Result is not ready.')
self._log_traceback = False
if self._exception is not None:
raise self._exception
return self._result
def exception(self):
"""Return the exception that was set on this future.
The exception (or None if no exception was set) is returned only if
the future is done. If the future has been cancelled, raises
CancelledError. If the future isn't done yet, raises
InvalidStateError.
"""
if self._state == _CANCELLED:
raise CancelledError
if self._state != _FINISHED:
raise InvalidStateError('Exception is not set.')
self._log_traceback = False
return self._exception
def add_done_callback(self, fn):
"""Add a callback to be run when the future becomes done.
The callback is called with a single argument - the future object. If
the future is already done when this is called, the callback is
scheduled with call_soon.
"""
if self._state != _PENDING:
self._loop.call_soon(fn, self)
else:
self._callbacks.append(fn)
# New method not in PEP 3148.
def remove_done_callback(self, fn):
"""Remove all instances of a callback from the "call when done" list.
Returns the number of callbacks removed.
"""
filtered_callbacks = [f for f in self._callbacks if f != fn]
removed_count = len(self._callbacks) - len(filtered_callbacks)
if removed_count:
self._callbacks[:] = filtered_callbacks
return removed_count
# So-called internal methods (note: no set_running_or_notify_cancel()).
def set_result(self, result):
"""Mark the future done and set its result.
If the future is already done when this method is called, raises
InvalidStateError.
"""
if self._state != _PENDING:
raise InvalidStateError('{}: {!r}'.format(self._state, self))
self._result = result
self._state = _FINISHED
self._schedule_callbacks()
def set_exception(self, exception):
"""Mark the future done and set an exception.
If the future is already done when this method is called, raises
InvalidStateError.
"""
if self._state != _PENDING:
raise InvalidStateError('{}: {!r}'.format(self._state, self))
if isinstance(exception, type):
exception = exception()
if type(exception) is StopIteration:
raise TypeError("StopIteration interacts badly with generators "
"and cannot be raised into a Future")
self._exception = exception
self._state = _FINISHED
self._schedule_callbacks()
if compat.PY34:
self._log_traceback = True
else:
self._tb_logger = _TracebackLogger(self, exception)
# Arrange for the logger to be activated after all callbacks
# have had a chance to call result() or exception().
self._loop.call_soon(self._tb_logger.activate)
def __iter__(self):
if not self.done():
self._asyncio_future_blocking = True
yield self # This tells Task to wait for completion.
assert self.done(), "yield from wasn't used with future"
return self.result() # May raise too.
if compat.PY35:
__await__ = __iter__ # make compatible with 'await' expression
# Needed for testing purposes.
_PyFuture = Future
def _set_result_unless_cancelled(fut, result):
"""Helper setting the result only if the future was not cancelled."""
if fut.cancelled():
return
fut.set_result(result)
def _set_concurrent_future_state(concurrent, source):
"""Copy state from a future to a concurrent.futures.Future."""
assert source.done()
if source.cancelled():
concurrent.cancel()
if not concurrent.set_running_or_notify_cancel():
return
exception = source.exception()
if exception is not None:
concurrent.set_exception(exception)
else:
result = source.result()
concurrent.set_result(result)
def _copy_future_state(source, dest):
"""Internal helper to copy state from another Future.
The other Future may be a concurrent.futures.Future.
"""
assert source.done()
if dest.cancelled():
return
assert not dest.done()
if source.cancelled():
dest.cancel()
else:
exception = source.exception()
if exception is not None:
dest.set_exception(exception)
else:
result = source.result()
dest.set_result(result)
def _chain_future(source, destination):
"""Chain two futures so that when one completes, so does the other.
The result (or exception) of source will be copied to destination.
If destination is cancelled, source gets cancelled too.
Compatible with both asyncio.Future and concurrent.futures.Future.
"""
if not isfuture(source) and not isinstance(source,
concurrent.futures.Future):
raise TypeError('A future is required for source argument')
if not isfuture(destination) and not isinstance(destination,
concurrent.futures.Future):
raise TypeError('A future is required for destination argument')
source_loop = source._loop if isfuture(source) else None
dest_loop = destination._loop if isfuture(destination) else None
def _set_state(future, other):
if isfuture(future):
_copy_future_state(other, future)
else:
_set_concurrent_future_state(future, other)
def _call_check_cancel(destination):
if destination.cancelled():
if source_loop is None or source_loop is dest_loop:
source.cancel()
else:
source_loop.call_soon_threadsafe(source.cancel)
def _call_set_state(source):
if (destination.cancelled() and
dest_loop is not None and dest_loop.is_closed()):
return
if dest_loop is None or dest_loop is source_loop:
_set_state(destination, source)
else:
dest_loop.call_soon_threadsafe(_set_state, destination, source)
destination.add_done_callback(_call_check_cancel)
source.add_done_callback(_call_set_state)
def wrap_future(future, *, loop=None):
"""Wrap concurrent.futures.Future object."""
if isfuture(future):
return future
assert isinstance(future, concurrent.futures.Future), \
'concurrent.futures.Future is expected, got {!r}'.format(future)
if loop is None:
loop = events.get_event_loop()
new_future = loop.create_future()
_chain_future(future, new_future)
return new_future
try:
import _asyncio
except ImportError:
pass
else:
# _CFuture is needed for tests.
Future = _CFuture = _asyncio.Future

501
third_party/python/Lib/asyncio/locks.py vendored Normal file
View file

@ -0,0 +1,501 @@
"""Synchronization primitives."""
__all__ = ['Lock', 'Event', 'Condition', 'Semaphore', 'BoundedSemaphore']
import collections
from . import compat
from . import events
from . import futures
from .coroutines import coroutine
class _ContextManager:
"""Context manager.
This enables the following idiom for acquiring and releasing a
lock around a block:
with (yield from lock):
<block>
while failing loudly when accidentally using:
with lock:
<block>
"""
def __init__(self, lock):
self._lock = lock
def __enter__(self):
# We have no use for the "as ..." clause in the with
# statement for locks.
return None
def __exit__(self, *args):
try:
self._lock.release()
finally:
self._lock = None # Crudely prevent reuse.
class _ContextManagerMixin:
def __enter__(self):
raise RuntimeError(
'"yield from" should be used as context manager expression')
def __exit__(self, *args):
# This must exist because __enter__ exists, even though that
# always raises; that's how the with-statement works.
pass
@coroutine
def __iter__(self):
# This is not a coroutine. It is meant to enable the idiom:
#
# with (yield from lock):
# <block>
#
# as an alternative to:
#
# yield from lock.acquire()
# try:
# <block>
# finally:
# lock.release()
yield from self.acquire()
return _ContextManager(self)
if compat.PY35:
def __await__(self):
# To make "with await lock" work.
yield from self.acquire()
return _ContextManager(self)
@coroutine
def __aenter__(self):
yield from self.acquire()
# We have no use for the "as ..." clause in the with
# statement for locks.
return None
@coroutine
def __aexit__(self, exc_type, exc, tb):
self.release()
class Lock(_ContextManagerMixin):
"""Primitive lock objects.
A primitive lock is a synchronization primitive that is not owned
by a particular coroutine when locked. A primitive lock is in one
of two states, 'locked' or 'unlocked'.
It is created in the unlocked state. It has two basic methods,
acquire() and release(). When the state is unlocked, acquire()
changes the state to locked and returns immediately. When the
state is locked, acquire() blocks until a call to release() in
another coroutine changes it to unlocked, then the acquire() call
resets it to locked and returns. The release() method should only
be called in the locked state; it changes the state to unlocked
and returns immediately. If an attempt is made to release an
unlocked lock, a RuntimeError will be raised.
When more than one coroutine is blocked in acquire() waiting for
the state to turn to unlocked, only one coroutine proceeds when a
release() call resets the state to unlocked; first coroutine which
is blocked in acquire() is being processed.
acquire() is a coroutine and should be called with 'yield from'.
Locks also support the context management protocol. '(yield from lock)'
should be used as the context manager expression.
Usage:
lock = Lock()
...
yield from lock
try:
...
finally:
lock.release()
Context manager usage:
lock = Lock()
...
with (yield from lock):
...
Lock objects can be tested for locking state:
if not lock.locked():
yield from lock
else:
# lock is acquired
...
"""
def __init__(self, *, loop=None):
self._waiters = collections.deque()
self._locked = False
if loop is not None:
self._loop = loop
else:
self._loop = events.get_event_loop()
def __repr__(self):
res = super().__repr__()
extra = 'locked' if self._locked else 'unlocked'
if self._waiters:
extra = '{},waiters:{}'.format(extra, len(self._waiters))
return '<{} [{}]>'.format(res[1:-1], extra)
def locked(self):
"""Return True if lock is acquired."""
return self._locked
@coroutine
def acquire(self):
"""Acquire a lock.
This method blocks until the lock is unlocked, then sets it to
locked and returns True.
"""
if not self._locked and all(w.cancelled() for w in self._waiters):
self._locked = True
return True
fut = self._loop.create_future()
self._waiters.append(fut)
# Finally block should be called before the CancelledError
# handling as we don't want CancelledError to call
# _wake_up_first() and attempt to wake up itself.
try:
try:
yield from fut
finally:
self._waiters.remove(fut)
except futures.CancelledError:
if not self._locked:
self._wake_up_first()
raise
self._locked = True
return True
def release(self):
"""Release a lock.
When the lock is locked, reset it to unlocked, and return.
If any other coroutines are blocked waiting for the lock to become
unlocked, allow exactly one of them to proceed.
When invoked on an unlocked lock, a RuntimeError is raised.
There is no return value.
"""
if self._locked:
self._locked = False
self._wake_up_first()
else:
raise RuntimeError('Lock is not acquired.')
def _wake_up_first(self):
"""Wake up the first waiter if it isn't done."""
try:
fut = next(iter(self._waiters))
except StopIteration:
return
# .done() necessarily means that a waiter will wake up later on and
# either take the lock, or, if it was cancelled and lock wasn't
# taken already, will hit this again and wake up a new waiter.
if not fut.done():
fut.set_result(True)
class Event:
"""Asynchronous equivalent to threading.Event.
Class implementing event objects. An event manages a flag that can be set
to true with the set() method and reset to false with the clear() method.
The wait() method blocks until the flag is true. The flag is initially
false.
"""
def __init__(self, *, loop=None):
self._waiters = collections.deque()
self._value = False
if loop is not None:
self._loop = loop
else:
self._loop = events.get_event_loop()
def __repr__(self):
res = super().__repr__()
extra = 'set' if self._value else 'unset'
if self._waiters:
extra = '{},waiters:{}'.format(extra, len(self._waiters))
return '<{} [{}]>'.format(res[1:-1], extra)
def is_set(self):
"""Return True if and only if the internal flag is true."""
return self._value
def set(self):
"""Set the internal flag to true. All coroutines waiting for it to
become true are awakened. Coroutine that call wait() once the flag is
true will not block at all.
"""
if not self._value:
self._value = True
for fut in self._waiters:
if not fut.done():
fut.set_result(True)
def clear(self):
"""Reset the internal flag to false. Subsequently, coroutines calling
wait() will block until set() is called to set the internal flag
to true again."""
self._value = False
@coroutine
def wait(self):
"""Block until the internal flag is true.
If the internal flag is true on entry, return True
immediately. Otherwise, block until another coroutine calls
set() to set the flag to true, then return True.
"""
if self._value:
return True
fut = self._loop.create_future()
self._waiters.append(fut)
try:
yield from fut
return True
finally:
self._waiters.remove(fut)
class Condition(_ContextManagerMixin):
"""Asynchronous equivalent to threading.Condition.
This class implements condition variable objects. A condition variable
allows one or more coroutines to wait until they are notified by another
coroutine.
A new Lock object is created and used as the underlying lock.
"""
def __init__(self, lock=None, *, loop=None):
if loop is not None:
self._loop = loop
else:
self._loop = events.get_event_loop()
if lock is None:
lock = Lock(loop=self._loop)
elif lock._loop is not self._loop:
raise ValueError("loop argument must agree with lock")
self._lock = lock
# Export the lock's locked(), acquire() and release() methods.
self.locked = lock.locked
self.acquire = lock.acquire
self.release = lock.release
self._waiters = collections.deque()
def __repr__(self):
res = super().__repr__()
extra = 'locked' if self.locked() else 'unlocked'
if self._waiters:
extra = '{},waiters:{}'.format(extra, len(self._waiters))
return '<{} [{}]>'.format(res[1:-1], extra)
@coroutine
def wait(self):
"""Wait until notified.
If the calling coroutine has not acquired the lock when this
method is called, a RuntimeError is raised.
This method releases the underlying lock, and then blocks
until it is awakened by a notify() or notify_all() call for
the same condition variable in another coroutine. Once
awakened, it re-acquires the lock and returns True.
"""
if not self.locked():
raise RuntimeError('cannot wait on un-acquired lock')
self.release()
try:
fut = self._loop.create_future()
self._waiters.append(fut)
try:
yield from fut
return True
finally:
self._waiters.remove(fut)
finally:
# Must reacquire lock even if wait is cancelled
cancelled = False
while True:
try:
yield from self.acquire()
break
except futures.CancelledError:
cancelled = True
if cancelled:
raise futures.CancelledError
@coroutine
def wait_for(self, predicate):
"""Wait until a predicate becomes true.
The predicate should be a callable which result will be
interpreted as a boolean value. The final predicate value is
the return value.
"""
result = predicate()
while not result:
yield from self.wait()
result = predicate()
return result
def notify(self, n=1):
"""By default, wake up one coroutine waiting on this condition, if any.
If the calling coroutine has not acquired the lock when this method
is called, a RuntimeError is raised.
This method wakes up at most n of the coroutines waiting for the
condition variable; it is a no-op if no coroutines are waiting.
Note: an awakened coroutine does not actually return from its
wait() call until it can reacquire the lock. Since notify() does
not release the lock, its caller should.
"""
if not self.locked():
raise RuntimeError('cannot notify on un-acquired lock')
idx = 0
for fut in self._waiters:
if idx >= n:
break
if not fut.done():
idx += 1
fut.set_result(False)
def notify_all(self):
"""Wake up all threads waiting on this condition. This method acts
like notify(), but wakes up all waiting threads instead of one. If the
calling thread has not acquired the lock when this method is called,
a RuntimeError is raised.
"""
self.notify(len(self._waiters))
class Semaphore(_ContextManagerMixin):
"""A Semaphore implementation.
A semaphore manages an internal counter which is decremented by each
acquire() call and incremented by each release() call. The counter
can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other thread calls release().
Semaphores also support the context management protocol.
The optional argument gives the initial value for the internal
counter; it defaults to 1. If the value given is less than 0,
ValueError is raised.
"""
def __init__(self, value=1, *, loop=None):
if value < 0:
raise ValueError("Semaphore initial value must be >= 0")
self._value = value
self._waiters = collections.deque()
if loop is not None:
self._loop = loop
else:
self._loop = events.get_event_loop()
def __repr__(self):
res = super().__repr__()
extra = 'locked' if self.locked() else 'unlocked,value:{}'.format(
self._value)
if self._waiters:
extra = '{},waiters:{}'.format(extra, len(self._waiters))
return '<{} [{}]>'.format(res[1:-1], extra)
def _wake_up_next(self):
while self._waiters:
waiter = self._waiters.popleft()
if not waiter.done():
waiter.set_result(None)
return
def locked(self):
"""Returns True if semaphore can not be acquired immediately."""
return self._value == 0
@coroutine
def acquire(self):
"""Acquire a semaphore.
If the internal counter is larger than zero on entry,
decrement it by one and return True immediately. If it is
zero on entry, block, waiting until some other coroutine has
called release() to make it larger than 0, and then return
True.
"""
while self._value <= 0:
fut = self._loop.create_future()
self._waiters.append(fut)
try:
yield from fut
except:
# See the similar code in Queue.get.
fut.cancel()
if self._value > 0 and not fut.cancelled():
self._wake_up_next()
raise
self._value -= 1
return True
def release(self):
"""Release a semaphore, incrementing the internal counter by one.
When it was zero on entry and another coroutine is waiting for it to
become larger than zero again, wake up that coroutine.
"""
self._value += 1
self._wake_up_next()
class BoundedSemaphore(Semaphore):
"""A bounded semaphore implementation.
This raises ValueError in release() if it would increase the value
above the initial value.
"""
def __init__(self, value=1, *, loop=None):
self._bound_value = value
super().__init__(value, loop=loop)
def release(self):
if self._value >= self._bound_value:
raise ValueError('BoundedSemaphore released too many times')
super().release()

7
third_party/python/Lib/asyncio/log.py vendored Normal file
View file

@ -0,0 +1,7 @@
"""Logging configuration."""
import logging
# Name the logger after the package.
logger = logging.getLogger(__package__)

View file

@ -0,0 +1,556 @@
"""Event loop using a proactor and related classes.
A proactor is a "notify-on-completion" multiplexer. Currently a
proactor is only implemented on Windows with IOCP.
"""
__all__ = ['BaseProactorEventLoop']
import socket
import warnings
from . import base_events
from . import compat
from . import constants
from . import futures
from . import sslproto
from . import transports
from .log import logger
class _ProactorBasePipeTransport(transports._FlowControlMixin,
transports.BaseTransport):
"""Base class for pipe and socket transports."""
def __init__(self, loop, sock, protocol, waiter=None,
extra=None, server=None):
super().__init__(extra, loop)
self._set_extra(sock)
self._sock = sock
self._protocol = protocol
self._server = server
self._buffer = None # None or bytearray.
self._read_fut = None
self._write_fut = None
self._pending_write = 0
self._conn_lost = 0
self._closing = False # Set when close() called.
self._eof_written = False
if self._server is not None:
self._server._attach()
self._loop.call_soon(self._protocol.connection_made, self)
if waiter is not None:
# only wake up the waiter when connection_made() has been called
self._loop.call_soon(futures._set_result_unless_cancelled,
waiter, None)
def __repr__(self):
info = [self.__class__.__name__]
if self._sock is None:
info.append('closed')
elif self._closing:
info.append('closing')
if self._sock is not None:
info.append('fd=%s' % self._sock.fileno())
if self._read_fut is not None:
info.append('read=%s' % self._read_fut)
if self._write_fut is not None:
info.append("write=%r" % self._write_fut)
if self._buffer:
bufsize = len(self._buffer)
info.append('write_bufsize=%s' % bufsize)
if self._eof_written:
info.append('EOF written')
return '<%s>' % ' '.join(info)
def _set_extra(self, sock):
self._extra['pipe'] = sock
def set_protocol(self, protocol):
self._protocol = protocol
def get_protocol(self):
return self._protocol
def is_closing(self):
return self._closing
def close(self):
if self._closing:
return
self._closing = True
self._conn_lost += 1
if not self._buffer and self._write_fut is None:
self._loop.call_soon(self._call_connection_lost, None)
if self._read_fut is not None:
self._read_fut.cancel()
self._read_fut = None
# On Python 3.3 and older, objects with a destructor part of a reference
# cycle are never destroyed. It's not more the case on Python 3.4 thanks
# to the PEP 442.
if compat.PY34:
def __del__(self):
if self._sock is not None:
warnings.warn("unclosed transport %r" % self, ResourceWarning,
source=self)
self.close()
def _fatal_error(self, exc, message='Fatal error on pipe transport'):
if isinstance(exc, base_events._FATAL_ERROR_IGNORE):
if self._loop.get_debug():
logger.debug("%r: %s", self, message, exc_info=True)
else:
self._loop.call_exception_handler({
'message': message,
'exception': exc,
'transport': self,
'protocol': self._protocol,
})
self._force_close(exc)
def _force_close(self, exc):
if self._closing:
return
self._closing = True
self._conn_lost += 1
if self._write_fut:
self._write_fut.cancel()
self._write_fut = None
if self._read_fut:
self._read_fut.cancel()
self._read_fut = None
self._pending_write = 0
self._buffer = None
self._loop.call_soon(self._call_connection_lost, exc)
def _call_connection_lost(self, exc):
try:
self._protocol.connection_lost(exc)
finally:
# XXX If there is a pending overlapped read on the other
# end then it may fail with ERROR_NETNAME_DELETED if we
# just close our end. First calling shutdown() seems to
# cure it, but maybe using DisconnectEx() would be better.
if hasattr(self._sock, 'shutdown'):
self._sock.shutdown(socket.SHUT_RDWR)
self._sock.close()
self._sock = None
server = self._server
if server is not None:
server._detach()
self._server = None
def get_write_buffer_size(self):
size = self._pending_write
if self._buffer is not None:
size += len(self._buffer)
return size
class _ProactorReadPipeTransport(_ProactorBasePipeTransport,
transports.ReadTransport):
"""Transport for read pipes."""
def __init__(self, loop, sock, protocol, waiter=None,
extra=None, server=None):
super().__init__(loop, sock, protocol, waiter, extra, server)
self._paused = False
self._reschedule_on_resume = False
self._loop.call_soon(self._loop_reading)
def pause_reading(self):
if self._closing or self._paused:
return
self._paused = True
if self._loop.get_debug():
logger.debug("%r pauses reading", self)
def resume_reading(self):
if self._closing or not self._paused:
return
self._paused = False
if self._reschedule_on_resume:
self._loop.call_soon(self._loop_reading, self._read_fut)
self._reschedule_on_resume = False
if self._loop.get_debug():
logger.debug("%r resumes reading", self)
def _loop_reading(self, fut=None):
if self._paused:
self._reschedule_on_resume = True
return
data = None
try:
if fut is not None:
assert self._read_fut is fut or (self._read_fut is None and
self._closing)
self._read_fut = None
data = fut.result() # deliver data later in "finally" clause
if self._closing:
# since close() has been called we ignore any read data
data = None
return
if data == b'':
# we got end-of-file so no need to reschedule a new read
return
# reschedule a new read
self._read_fut = self._loop._proactor.recv(self._sock, 4096)
except ConnectionAbortedError as exc:
if not self._closing:
self._fatal_error(exc, 'Fatal read error on pipe transport')
elif self._loop.get_debug():
logger.debug("Read error on pipe transport while closing",
exc_info=True)
except ConnectionResetError as exc:
self._force_close(exc)
except OSError as exc:
self._fatal_error(exc, 'Fatal read error on pipe transport')
except futures.CancelledError:
if not self._closing:
raise
else:
self._read_fut.add_done_callback(self._loop_reading)
finally:
if data:
self._protocol.data_received(data)
elif data is not None:
if self._loop.get_debug():
logger.debug("%r received EOF", self)
keep_open = self._protocol.eof_received()
if not keep_open:
self.close()
class _ProactorBaseWritePipeTransport(_ProactorBasePipeTransport,
transports.WriteTransport):
"""Transport for write pipes."""
def write(self, data):
if not isinstance(data, (bytes, bytearray, memoryview)):
msg = ("data argument must be a bytes-like object, not '%s'" %
type(data).__name__)
raise TypeError(msg)
if self._eof_written:
raise RuntimeError('write_eof() already called')
if not data:
return
if self._conn_lost:
if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
logger.warning('socket.send() raised exception.')
self._conn_lost += 1
return
# Observable states:
# 1. IDLE: _write_fut and _buffer both None
# 2. WRITING: _write_fut set; _buffer None
# 3. BACKED UP: _write_fut set; _buffer a bytearray
# We always copy the data, so the caller can't modify it
# while we're still waiting for the I/O to happen.
if self._write_fut is None: # IDLE -> WRITING
assert self._buffer is None
# Pass a copy, except if it's already immutable.
self._loop_writing(data=bytes(data))
elif not self._buffer: # WRITING -> BACKED UP
# Make a mutable copy which we can extend.
self._buffer = bytearray(data)
self._maybe_pause_protocol()
else: # BACKED UP
# Append to buffer (also copies).
self._buffer.extend(data)
self._maybe_pause_protocol()
def _loop_writing(self, f=None, data=None):
try:
assert f is self._write_fut
self._write_fut = None
self._pending_write = 0
if f:
f.result()
if data is None:
data = self._buffer
self._buffer = None
if not data:
if self._closing:
self._loop.call_soon(self._call_connection_lost, None)
if self._eof_written:
self._sock.shutdown(socket.SHUT_WR)
# Now that we've reduced the buffer size, tell the
# protocol to resume writing if it was paused. Note that
# we do this last since the callback is called immediately
# and it may add more data to the buffer (even causing the
# protocol to be paused again).
self._maybe_resume_protocol()
else:
self._write_fut = self._loop._proactor.send(self._sock, data)
if not self._write_fut.done():
assert self._pending_write == 0
self._pending_write = len(data)
self._write_fut.add_done_callback(self._loop_writing)
self._maybe_pause_protocol()
else:
self._write_fut.add_done_callback(self._loop_writing)
except ConnectionResetError as exc:
self._force_close(exc)
except OSError as exc:
self._fatal_error(exc, 'Fatal write error on pipe transport')
def can_write_eof(self):
return True
def write_eof(self):
self.close()
def abort(self):
self._force_close(None)
class _ProactorWritePipeTransport(_ProactorBaseWritePipeTransport):
def __init__(self, *args, **kw):
super().__init__(*args, **kw)
self._read_fut = self._loop._proactor.recv(self._sock, 16)
self._read_fut.add_done_callback(self._pipe_closed)
def _pipe_closed(self, fut):
if fut.cancelled():
# the transport has been closed
return
assert fut.result() == b''
if self._closing:
assert self._read_fut is None
return
assert fut is self._read_fut, (fut, self._read_fut)
self._read_fut = None
if self._write_fut is not None:
self._force_close(BrokenPipeError())
else:
self.close()
class _ProactorDuplexPipeTransport(_ProactorReadPipeTransport,
_ProactorBaseWritePipeTransport,
transports.Transport):
"""Transport for duplex pipes."""
def can_write_eof(self):
return False
def write_eof(self):
raise NotImplementedError
class _ProactorSocketTransport(_ProactorReadPipeTransport,
_ProactorBaseWritePipeTransport,
transports.Transport):
"""Transport for connected sockets."""
def __init__(self, loop, sock, protocol, waiter=None,
extra=None, server=None):
super().__init__(loop, sock, protocol, waiter, extra, server)
base_events._set_nodelay(sock)
def _set_extra(self, sock):
self._extra['socket'] = sock
try:
self._extra['sockname'] = sock.getsockname()
except (socket.error, AttributeError):
if self._loop.get_debug():
logger.warning("getsockname() failed on %r",
sock, exc_info=True)
if 'peername' not in self._extra:
try:
self._extra['peername'] = sock.getpeername()
except (socket.error, AttributeError):
if self._loop.get_debug():
logger.warning("getpeername() failed on %r",
sock, exc_info=True)
def can_write_eof(self):
return True
def write_eof(self):
if self._closing or self._eof_written:
return
self._eof_written = True
if self._write_fut is None:
self._sock.shutdown(socket.SHUT_WR)
class BaseProactorEventLoop(base_events.BaseEventLoop):
def __init__(self, proactor):
super().__init__()
logger.debug('Using proactor: %s', proactor.__class__.__name__)
self._proactor = proactor
self._selector = proactor # convenient alias
self._self_reading_future = None
self._accept_futures = {} # socket file descriptor => Future
proactor.set_loop(self)
self._make_self_pipe()
def _make_socket_transport(self, sock, protocol, waiter=None,
extra=None, server=None):
return _ProactorSocketTransport(self, sock, protocol, waiter,
extra, server)
def _make_ssl_transport(self, rawsock, protocol, sslcontext, waiter=None,
*, server_side=False, server_hostname=None,
extra=None, server=None):
if not sslproto._is_sslproto_available():
raise NotImplementedError("Proactor event loop requires Python 3.5"
" or newer (ssl.MemoryBIO) to support "
"SSL")
ssl_protocol = sslproto.SSLProtocol(self, protocol, sslcontext, waiter,
server_side, server_hostname)
_ProactorSocketTransport(self, rawsock, ssl_protocol,
extra=extra, server=server)
return ssl_protocol._app_transport
def _make_duplex_pipe_transport(self, sock, protocol, waiter=None,
extra=None):
return _ProactorDuplexPipeTransport(self,
sock, protocol, waiter, extra)
def _make_read_pipe_transport(self, sock, protocol, waiter=None,
extra=None):
return _ProactorReadPipeTransport(self, sock, protocol, waiter, extra)
def _make_write_pipe_transport(self, sock, protocol, waiter=None,
extra=None):
# We want connection_lost() to be called when other end closes
return _ProactorWritePipeTransport(self,
sock, protocol, waiter, extra)
def close(self):
if self.is_running():
raise RuntimeError("Cannot close a running event loop")
if self.is_closed():
return
# Call these methods before closing the event loop (before calling
# BaseEventLoop.close), because they can schedule callbacks with
# call_soon(), which is forbidden when the event loop is closed.
self._stop_accept_futures()
self._close_self_pipe()
self._proactor.close()
self._proactor = None
self._selector = None
# Close the event loop
super().close()
def sock_recv(self, sock, n):
return self._proactor.recv(sock, n)
def sock_sendall(self, sock, data):
return self._proactor.send(sock, data)
def sock_connect(self, sock, address):
return self._proactor.connect(sock, address)
def sock_accept(self, sock):
return self._proactor.accept(sock)
def _socketpair(self):
raise NotImplementedError
def _close_self_pipe(self):
if self._self_reading_future is not None:
self._self_reading_future.cancel()
self._self_reading_future = None
self._ssock.close()
self._ssock = None
self._csock.close()
self._csock = None
self._internal_fds -= 1
def _make_self_pipe(self):
# A self-socket, really. :-)
self._ssock, self._csock = self._socketpair()
self._ssock.setblocking(False)
self._csock.setblocking(False)
self._internal_fds += 1
self.call_soon(self._loop_self_reading)
def _loop_self_reading(self, f=None):
try:
if f is not None:
f.result() # may raise
f = self._proactor.recv(self._ssock, 4096)
except futures.CancelledError:
# _close_self_pipe() has been called, stop waiting for data
return
except Exception as exc:
self.call_exception_handler({
'message': 'Error on reading from the event loop self pipe',
'exception': exc,
'loop': self,
})
else:
self._self_reading_future = f
f.add_done_callback(self._loop_self_reading)
def _write_to_self(self):
self._csock.send(b'\0')
def _start_serving(self, protocol_factory, sock,
sslcontext=None, server=None, backlog=100):
def loop(f=None):
try:
if f is not None:
conn, addr = f.result()
if self._debug:
logger.debug("%r got a new connection from %r: %r",
server, addr, conn)
protocol = protocol_factory()
if sslcontext is not None:
self._make_ssl_transport(
conn, protocol, sslcontext, server_side=True,
extra={'peername': addr}, server=server)
else:
self._make_socket_transport(
conn, protocol,
extra={'peername': addr}, server=server)
if self.is_closed():
return
f = self._proactor.accept(sock)
except OSError as exc:
if sock.fileno() != -1:
self.call_exception_handler({
'message': 'Accept failed on a socket',
'exception': exc,
'socket': sock,
})
sock.close()
elif self._debug:
logger.debug("Accept failed on socket %r",
sock, exc_info=True)
except futures.CancelledError:
sock.close()
else:
self._accept_futures[sock.fileno()] = f
f.add_done_callback(loop)
self.call_soon(loop)
def _process_events(self, event_list):
# Events are processed in the IocpProactor._poll() method
pass
def _stop_accept_futures(self):
for future in self._accept_futures.values():
future.cancel()
self._accept_futures.clear()
def _stop_serving(self, sock):
self._stop_accept_futures()
self._proactor._stop_serving(sock)
sock.close()

View file

@ -0,0 +1,134 @@
"""Abstract Protocol class."""
__all__ = ['BaseProtocol', 'Protocol', 'DatagramProtocol',
'SubprocessProtocol']
class BaseProtocol:
"""Common base class for protocol interfaces.
Usually user implements protocols that derived from BaseProtocol
like Protocol or ProcessProtocol.
The only case when BaseProtocol should be implemented directly is
write-only transport like write pipe
"""
def connection_made(self, transport):
"""Called when a connection is made.
The argument is the transport representing the pipe connection.
To receive data, wait for data_received() calls.
When the connection is closed, connection_lost() is called.
"""
def connection_lost(self, exc):
"""Called when the connection is lost or closed.
The argument is an exception object or None (the latter
meaning a regular EOF is received or the connection was
aborted or closed).
"""
def pause_writing(self):
"""Called when the transport's buffer goes over the high-water mark.
Pause and resume calls are paired -- pause_writing() is called
once when the buffer goes strictly over the high-water mark
(even if subsequent writes increases the buffer size even
more), and eventually resume_writing() is called once when the
buffer size reaches the low-water mark.
Note that if the buffer size equals the high-water mark,
pause_writing() is not called -- it must go strictly over.
Conversely, resume_writing() is called when the buffer size is
equal or lower than the low-water mark. These end conditions
are important to ensure that things go as expected when either
mark is zero.
NOTE: This is the only Protocol callback that is not called
through EventLoop.call_soon() -- if it were, it would have no
effect when it's most needed (when the app keeps writing
without yielding until pause_writing() is called).
"""
def resume_writing(self):
"""Called when the transport's buffer drains below the low-water mark.
See pause_writing() for details.
"""
class Protocol(BaseProtocol):
"""Interface for stream protocol.
The user should implement this interface. They can inherit from
this class but don't need to. The implementations here do
nothing (they don't raise exceptions).
When the user wants to requests a transport, they pass a protocol
factory to a utility function (e.g., EventLoop.create_connection()).
When the connection is made successfully, connection_made() is
called with a suitable transport object. Then data_received()
will be called 0 or more times with data (bytes) received from the
transport; finally, connection_lost() will be called exactly once
with either an exception object or None as an argument.
State machine of calls:
start -> CM [-> DR*] [-> ER?] -> CL -> end
* CM: connection_made()
* DR: data_received()
* ER: eof_received()
* CL: connection_lost()
"""
def data_received(self, data):
"""Called when some data is received.
The argument is a bytes object.
"""
def eof_received(self):
"""Called when the other end calls write_eof() or equivalent.
If this returns a false value (including None), the transport
will close itself. If it returns a true value, closing the
transport is up to the protocol.
"""
class DatagramProtocol(BaseProtocol):
"""Interface for datagram protocol."""
def datagram_received(self, data, addr):
"""Called when some datagram is received."""
def error_received(self, exc):
"""Called when a send or receive operation raises an OSError.
(Other than BlockingIOError or InterruptedError.)
"""
class SubprocessProtocol(BaseProtocol):
"""Interface for protocol for subprocess calls."""
def pipe_data_received(self, fd, data):
"""Called when the subprocess writes data into stdout/stderr pipe.
fd is int file descriptor.
data is bytes object.
"""
def pipe_connection_lost(self, fd, exc):
"""Called when a file descriptor associated with the child process is
closed.
fd is the int file descriptor that was closed.
"""
def process_exited(self):
"""Called when subprocess has exited."""

259
third_party/python/Lib/asyncio/queues.py vendored Normal file
View file

@ -0,0 +1,259 @@
"""Queues"""
__all__ = ['Queue', 'PriorityQueue', 'LifoQueue', 'QueueFull', 'QueueEmpty']
import collections
import heapq
from . import compat
from . import events
from . import locks
from .coroutines import coroutine
class QueueEmpty(Exception):
"""Exception raised when Queue.get_nowait() is called on a Queue object
which is empty.
"""
pass
class QueueFull(Exception):
"""Exception raised when the Queue.put_nowait() method is called on a Queue
object which is full.
"""
pass
class Queue:
"""A queue, useful for coordinating producer and consumer coroutines.
If maxsize is less than or equal to zero, the queue size is infinite. If it
is an integer greater than 0, then "yield from put()" will block when the
queue reaches maxsize, until an item is removed by get().
Unlike the standard library Queue, you can reliably know this Queue's size
with qsize(), since your single-threaded asyncio application won't be
interrupted between calling qsize() and doing an operation on the Queue.
"""
def __init__(self, maxsize=0, *, loop=None):
if loop is None:
self._loop = events.get_event_loop()
else:
self._loop = loop
self._maxsize = maxsize
# Futures.
self._getters = collections.deque()
# Futures.
self._putters = collections.deque()
self._unfinished_tasks = 0
self._finished = locks.Event(loop=self._loop)
self._finished.set()
self._init(maxsize)
# These three are overridable in subclasses.
def _init(self, maxsize):
self._queue = collections.deque()
def _get(self):
return self._queue.popleft()
def _put(self, item):
self._queue.append(item)
# End of the overridable methods.
def _wakeup_next(self, waiters):
# Wake up the next waiter (if any) that isn't cancelled.
while waiters:
waiter = waiters.popleft()
if not waiter.done():
waiter.set_result(None)
break
def __repr__(self):
return '<{} at {:#x} {}>'.format(
type(self).__name__, id(self), self._format())
def __str__(self):
return '<{} {}>'.format(type(self).__name__, self._format())
def _format(self):
result = 'maxsize={!r}'.format(self._maxsize)
if getattr(self, '_queue', None):
result += ' _queue={!r}'.format(list(self._queue))
if self._getters:
result += ' _getters[{}]'.format(len(self._getters))
if self._putters:
result += ' _putters[{}]'.format(len(self._putters))
if self._unfinished_tasks:
result += ' tasks={}'.format(self._unfinished_tasks)
return result
def qsize(self):
"""Number of items in the queue."""
return len(self._queue)
@property
def maxsize(self):
"""Number of items allowed in the queue."""
return self._maxsize
def empty(self):
"""Return True if the queue is empty, False otherwise."""
return not self._queue
def full(self):
"""Return True if there are maxsize items in the queue.
Note: if the Queue was initialized with maxsize=0 (the default),
then full() is never True.
"""
if self._maxsize <= 0:
return False
else:
return self.qsize() >= self._maxsize
@coroutine
def put(self, item):
"""Put an item into the queue.
Put an item into the queue. If the queue is full, wait until a free
slot is available before adding item.
This method is a coroutine.
"""
while self.full():
putter = self._loop.create_future()
self._putters.append(putter)
try:
yield from putter
except:
putter.cancel() # Just in case putter is not done yet.
if not self.full() and not putter.cancelled():
# We were woken up by get_nowait(), but can't take
# the call. Wake up the next in line.
self._wakeup_next(self._putters)
raise
return self.put_nowait(item)
def put_nowait(self, item):
"""Put an item into the queue without blocking.
If no free slot is immediately available, raise QueueFull.
"""
if self.full():
raise QueueFull
self._put(item)
self._unfinished_tasks += 1
self._finished.clear()
self._wakeup_next(self._getters)
@coroutine
def get(self):
"""Remove and return an item from the queue.
If queue is empty, wait until an item is available.
This method is a coroutine.
"""
while self.empty():
getter = self._loop.create_future()
self._getters.append(getter)
try:
yield from getter
except:
getter.cancel() # Just in case getter is not done yet.
try:
self._getters.remove(getter)
except ValueError:
pass
if not self.empty() and not getter.cancelled():
# We were woken up by put_nowait(), but can't take
# the call. Wake up the next in line.
self._wakeup_next(self._getters)
raise
return self.get_nowait()
def get_nowait(self):
"""Remove and return an item from the queue.
Return an item if one is immediately available, else raise QueueEmpty.
"""
if self.empty():
raise QueueEmpty
item = self._get()
self._wakeup_next(self._putters)
return item
def task_done(self):
"""Indicate that a formerly enqueued task is complete.
Used by queue consumers. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.
If a join() is currently blocking, it will resume when all items have
been processed (meaning that a task_done() call was received for every
item that had been put() into the queue).
Raises ValueError if called more times than there were items placed in
the queue.
"""
if self._unfinished_tasks <= 0:
raise ValueError('task_done() called too many times')
self._unfinished_tasks -= 1
if self._unfinished_tasks == 0:
self._finished.set()
@coroutine
def join(self):
"""Block until all items in the queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer calls task_done() to
indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks.
"""
if self._unfinished_tasks > 0:
yield from self._finished.wait()
class PriorityQueue(Queue):
"""A subclass of Queue; retrieves entries in priority order (lowest first).
Entries are typically tuples of the form: (priority number, data).
"""
def _init(self, maxsize):
self._queue = []
def _put(self, item, heappush=heapq.heappush):
heappush(self._queue, item)
def _get(self, heappop=heapq.heappop):
return heappop(self._queue)
class LifoQueue(Queue):
"""A subclass of Queue that retrieves most recently added entries first."""
def _init(self, maxsize):
self._queue = []
def _put(self, item):
self._queue.append(item)
def _get(self):
return self._queue.pop()
if not compat.PY35:
JoinableQueue = Queue
"""Deprecated alias for Queue."""
__all__.append('JoinableQueue')

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,701 @@
import collections
import warnings
try:
import ssl
except ImportError: # pragma: no cover
ssl = None
from . import base_events
from . import compat
from . import protocols
from . import transports
from .log import logger
def _create_transport_context(server_side, server_hostname):
if server_side:
raise ValueError('Server side SSL needs a valid SSLContext')
# Client side may pass ssl=True to use a default
# context; in that case the sslcontext passed is None.
# The default is secure for client connections.
if hasattr(ssl, 'create_default_context'):
# Python 3.4+: use up-to-date strong settings.
sslcontext = ssl.create_default_context()
if not server_hostname:
sslcontext.check_hostname = False
else:
# Fallback for Python 3.3.
sslcontext = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
sslcontext.options |= ssl.OP_NO_SSLv2
sslcontext.options |= ssl.OP_NO_SSLv3
sslcontext.set_default_verify_paths()
sslcontext.verify_mode = ssl.CERT_REQUIRED
return sslcontext
def _is_sslproto_available():
return hasattr(ssl, "MemoryBIO")
# States of an _SSLPipe.
_UNWRAPPED = "UNWRAPPED"
_DO_HANDSHAKE = "DO_HANDSHAKE"
_WRAPPED = "WRAPPED"
_SHUTDOWN = "SHUTDOWN"
class _SSLPipe(object):
"""An SSL "Pipe".
An SSL pipe allows you to communicate with an SSL/TLS protocol instance
through memory buffers. It can be used to implement a security layer for an
existing connection where you don't have access to the connection's file
descriptor, or for some reason you don't want to use it.
An SSL pipe can be in "wrapped" and "unwrapped" mode. In unwrapped mode,
data is passed through untransformed. In wrapped mode, application level
data is encrypted to SSL record level data and vice versa. The SSL record
level is the lowest level in the SSL protocol suite and is what travels
as-is over the wire.
An SslPipe initially is in "unwrapped" mode. To start SSL, call
do_handshake(). To shutdown SSL again, call unwrap().
"""
max_size = 256 * 1024 # Buffer size passed to read()
def __init__(self, context, server_side, server_hostname=None):
"""
The *context* argument specifies the ssl.SSLContext to use.
The *server_side* argument indicates whether this is a server side or
client side transport.
The optional *server_hostname* argument can be used to specify the
hostname you are connecting to. You may only specify this parameter if
the _ssl module supports Server Name Indication (SNI).
"""
self._context = context
self._server_side = server_side
self._server_hostname = server_hostname
self._state = _UNWRAPPED
self._incoming = ssl.MemoryBIO()
self._outgoing = ssl.MemoryBIO()
self._sslobj = None
self._need_ssldata = False
self._handshake_cb = None
self._shutdown_cb = None
@property
def context(self):
"""The SSL context passed to the constructor."""
return self._context
@property
def ssl_object(self):
"""The internal ssl.SSLObject instance.
Return None if the pipe is not wrapped.
"""
return self._sslobj
@property
def need_ssldata(self):
"""Whether more record level data is needed to complete a handshake
that is currently in progress."""
return self._need_ssldata
@property
def wrapped(self):
"""
Whether a security layer is currently in effect.
Return False during handshake.
"""
return self._state == _WRAPPED
def do_handshake(self, callback=None):
"""Start the SSL handshake.
Return a list of ssldata. A ssldata element is a list of buffers
The optional *callback* argument can be used to install a callback that
will be called when the handshake is complete. The callback will be
called with None if successful, else an exception instance.
"""
if self._state != _UNWRAPPED:
raise RuntimeError('handshake in progress or completed')
self._sslobj = self._context.wrap_bio(
self._incoming, self._outgoing,
server_side=self._server_side,
server_hostname=self._server_hostname)
self._state = _DO_HANDSHAKE
self._handshake_cb = callback
ssldata, appdata = self.feed_ssldata(b'', only_handshake=True)
assert len(appdata) == 0
return ssldata
def shutdown(self, callback=None):
"""Start the SSL shutdown sequence.
Return a list of ssldata. A ssldata element is a list of buffers
The optional *callback* argument can be used to install a callback that
will be called when the shutdown is complete. The callback will be
called without arguments.
"""
if self._state == _UNWRAPPED:
raise RuntimeError('no security layer present')
if self._state == _SHUTDOWN:
raise RuntimeError('shutdown in progress')
assert self._state in (_WRAPPED, _DO_HANDSHAKE)
self._state = _SHUTDOWN
self._shutdown_cb = callback
ssldata, appdata = self.feed_ssldata(b'')
assert appdata == [] or appdata == [b'']
return ssldata
def feed_eof(self):
"""Send a potentially "ragged" EOF.
This method will raise an SSL_ERROR_EOF exception if the EOF is
unexpected.
"""
self._incoming.write_eof()
ssldata, appdata = self.feed_ssldata(b'')
assert appdata == [] or appdata == [b'']
def feed_ssldata(self, data, only_handshake=False):
"""Feed SSL record level data into the pipe.
The data must be a bytes instance. It is OK to send an empty bytes
instance. This can be used to get ssldata for a handshake initiated by
this endpoint.
Return a (ssldata, appdata) tuple. The ssldata element is a list of
buffers containing SSL data that needs to be sent to the remote SSL.
The appdata element is a list of buffers containing plaintext data that
needs to be forwarded to the application. The appdata list may contain
an empty buffer indicating an SSL "close_notify" alert. This alert must
be acknowledged by calling shutdown().
"""
if self._state == _UNWRAPPED:
# If unwrapped, pass plaintext data straight through.
if data:
appdata = [data]
else:
appdata = []
return ([], appdata)
self._need_ssldata = False
if data:
self._incoming.write(data)
ssldata = []
appdata = []
try:
if self._state == _DO_HANDSHAKE:
# Call do_handshake() until it doesn't raise anymore.
self._sslobj.do_handshake()
self._state = _WRAPPED
if self._handshake_cb:
self._handshake_cb(None)
if only_handshake:
return (ssldata, appdata)
# Handshake done: execute the wrapped block
if self._state == _WRAPPED:
# Main state: read data from SSL until close_notify
while True:
chunk = self._sslobj.read(self.max_size)
appdata.append(chunk)
if not chunk: # close_notify
break
elif self._state == _SHUTDOWN:
# Call shutdown() until it doesn't raise anymore.
self._sslobj.unwrap()
self._sslobj = None
self._state = _UNWRAPPED
if self._shutdown_cb:
self._shutdown_cb()
elif self._state == _UNWRAPPED:
# Drain possible plaintext data after close_notify.
appdata.append(self._incoming.read())
except (ssl.SSLError, ssl.CertificateError) as exc:
if getattr(exc, 'errno', None) not in (
ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE,
ssl.SSL_ERROR_SYSCALL):
if self._state == _DO_HANDSHAKE and self._handshake_cb:
self._handshake_cb(exc)
raise
self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ)
# Check for record level data that needs to be sent back.
# Happens for the initial handshake and renegotiations.
if self._outgoing.pending:
ssldata.append(self._outgoing.read())
return (ssldata, appdata)
def feed_appdata(self, data, offset=0):
"""Feed plaintext data into the pipe.
Return an (ssldata, offset) tuple. The ssldata element is a list of
buffers containing record level data that needs to be sent to the
remote SSL instance. The offset is the number of plaintext bytes that
were processed, which may be less than the length of data.
NOTE: In case of short writes, this call MUST be retried with the SAME
buffer passed into the *data* argument (i.e. the id() must be the
same). This is an OpenSSL requirement. A further particularity is that
a short write will always have offset == 0, because the _ssl module
does not enable partial writes. And even though the offset is zero,
there will still be encrypted data in ssldata.
"""
assert 0 <= offset <= len(data)
if self._state == _UNWRAPPED:
# pass through data in unwrapped mode
if offset < len(data):
ssldata = [data[offset:]]
else:
ssldata = []
return (ssldata, len(data))
ssldata = []
view = memoryview(data)
while True:
self._need_ssldata = False
try:
if offset < len(view):
offset += self._sslobj.write(view[offset:])
except ssl.SSLError as exc:
# It is not allowed to call write() after unwrap() until the
# close_notify is acknowledged. We return the condition to the
# caller as a short write.
if exc.reason == 'PROTOCOL_IS_SHUTDOWN':
exc.errno = ssl.SSL_ERROR_WANT_READ
if exc.errno not in (ssl.SSL_ERROR_WANT_READ,
ssl.SSL_ERROR_WANT_WRITE,
ssl.SSL_ERROR_SYSCALL):
raise
self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ)
# See if there's any record level data back for us.
if self._outgoing.pending:
ssldata.append(self._outgoing.read())
if offset == len(view) or self._need_ssldata:
break
return (ssldata, offset)
class _SSLProtocolTransport(transports._FlowControlMixin,
transports.Transport):
def __init__(self, loop, ssl_protocol):
self._loop = loop
# SSLProtocol instance
self._ssl_protocol = ssl_protocol
self._closed = False
def get_extra_info(self, name, default=None):
"""Get optional transport information."""
return self._ssl_protocol._get_extra_info(name, default)
def set_protocol(self, protocol):
self._ssl_protocol._app_protocol = protocol
def get_protocol(self):
return self._ssl_protocol._app_protocol
def is_closing(self):
return self._closed
def close(self):
"""Close the transport.
Buffered data will be flushed asynchronously. No more data
will be received. After all buffered data is flushed, the
protocol's connection_lost() method will (eventually) called
with None as its argument.
"""
self._closed = True
self._ssl_protocol._start_shutdown()
# On Python 3.3 and older, objects with a destructor part of a reference
# cycle are never destroyed. It's not more the case on Python 3.4 thanks
# to the PEP 442.
if compat.PY34:
def __del__(self):
if not self._closed:
warnings.warn("unclosed transport %r" % self, ResourceWarning,
source=self)
self.close()
def pause_reading(self):
"""Pause the receiving end.
No data will be passed to the protocol's data_received()
method until resume_reading() is called.
"""
self._ssl_protocol._transport.pause_reading()
def resume_reading(self):
"""Resume the receiving end.
Data received will once again be passed to the protocol's
data_received() method.
"""
self._ssl_protocol._transport.resume_reading()
def set_write_buffer_limits(self, high=None, low=None):
"""Set the high- and low-water limits for write flow control.
These two values control when to call the protocol's
pause_writing() and resume_writing() methods. If specified,
the low-water limit must be less than or equal to the
high-water limit. Neither value can be negative.
The defaults are implementation-specific. If only the
high-water limit is given, the low-water limit defaults to an
implementation-specific value less than or equal to the
high-water limit. Setting high to zero forces low to zero as
well, and causes pause_writing() to be called whenever the
buffer becomes non-empty. Setting low to zero causes
resume_writing() to be called only once the buffer is empty.
Use of zero for either limit is generally sub-optimal as it
reduces opportunities for doing I/O and computation
concurrently.
"""
self._ssl_protocol._transport.set_write_buffer_limits(high, low)
def get_write_buffer_size(self):
"""Return the current size of the write buffer."""
return self._ssl_protocol._transport.get_write_buffer_size()
def write(self, data):
"""Write some data bytes to the transport.
This does not block; it buffers the data and arranges for it
to be sent out asynchronously.
"""
if not isinstance(data, (bytes, bytearray, memoryview)):
raise TypeError("data: expecting a bytes-like instance, got {!r}"
.format(type(data).__name__))
if not data:
return
self._ssl_protocol._write_appdata(data)
def can_write_eof(self):
"""Return True if this transport supports write_eof(), False if not."""
return False
def abort(self):
"""Close the transport immediately.
Buffered data will be lost. No more data will be received.
The protocol's connection_lost() method will (eventually) be
called with None as its argument.
"""
self._ssl_protocol._abort()
class SSLProtocol(protocols.Protocol):
"""SSL protocol.
Implementation of SSL on top of a socket using incoming and outgoing
buffers which are ssl.MemoryBIO objects.
"""
def __init__(self, loop, app_protocol, sslcontext, waiter,
server_side=False, server_hostname=None,
call_connection_made=True):
if ssl is None:
raise RuntimeError('stdlib ssl module not available')
if not sslcontext:
sslcontext = _create_transport_context(server_side, server_hostname)
self._server_side = server_side
if server_hostname and not server_side:
self._server_hostname = server_hostname
else:
self._server_hostname = None
self._sslcontext = sslcontext
# SSL-specific extra info. More info are set when the handshake
# completes.
self._extra = dict(sslcontext=sslcontext)
# App data write buffering
self._write_backlog = collections.deque()
self._write_buffer_size = 0
self._waiter = waiter
self._loop = loop
self._app_protocol = app_protocol
self._app_transport = _SSLProtocolTransport(self._loop, self)
# _SSLPipe instance (None until the connection is made)
self._sslpipe = None
self._session_established = False
self._in_handshake = False
self._in_shutdown = False
# transport, ex: SelectorSocketTransport
self._transport = None
self._call_connection_made = call_connection_made
def _wakeup_waiter(self, exc=None):
if self._waiter is None:
return
if not self._waiter.cancelled():
if exc is not None:
self._waiter.set_exception(exc)
else:
self._waiter.set_result(None)
self._waiter = None
def connection_made(self, transport):
"""Called when the low-level connection is made.
Start the SSL handshake.
"""
self._transport = transport
self._sslpipe = _SSLPipe(self._sslcontext,
self._server_side,
self._server_hostname)
self._start_handshake()
def connection_lost(self, exc):
"""Called when the low-level connection is lost or closed.
The argument is an exception object or None (the latter
meaning a regular EOF is received or the connection was
aborted or closed).
"""
if self._session_established:
self._session_established = False
self._loop.call_soon(self._app_protocol.connection_lost, exc)
self._transport = None
self._app_transport = None
self._wakeup_waiter(exc)
def pause_writing(self):
"""Called when the low-level transport's buffer goes over
the high-water mark.
"""
self._app_protocol.pause_writing()
def resume_writing(self):
"""Called when the low-level transport's buffer drains below
the low-water mark.
"""
self._app_protocol.resume_writing()
def data_received(self, data):
"""Called when some SSL data is received.
The argument is a bytes object.
"""
if self._sslpipe is None:
# transport closing, sslpipe is destroyed
return
try:
ssldata, appdata = self._sslpipe.feed_ssldata(data)
except ssl.SSLError as e:
if self._loop.get_debug():
logger.warning('%r: SSL error %s (reason %s)',
self, e.errno, e.reason)
self._abort()
return
for chunk in ssldata:
self._transport.write(chunk)
for chunk in appdata:
if chunk:
self._app_protocol.data_received(chunk)
else:
self._start_shutdown()
break
def eof_received(self):
"""Called when the other end of the low-level stream
is half-closed.
If this returns a false value (including None), the transport
will close itself. If it returns a true value, closing the
transport is up to the protocol.
"""
try:
if self._loop.get_debug():
logger.debug("%r received EOF", self)
self._wakeup_waiter(ConnectionResetError)
if not self._in_handshake:
keep_open = self._app_protocol.eof_received()
if keep_open:
logger.warning('returning true from eof_received() '
'has no effect when using ssl')
finally:
self._transport.close()
def _get_extra_info(self, name, default=None):
if name in self._extra:
return self._extra[name]
elif self._transport is not None:
return self._transport.get_extra_info(name, default)
else:
return default
def _start_shutdown(self):
if self._in_shutdown:
return
if self._in_handshake:
self._abort()
else:
self._in_shutdown = True
self._write_appdata(b'')
def _write_appdata(self, data):
self._write_backlog.append((data, 0))
self._write_buffer_size += len(data)
self._process_write_backlog()
def _start_handshake(self):
if self._loop.get_debug():
logger.debug("%r starts SSL handshake", self)
self._handshake_start_time = self._loop.time()
else:
self._handshake_start_time = None
self._in_handshake = True
# (b'', 1) is a special value in _process_write_backlog() to do
# the SSL handshake
self._write_backlog.append((b'', 1))
self._process_write_backlog()
def _on_handshake_complete(self, handshake_exc):
self._in_handshake = False
sslobj = self._sslpipe.ssl_object
try:
if handshake_exc is not None:
raise handshake_exc
peercert = sslobj.getpeercert()
if not hasattr(self._sslcontext, 'check_hostname'):
# Verify hostname if requested, Python 3.4+ uses check_hostname
# and checks the hostname in do_handshake()
if (self._server_hostname
and self._sslcontext.verify_mode != ssl.CERT_NONE):
ssl.match_hostname(peercert, self._server_hostname)
except BaseException as exc:
if self._loop.get_debug():
if isinstance(exc, ssl.CertificateError):
logger.warning("%r: SSL handshake failed "
"on verifying the certificate",
self, exc_info=True)
else:
logger.warning("%r: SSL handshake failed",
self, exc_info=True)
self._transport.close()
if isinstance(exc, Exception):
self._wakeup_waiter(exc)
return
else:
raise
if self._loop.get_debug():
dt = self._loop.time() - self._handshake_start_time
logger.debug("%r: SSL handshake took %.1f ms", self, dt * 1e3)
# Add extra info that becomes available after handshake.
self._extra.update(peercert=peercert,
cipher=sslobj.cipher(),
compression=sslobj.compression(),
ssl_object=sslobj,
)
if self._call_connection_made:
self._app_protocol.connection_made(self._app_transport)
self._wakeup_waiter()
self._session_established = True
# In case transport.write() was already called. Don't call
# immediately _process_write_backlog(), but schedule it:
# _on_handshake_complete() can be called indirectly from
# _process_write_backlog(), and _process_write_backlog() is not
# reentrant.
self._loop.call_soon(self._process_write_backlog)
def _process_write_backlog(self):
# Try to make progress on the write backlog.
if self._transport is None or self._sslpipe is None:
return
try:
for i in range(len(self._write_backlog)):
data, offset = self._write_backlog[0]
if data:
ssldata, offset = self._sslpipe.feed_appdata(data, offset)
elif offset:
ssldata = self._sslpipe.do_handshake(
self._on_handshake_complete)
offset = 1
else:
ssldata = self._sslpipe.shutdown(self._finalize)
offset = 1
for chunk in ssldata:
self._transport.write(chunk)
if offset < len(data):
self._write_backlog[0] = (data, offset)
# A short write means that a write is blocked on a read
# We need to enable reading if it is paused!
assert self._sslpipe.need_ssldata
if self._transport._paused:
self._transport.resume_reading()
break
# An entire chunk from the backlog was processed. We can
# delete it and reduce the outstanding buffer size.
del self._write_backlog[0]
self._write_buffer_size -= len(data)
except BaseException as exc:
if self._in_handshake:
# BaseExceptions will be re-raised in _on_handshake_complete.
self._on_handshake_complete(exc)
else:
self._fatal_error(exc, 'Fatal error on SSL transport')
if not isinstance(exc, Exception):
# BaseException
raise
def _fatal_error(self, exc, message='Fatal error on transport'):
# Should be called from exception handler only.
if isinstance(exc, base_events._FATAL_ERROR_IGNORE):
if self._loop.get_debug():
logger.debug("%r: %s", self, message, exc_info=True)
else:
self._loop.call_exception_handler({
'message': message,
'exception': exc,
'transport': self._transport,
'protocol': self,
})
if self._transport:
self._transport._force_close(exc)
def _finalize(self):
self._sslpipe = None
if self._transport is not None:
self._transport.close()
def _abort(self):
try:
if self._transport is not None:
self._transport.abort()
finally:
self._finalize()

View file

@ -0,0 +1,701 @@
"""Stream-related things."""
__all__ = ['StreamReader', 'StreamWriter', 'StreamReaderProtocol',
'open_connection', 'start_server',
'IncompleteReadError',
'LimitOverrunError',
]
import socket
if hasattr(socket, 'AF_UNIX'):
__all__.extend(['open_unix_connection', 'start_unix_server'])
from . import coroutines
from . import compat
from . import events
from . import protocols
from .coroutines import coroutine
from .log import logger
_DEFAULT_LIMIT = 2 ** 16
class IncompleteReadError(EOFError):
"""
Incomplete read error. Attributes:
- partial: read bytes string before the end of stream was reached
- expected: total number of expected bytes (or None if unknown)
"""
def __init__(self, partial, expected):
super().__init__("%d bytes read on a total of %r expected bytes"
% (len(partial), expected))
self.partial = partial
self.expected = expected
def __reduce__(self):
return type(self), (self.partial, self.expected)
class LimitOverrunError(Exception):
"""Reached the buffer limit while looking for a separator.
Attributes:
- consumed: total number of to be consumed bytes.
"""
def __init__(self, message, consumed):
super().__init__(message)
self.consumed = consumed
def __reduce__(self):
return type(self), (self.args[0], self.consumed)
@coroutine
def open_connection(host=None, port=None, *,
loop=None, limit=_DEFAULT_LIMIT, **kwds):
"""A wrapper for create_connection() returning a (reader, writer) pair.
The reader returned is a StreamReader instance; the writer is a
StreamWriter instance.
The arguments are all the usual arguments to create_connection()
except protocol_factory; most common are positional host and port,
with various optional keyword arguments following.
Additional optional keyword arguments are loop (to set the event loop
instance to use) and limit (to set the buffer limit passed to the
StreamReader).
(If you want to customize the StreamReader and/or
StreamReaderProtocol classes, just copy the code -- there's
really nothing special here except some convenience.)
"""
if loop is None:
loop = events.get_event_loop()
reader = StreamReader(limit=limit, loop=loop)
protocol = StreamReaderProtocol(reader, loop=loop)
transport, _ = yield from loop.create_connection(
lambda: protocol, host, port, **kwds)
writer = StreamWriter(transport, protocol, reader, loop)
return reader, writer
@coroutine
def start_server(client_connected_cb, host=None, port=None, *,
loop=None, limit=_DEFAULT_LIMIT, **kwds):
"""Start a socket server, call back for each client connected.
The first parameter, `client_connected_cb`, takes two parameters:
client_reader, client_writer. client_reader is a StreamReader
object, while client_writer is a StreamWriter object. This
parameter can either be a plain callback function or a coroutine;
if it is a coroutine, it will be automatically converted into a
Task.
The rest of the arguments are all the usual arguments to
loop.create_server() except protocol_factory; most common are
positional host and port, with various optional keyword arguments
following. The return value is the same as loop.create_server().
Additional optional keyword arguments are loop (to set the event loop
instance to use) and limit (to set the buffer limit passed to the
StreamReader).
The return value is the same as loop.create_server(), i.e. a
Server object which can be used to stop the service.
"""
if loop is None:
loop = events.get_event_loop()
def factory():
reader = StreamReader(limit=limit, loop=loop)
protocol = StreamReaderProtocol(reader, client_connected_cb,
loop=loop)
return protocol
return (yield from loop.create_server(factory, host, port, **kwds))
if hasattr(socket, 'AF_UNIX'):
# UNIX Domain Sockets are supported on this platform
@coroutine
def open_unix_connection(path=None, *,
loop=None, limit=_DEFAULT_LIMIT, **kwds):
"""Similar to `open_connection` but works with UNIX Domain Sockets."""
if loop is None:
loop = events.get_event_loop()
reader = StreamReader(limit=limit, loop=loop)
protocol = StreamReaderProtocol(reader, loop=loop)
transport, _ = yield from loop.create_unix_connection(
lambda: protocol, path, **kwds)
writer = StreamWriter(transport, protocol, reader, loop)
return reader, writer
@coroutine
def start_unix_server(client_connected_cb, path=None, *,
loop=None, limit=_DEFAULT_LIMIT, **kwds):
"""Similar to `start_server` but works with UNIX Domain Sockets."""
if loop is None:
loop = events.get_event_loop()
def factory():
reader = StreamReader(limit=limit, loop=loop)
protocol = StreamReaderProtocol(reader, client_connected_cb,
loop=loop)
return protocol
return (yield from loop.create_unix_server(factory, path, **kwds))
class FlowControlMixin(protocols.Protocol):
"""Reusable flow control logic for StreamWriter.drain().
This implements the protocol methods pause_writing(),
resume_reading() and connection_lost(). If the subclass overrides
these it must call the super methods.
StreamWriter.drain() must wait for _drain_helper() coroutine.
"""
def __init__(self, loop=None):
if loop is None:
self._loop = events.get_event_loop()
else:
self._loop = loop
self._paused = False
self._drain_waiter = None
self._connection_lost = False
def pause_writing(self):
assert not self._paused
self._paused = True
if self._loop.get_debug():
logger.debug("%r pauses writing", self)
def resume_writing(self):
assert self._paused
self._paused = False
if self._loop.get_debug():
logger.debug("%r resumes writing", self)
waiter = self._drain_waiter
if waiter is not None:
self._drain_waiter = None
if not waiter.done():
waiter.set_result(None)
def connection_lost(self, exc):
self._connection_lost = True
# Wake up the writer if currently paused.
if not self._paused:
return
waiter = self._drain_waiter
if waiter is None:
return
self._drain_waiter = None
if waiter.done():
return
if exc is None:
waiter.set_result(None)
else:
waiter.set_exception(exc)
@coroutine
def _drain_helper(self):
if self._connection_lost:
raise ConnectionResetError('Connection lost')
if not self._paused:
return
waiter = self._drain_waiter
assert waiter is None or waiter.cancelled()
waiter = self._loop.create_future()
self._drain_waiter = waiter
yield from waiter
class StreamReaderProtocol(FlowControlMixin, protocols.Protocol):
"""Helper class to adapt between Protocol and StreamReader.
(This is a helper class instead of making StreamReader itself a
Protocol subclass, because the StreamReader has other potential
uses, and to prevent the user of the StreamReader to accidentally
call inappropriate methods of the protocol.)
"""
def __init__(self, stream_reader, client_connected_cb=None, loop=None):
super().__init__(loop=loop)
self._stream_reader = stream_reader
self._stream_writer = None
self._client_connected_cb = client_connected_cb
self._over_ssl = False
def connection_made(self, transport):
self._stream_reader.set_transport(transport)
self._over_ssl = transport.get_extra_info('sslcontext') is not None
if self._client_connected_cb is not None:
self._stream_writer = StreamWriter(transport, self,
self._stream_reader,
self._loop)
res = self._client_connected_cb(self._stream_reader,
self._stream_writer)
if coroutines.iscoroutine(res):
self._loop.create_task(res)
def connection_lost(self, exc):
if self._stream_reader is not None:
if exc is None:
self._stream_reader.feed_eof()
else:
self._stream_reader.set_exception(exc)
super().connection_lost(exc)
self._stream_reader = None
self._stream_writer = None
def data_received(self, data):
self._stream_reader.feed_data(data)
def eof_received(self):
self._stream_reader.feed_eof()
if self._over_ssl:
# Prevent a warning in SSLProtocol.eof_received:
# "returning true from eof_received()
# has no effect when using ssl"
return False
return True
class StreamWriter:
"""Wraps a Transport.
This exposes write(), writelines(), [can_]write_eof(),
get_extra_info() and close(). It adds drain() which returns an
optional Future on which you can wait for flow control. It also
adds a transport property which references the Transport
directly.
"""
def __init__(self, transport, protocol, reader, loop):
self._transport = transport
self._protocol = protocol
# drain() expects that the reader has an exception() method
assert reader is None or isinstance(reader, StreamReader)
self._reader = reader
self._loop = loop
def __repr__(self):
info = [self.__class__.__name__, 'transport=%r' % self._transport]
if self._reader is not None:
info.append('reader=%r' % self._reader)
return '<%s>' % ' '.join(info)
@property
def transport(self):
return self._transport
def write(self, data):
self._transport.write(data)
def writelines(self, data):
self._transport.writelines(data)
def write_eof(self):
return self._transport.write_eof()
def can_write_eof(self):
return self._transport.can_write_eof()
def close(self):
return self._transport.close()
def get_extra_info(self, name, default=None):
return self._transport.get_extra_info(name, default)
@coroutine
def drain(self):
"""Flush the write buffer.
The intended use is to write
w.write(data)
yield from w.drain()
"""
if self._reader is not None:
exc = self._reader.exception()
if exc is not None:
raise exc
if self._transport is not None:
if self._transport.is_closing():
# Yield to the event loop so connection_lost() may be
# called. Without this, _drain_helper() would return
# immediately, and code that calls
# write(...); yield from drain()
# in a loop would never call connection_lost(), so it
# would not see an error when the socket is closed.
yield
yield from self._protocol._drain_helper()
class StreamReader:
def __init__(self, limit=_DEFAULT_LIMIT, loop=None):
# The line length limit is a security feature;
# it also doubles as half the buffer limit.
if limit <= 0:
raise ValueError('Limit cannot be <= 0')
self._limit = limit
if loop is None:
self._loop = events.get_event_loop()
else:
self._loop = loop
self._buffer = bytearray()
self._eof = False # Whether we're done.
self._waiter = None # A future used by _wait_for_data()
self._exception = None
self._transport = None
self._paused = False
def __repr__(self):
info = ['StreamReader']
if self._buffer:
info.append('%d bytes' % len(self._buffer))
if self._eof:
info.append('eof')
if self._limit != _DEFAULT_LIMIT:
info.append('l=%d' % self._limit)
if self._waiter:
info.append('w=%r' % self._waiter)
if self._exception:
info.append('e=%r' % self._exception)
if self._transport:
info.append('t=%r' % self._transport)
if self._paused:
info.append('paused')
return '<%s>' % ' '.join(info)
def exception(self):
return self._exception
def set_exception(self, exc):
self._exception = exc
waiter = self._waiter
if waiter is not None:
self._waiter = None
if not waiter.cancelled():
waiter.set_exception(exc)
def _wakeup_waiter(self):
"""Wakeup read*() functions waiting for data or EOF."""
waiter = self._waiter
if waiter is not None:
self._waiter = None
if not waiter.cancelled():
waiter.set_result(None)
def set_transport(self, transport):
assert self._transport is None, 'Transport already set'
self._transport = transport
def _maybe_resume_transport(self):
if self._paused and len(self._buffer) <= self._limit:
self._paused = False
self._transport.resume_reading()
def feed_eof(self):
self._eof = True
self._wakeup_waiter()
def at_eof(self):
"""Return True if the buffer is empty and 'feed_eof' was called."""
return self._eof and not self._buffer
def feed_data(self, data):
assert not self._eof, 'feed_data after feed_eof'
if not data:
return
self._buffer.extend(data)
self._wakeup_waiter()
if (self._transport is not None and
not self._paused and
len(self._buffer) > 2 * self._limit):
try:
self._transport.pause_reading()
except NotImplementedError:
# The transport can't be paused.
# We'll just have to buffer all data.
# Forget the transport so we don't keep trying.
self._transport = None
else:
self._paused = True
@coroutine
def _wait_for_data(self, func_name):
"""Wait until feed_data() or feed_eof() is called.
If stream was paused, automatically resume it.
"""
# StreamReader uses a future to link the protocol feed_data() method
# to a read coroutine. Running two read coroutines at the same time
# would have an unexpected behaviour. It would not possible to know
# which coroutine would get the next data.
if self._waiter is not None:
raise RuntimeError('%s() called while another coroutine is '
'already waiting for incoming data' % func_name)
assert not self._eof, '_wait_for_data after EOF'
# Waiting for data while paused will make deadlock, so prevent it.
# This is essential for readexactly(n) for case when n > self._limit.
if self._paused:
self._paused = False
self._transport.resume_reading()
self._waiter = self._loop.create_future()
try:
yield from self._waiter
finally:
self._waiter = None
@coroutine
def readline(self):
"""Read chunk of data from the stream until newline (b'\n') is found.
On success, return chunk that ends with newline. If only partial
line can be read due to EOF, return incomplete line without
terminating newline. When EOF was reached while no bytes read, empty
bytes object is returned.
If limit is reached, ValueError will be raised. In that case, if
newline was found, complete line including newline will be removed
from internal buffer. Else, internal buffer will be cleared. Limit is
compared against part of the line without newline.
If stream was paused, this function will automatically resume it if
needed.
"""
sep = b'\n'
seplen = len(sep)
try:
line = yield from self.readuntil(sep)
except IncompleteReadError as e:
return e.partial
except LimitOverrunError as e:
if self._buffer.startswith(sep, e.consumed):
del self._buffer[:e.consumed + seplen]
else:
self._buffer.clear()
self._maybe_resume_transport()
raise ValueError(e.args[0])
return line
@coroutine
def readuntil(self, separator=b'\n'):
"""Read data from the stream until ``separator`` is found.
On success, the data and separator will be removed from the
internal buffer (consumed). Returned data will include the
separator at the end.
Configured stream limit is used to check result. Limit sets the
maximal length of data that can be returned, not counting the
separator.
If an EOF occurs and the complete separator is still not found,
an IncompleteReadError exception will be raised, and the internal
buffer will be reset. The IncompleteReadError.partial attribute
may contain the separator partially.
If the data cannot be read because of over limit, a
LimitOverrunError exception will be raised, and the data
will be left in the internal buffer, so it can be read again.
"""
seplen = len(separator)
if seplen == 0:
raise ValueError('Separator should be at least one-byte string')
if self._exception is not None:
raise self._exception
# Consume whole buffer except last bytes, which length is
# one less than seplen. Let's check corner cases with
# separator='SEPARATOR':
# * we have received almost complete separator (without last
# byte). i.e buffer='some textSEPARATO'. In this case we
# can safely consume len(separator) - 1 bytes.
# * last byte of buffer is first byte of separator, i.e.
# buffer='abcdefghijklmnopqrS'. We may safely consume
# everything except that last byte, but this require to
# analyze bytes of buffer that match partial separator.
# This is slow and/or require FSM. For this case our
# implementation is not optimal, since require rescanning
# of data that is known to not belong to separator. In
# real world, separator will not be so long to notice
# performance problems. Even when reading MIME-encoded
# messages :)
# `offset` is the number of bytes from the beginning of the buffer
# where there is no occurrence of `separator`.
offset = 0
# Loop until we find `separator` in the buffer, exceed the buffer size,
# or an EOF has happened.
while True:
buflen = len(self._buffer)
# Check if we now have enough data in the buffer for `separator` to
# fit.
if buflen - offset >= seplen:
isep = self._buffer.find(separator, offset)
if isep != -1:
# `separator` is in the buffer. `isep` will be used later
# to retrieve the data.
break
# see upper comment for explanation.
offset = buflen + 1 - seplen
if offset > self._limit:
raise LimitOverrunError(
'Separator is not found, and chunk exceed the limit',
offset)
# Complete message (with full separator) may be present in buffer
# even when EOF flag is set. This may happen when the last chunk
# adds data which makes separator be found. That's why we check for
# EOF *ater* inspecting the buffer.
if self._eof:
chunk = bytes(self._buffer)
self._buffer.clear()
raise IncompleteReadError(chunk, None)
# _wait_for_data() will resume reading if stream was paused.
yield from self._wait_for_data('readuntil')
if isep > self._limit:
raise LimitOverrunError(
'Separator is found, but chunk is longer than limit', isep)
chunk = self._buffer[:isep + seplen]
del self._buffer[:isep + seplen]
self._maybe_resume_transport()
return bytes(chunk)
@coroutine
def read(self, n=-1):
"""Read up to `n` bytes from the stream.
If n is not provided, or set to -1, read until EOF and return all read
bytes. If the EOF was received and the internal buffer is empty, return
an empty bytes object.
If n is zero, return empty bytes object immediately.
If n is positive, this function try to read `n` bytes, and may return
less or equal bytes than requested, but at least one byte. If EOF was
received before any byte is read, this function returns empty byte
object.
Returned value is not limited with limit, configured at stream
creation.
If stream was paused, this function will automatically resume it if
needed.
"""
if self._exception is not None:
raise self._exception
if n == 0:
return b''
if n < 0:
# This used to just loop creating a new waiter hoping to
# collect everything in self._buffer, but that would
# deadlock if the subprocess sends more than self.limit
# bytes. So just call self.read(self._limit) until EOF.
blocks = []
while True:
block = yield from self.read(self._limit)
if not block:
break
blocks.append(block)
return b''.join(blocks)
if not self._buffer and not self._eof:
yield from self._wait_for_data('read')
# This will work right even if buffer is less than n bytes
data = bytes(self._buffer[:n])
del self._buffer[:n]
self._maybe_resume_transport()
return data
@coroutine
def readexactly(self, n):
"""Read exactly `n` bytes.
Raise an IncompleteReadError if EOF is reached before `n` bytes can be
read. The IncompleteReadError.partial attribute of the exception will
contain the partial read bytes.
if n is zero, return empty bytes object.
Returned value is not limited with limit, configured at stream
creation.
If stream was paused, this function will automatically resume it if
needed.
"""
if n < 0:
raise ValueError('readexactly size can not be less than zero')
if self._exception is not None:
raise self._exception
if n == 0:
return b''
while len(self._buffer) < n:
if self._eof:
incomplete = bytes(self._buffer)
self._buffer.clear()
raise IncompleteReadError(incomplete, n)
yield from self._wait_for_data('readexactly')
if len(self._buffer) == n:
data = bytes(self._buffer)
self._buffer.clear()
else:
data = bytes(self._buffer[:n])
del self._buffer[:n]
self._maybe_resume_transport()
return data
if compat.PY35:
@coroutine
def __aiter__(self):
return self
@coroutine
def __anext__(self):
val = yield from self.readline()
if val == b'':
raise StopAsyncIteration
return val
if compat.PY352:
# In Python 3.5.2 and greater, __aiter__ should return
# the asynchronous iterator directly.
def __aiter__(self):
return self

View file

@ -0,0 +1,226 @@
__all__ = ['create_subprocess_exec', 'create_subprocess_shell']
import subprocess
from . import events
from . import protocols
from . import streams
from . import tasks
from .coroutines import coroutine
from .log import logger
PIPE = subprocess.PIPE
STDOUT = subprocess.STDOUT
DEVNULL = subprocess.DEVNULL
class SubprocessStreamProtocol(streams.FlowControlMixin,
protocols.SubprocessProtocol):
"""Like StreamReaderProtocol, but for a subprocess."""
def __init__(self, limit, loop):
super().__init__(loop=loop)
self._limit = limit
self.stdin = self.stdout = self.stderr = None
self._transport = None
self._process_exited = False
self._pipe_fds = []
def __repr__(self):
info = [self.__class__.__name__]
if self.stdin is not None:
info.append('stdin=%r' % self.stdin)
if self.stdout is not None:
info.append('stdout=%r' % self.stdout)
if self.stderr is not None:
info.append('stderr=%r' % self.stderr)
return '<%s>' % ' '.join(info)
def connection_made(self, transport):
self._transport = transport
stdout_transport = transport.get_pipe_transport(1)
if stdout_transport is not None:
self.stdout = streams.StreamReader(limit=self._limit,
loop=self._loop)
self.stdout.set_transport(stdout_transport)
self._pipe_fds.append(1)
stderr_transport = transport.get_pipe_transport(2)
if stderr_transport is not None:
self.stderr = streams.StreamReader(limit=self._limit,
loop=self._loop)
self.stderr.set_transport(stderr_transport)
self._pipe_fds.append(2)
stdin_transport = transport.get_pipe_transport(0)
if stdin_transport is not None:
self.stdin = streams.StreamWriter(stdin_transport,
protocol=self,
reader=None,
loop=self._loop)
def pipe_data_received(self, fd, data):
if fd == 1:
reader = self.stdout
elif fd == 2:
reader = self.stderr
else:
reader = None
if reader is not None:
reader.feed_data(data)
def pipe_connection_lost(self, fd, exc):
if fd == 0:
pipe = self.stdin
if pipe is not None:
pipe.close()
self.connection_lost(exc)
return
if fd == 1:
reader = self.stdout
elif fd == 2:
reader = self.stderr
else:
reader = None
if reader != None:
if exc is None:
reader.feed_eof()
else:
reader.set_exception(exc)
if fd in self._pipe_fds:
self._pipe_fds.remove(fd)
self._maybe_close_transport()
def process_exited(self):
self._process_exited = True
self._maybe_close_transport()
def _maybe_close_transport(self):
if len(self._pipe_fds) == 0 and self._process_exited:
self._transport.close()
self._transport = None
class Process:
def __init__(self, transport, protocol, loop):
self._transport = transport
self._protocol = protocol
self._loop = loop
self.stdin = protocol.stdin
self.stdout = protocol.stdout
self.stderr = protocol.stderr
self.pid = transport.get_pid()
def __repr__(self):
return '<%s %s>' % (self.__class__.__name__, self.pid)
@property
def returncode(self):
return self._transport.get_returncode()
@coroutine
def wait(self):
"""Wait until the process exit and return the process return code.
This method is a coroutine."""
return (yield from self._transport._wait())
def send_signal(self, signal):
self._transport.send_signal(signal)
def terminate(self):
self._transport.terminate()
def kill(self):
self._transport.kill()
@coroutine
def _feed_stdin(self, input):
debug = self._loop.get_debug()
self.stdin.write(input)
if debug:
logger.debug('%r communicate: feed stdin (%s bytes)',
self, len(input))
try:
yield from self.stdin.drain()
except (BrokenPipeError, ConnectionResetError) as exc:
# communicate() ignores BrokenPipeError and ConnectionResetError
if debug:
logger.debug('%r communicate: stdin got %r', self, exc)
if debug:
logger.debug('%r communicate: close stdin', self)
self.stdin.close()
@coroutine
def _noop(self):
return None
@coroutine
def _read_stream(self, fd):
transport = self._transport.get_pipe_transport(fd)
if fd == 2:
stream = self.stderr
else:
assert fd == 1
stream = self.stdout
if self._loop.get_debug():
name = 'stdout' if fd == 1 else 'stderr'
logger.debug('%r communicate: read %s', self, name)
output = yield from stream.read()
if self._loop.get_debug():
name = 'stdout' if fd == 1 else 'stderr'
logger.debug('%r communicate: close %s', self, name)
transport.close()
return output
@coroutine
def communicate(self, input=None):
if input is not None:
stdin = self._feed_stdin(input)
else:
stdin = self._noop()
if self.stdout is not None:
stdout = self._read_stream(1)
else:
stdout = self._noop()
if self.stderr is not None:
stderr = self._read_stream(2)
else:
stderr = self._noop()
stdin, stdout, stderr = yield from tasks.gather(stdin, stdout, stderr,
loop=self._loop)
yield from self.wait()
return (stdout, stderr)
@coroutine
def create_subprocess_shell(cmd, stdin=None, stdout=None, stderr=None,
loop=None, limit=streams._DEFAULT_LIMIT, **kwds):
if loop is None:
loop = events.get_event_loop()
protocol_factory = lambda: SubprocessStreamProtocol(limit=limit,
loop=loop)
transport, protocol = yield from loop.subprocess_shell(
protocol_factory,
cmd, stdin=stdin, stdout=stdout,
stderr=stderr, **kwds)
return Process(transport, protocol, loop)
@coroutine
def create_subprocess_exec(program, *args, stdin=None, stdout=None,
stderr=None, loop=None,
limit=streams._DEFAULT_LIMIT, **kwds):
if loop is None:
loop = events.get_event_loop()
protocol_factory = lambda: SubprocessStreamProtocol(limit=limit,
loop=loop)
transport, protocol = yield from loop.subprocess_exec(
protocol_factory,
program, *args,
stdin=stdin, stdout=stdout,
stderr=stderr, **kwds)
return Process(transport, protocol, loop)

726
third_party/python/Lib/asyncio/tasks.py vendored Normal file
View file

@ -0,0 +1,726 @@
"""Support for tasks, coroutines and the scheduler."""
__all__ = ['Task',
'FIRST_COMPLETED', 'FIRST_EXCEPTION', 'ALL_COMPLETED',
'wait', 'wait_for', 'as_completed', 'sleep', 'async',
'gather', 'shield', 'ensure_future', 'run_coroutine_threadsafe',
]
import concurrent.futures
import functools
import inspect
import warnings
import weakref
from . import base_tasks
from . import compat
from . import coroutines
from . import events
from . import futures
from .coroutines import coroutine
class Task(futures.Future):
"""A coroutine wrapped in a Future."""
# An important invariant maintained while a Task not done:
#
# - Either _fut_waiter is None, and _step() is scheduled;
# - or _fut_waiter is some Future, and _step() is *not* scheduled.
#
# The only transition from the latter to the former is through
# _wakeup(). When _fut_waiter is not None, one of its callbacks
# must be _wakeup().
# Weak set containing all tasks alive.
_all_tasks = weakref.WeakSet()
# Dictionary containing tasks that are currently active in
# all running event loops. {EventLoop: Task}
_current_tasks = {}
# If False, don't log a message if the task is destroyed whereas its
# status is still pending
_log_destroy_pending = True
@classmethod
def current_task(cls, loop=None):
"""Return the currently running task in an event loop or None.
By default the current task for the current event loop is returned.
None is returned when called not in the context of a Task.
"""
if loop is None:
loop = events.get_event_loop()
return cls._current_tasks.get(loop)
@classmethod
def all_tasks(cls, loop=None):
"""Return a set of all tasks for an event loop.
By default all tasks for the current event loop are returned.
"""
if loop is None:
loop = events.get_event_loop()
return {t for t in cls._all_tasks if t._loop is loop}
def __init__(self, coro, *, loop=None):
assert coroutines.iscoroutine(coro), repr(coro)
super().__init__(loop=loop)
if self._source_traceback:
del self._source_traceback[-1]
self._coro = coro
self._fut_waiter = None
self._must_cancel = False
self._loop.call_soon(self._step)
self.__class__._all_tasks.add(self)
# On Python 3.3 or older, objects with a destructor that are part of a
# reference cycle are never destroyed. That's not the case any more on
# Python 3.4 thanks to the PEP 442.
if compat.PY34:
def __del__(self):
if self._state == futures._PENDING and self._log_destroy_pending:
context = {
'task': self,
'message': 'Task was destroyed but it is pending!',
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
futures.Future.__del__(self)
def _repr_info(self):
return base_tasks._task_repr_info(self)
def get_stack(self, *, limit=None):
"""Return the list of stack frames for this task's coroutine.
If the coroutine is not done, this returns the stack where it is
suspended. If the coroutine has completed successfully or was
cancelled, this returns an empty list. If the coroutine was
terminated by an exception, this returns the list of traceback
frames.
The frames are always ordered from oldest to newest.
The optional limit gives the maximum number of frames to
return; by default all available frames are returned. Its
meaning differs depending on whether a stack or a traceback is
returned: the newest frames of a stack are returned, but the
oldest frames of a traceback are returned. (This matches the
behavior of the traceback module.)
For reasons beyond our control, only one stack frame is
returned for a suspended coroutine.
"""
return base_tasks._task_get_stack(self, limit)
def print_stack(self, *, limit=None, file=None):
"""Print the stack or traceback for this task's coroutine.
This produces output similar to that of the traceback module,
for the frames retrieved by get_stack(). The limit argument
is passed to get_stack(). The file argument is an I/O stream
to which the output is written; by default output is written
to sys.stderr.
"""
return base_tasks._task_print_stack(self, limit, file)
def cancel(self):
"""Request that this task cancel itself.
This arranges for a CancelledError to be thrown into the
wrapped coroutine on the next cycle through the event loop.
The coroutine then has a chance to clean up or even deny
the request using try/except/finally.
Unlike Future.cancel, this does not guarantee that the
task will be cancelled: the exception might be caught and
acted upon, delaying cancellation of the task or preventing
cancellation completely. The task may also return a value or
raise a different exception.
Immediately after this method is called, Task.cancelled() will
not return True (unless the task was already cancelled). A
task will be marked as cancelled when the wrapped coroutine
terminates with a CancelledError exception (even if cancel()
was not called).
"""
self._log_traceback = False
if self.done():
return False
if self._fut_waiter is not None:
if self._fut_waiter.cancel():
# Leave self._fut_waiter; it may be a Task that
# catches and ignores the cancellation so we may have
# to cancel it again later.
return True
# It must be the case that self._step is already scheduled.
self._must_cancel = True
return True
def _step(self, exc=None):
assert not self.done(), \
'_step(): already done: {!r}, {!r}'.format(self, exc)
if self._must_cancel:
if not isinstance(exc, futures.CancelledError):
exc = futures.CancelledError()
self._must_cancel = False
coro = self._coro
self._fut_waiter = None
self.__class__._current_tasks[self._loop] = self
# Call either coro.throw(exc) or coro.send(None).
try:
if exc is None:
# We use the `send` method directly, because coroutines
# don't have `__iter__` and `__next__` methods.
result = coro.send(None)
else:
result = coro.throw(exc)
except StopIteration as exc:
if self._must_cancel:
# Task is cancelled right before coro stops.
self._must_cancel = False
self.set_exception(futures.CancelledError())
else:
self.set_result(exc.value)
except futures.CancelledError:
super().cancel() # I.e., Future.cancel(self).
except Exception as exc:
self.set_exception(exc)
except BaseException as exc:
self.set_exception(exc)
raise
else:
blocking = getattr(result, '_asyncio_future_blocking', None)
if blocking is not None:
# Yielded Future must come from Future.__iter__().
if result._loop is not self._loop:
self._loop.call_soon(
self._step,
RuntimeError(
'Task {!r} got Future {!r} attached to a '
'different loop'.format(self, result)))
elif blocking:
if result is self:
self._loop.call_soon(
self._step,
RuntimeError(
'Task cannot await on itself: {!r}'.format(
self)))
else:
result._asyncio_future_blocking = False
result.add_done_callback(self._wakeup)
self._fut_waiter = result
if self._must_cancel:
if self._fut_waiter.cancel():
self._must_cancel = False
else:
self._loop.call_soon(
self._step,
RuntimeError(
'yield was used instead of yield from '
'in task {!r} with {!r}'.format(self, result)))
elif result is None:
# Bare yield relinquishes control for one event loop iteration.
self._loop.call_soon(self._step)
elif inspect.isgenerator(result):
# Yielding a generator is just wrong.
self._loop.call_soon(
self._step,
RuntimeError(
'yield was used instead of yield from for '
'generator in task {!r} with {!r}'.format(
self, result)))
else:
# Yielding something else is an error.
self._loop.call_soon(
self._step,
RuntimeError(
'Task got bad yield: {!r}'.format(result)))
finally:
self.__class__._current_tasks.pop(self._loop)
self = None # Needed to break cycles when an exception occurs.
def _wakeup(self, future):
try:
future.result()
except Exception as exc:
# This may also be a cancellation.
self._step(exc)
else:
# Don't pass the value of `future.result()` explicitly,
# as `Future.__iter__` and `Future.__await__` don't need it.
# If we call `_step(value, None)` instead of `_step()`,
# Python eval loop would use `.send(value)` method call,
# instead of `__next__()`, which is slower for futures
# that return non-generator iterators from their `__iter__`.
self._step()
self = None # Needed to break cycles when an exception occurs.
_PyTask = Task
try:
import _asyncio
except ImportError:
pass
else:
# _CTask is needed for tests.
Task = _CTask = _asyncio.Task
# wait() and as_completed() similar to those in PEP 3148.
FIRST_COMPLETED = concurrent.futures.FIRST_COMPLETED
FIRST_EXCEPTION = concurrent.futures.FIRST_EXCEPTION
ALL_COMPLETED = concurrent.futures.ALL_COMPLETED
@coroutine
def wait(fs, *, loop=None, timeout=None, return_when=ALL_COMPLETED):
"""Wait for the Futures and coroutines given by fs to complete.
The sequence futures must not be empty.
Coroutines will be wrapped in Tasks.
Returns two sets of Future: (done, pending).
Usage:
done, pending = yield from asyncio.wait(fs)
Note: This does not raise TimeoutError! Futures that aren't done
when the timeout occurs are returned in the second set.
"""
if futures.isfuture(fs) or coroutines.iscoroutine(fs):
raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
if not fs:
raise ValueError('Set of coroutines/Futures is empty.')
if return_when not in (FIRST_COMPLETED, FIRST_EXCEPTION, ALL_COMPLETED):
raise ValueError('Invalid return_when value: {}'.format(return_when))
if loop is None:
loop = events.get_event_loop()
fs = {ensure_future(f, loop=loop) for f in set(fs)}
return (yield from _wait(fs, timeout, return_when, loop))
def _release_waiter(waiter, *args):
if not waiter.done():
waiter.set_result(None)
@coroutine
def wait_for(fut, timeout, *, loop=None):
"""Wait for the single Future or coroutine to complete, with timeout.
Coroutine will be wrapped in Task.
Returns result of the Future or coroutine. When a timeout occurs,
it cancels the task and raises TimeoutError. To avoid the task
cancellation, wrap it in shield().
If the wait is cancelled, the task is also cancelled.
This function is a coroutine.
"""
if loop is None:
loop = events.get_event_loop()
if timeout is None:
return (yield from fut)
waiter = loop.create_future()
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
cb = functools.partial(_release_waiter, waiter)
fut = ensure_future(fut, loop=loop)
fut.add_done_callback(cb)
try:
# wait until the future completes or the timeout
try:
yield from waiter
except futures.CancelledError:
fut.remove_done_callback(cb)
fut.cancel()
raise
if fut.done():
return fut.result()
else:
fut.remove_done_callback(cb)
fut.cancel()
raise futures.TimeoutError()
finally:
timeout_handle.cancel()
@coroutine
def _wait(fs, timeout, return_when, loop):
"""Internal helper for wait() and wait_for().
The fs argument must be a collection of Futures.
"""
assert fs, 'Set of Futures is empty.'
waiter = loop.create_future()
timeout_handle = None
if timeout is not None:
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
counter = len(fs)
def _on_completion(f):
nonlocal counter
counter -= 1
if (counter <= 0 or
return_when == FIRST_COMPLETED or
return_when == FIRST_EXCEPTION and (not f.cancelled() and
f.exception() is not None)):
if timeout_handle is not None:
timeout_handle.cancel()
if not waiter.done():
waiter.set_result(None)
for f in fs:
f.add_done_callback(_on_completion)
try:
yield from waiter
finally:
if timeout_handle is not None:
timeout_handle.cancel()
done, pending = set(), set()
for f in fs:
f.remove_done_callback(_on_completion)
if f.done():
done.add(f)
else:
pending.add(f)
return done, pending
# This is *not* a @coroutine! It is just an iterator (yielding Futures).
def as_completed(fs, *, loop=None, timeout=None):
"""Return an iterator whose values are coroutines.
When waiting for the yielded coroutines you'll get the results (or
exceptions!) of the original Futures (or coroutines), in the order
in which and as soon as they complete.
This differs from PEP 3148; the proper way to use this is:
for f in as_completed(fs):
result = yield from f # The 'yield from' may raise.
# Use result.
If a timeout is specified, the 'yield from' will raise
TimeoutError when the timeout occurs before all Futures are done.
Note: The futures 'f' are not necessarily members of fs.
"""
if futures.isfuture(fs) or coroutines.iscoroutine(fs):
raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
loop = loop if loop is not None else events.get_event_loop()
todo = {ensure_future(f, loop=loop) for f in set(fs)}
from .queues import Queue # Import here to avoid circular import problem.
done = Queue(loop=loop)
timeout_handle = None
def _on_timeout():
for f in todo:
f.remove_done_callback(_on_completion)
done.put_nowait(None) # Queue a dummy value for _wait_for_one().
todo.clear() # Can't do todo.remove(f) in the loop.
def _on_completion(f):
if not todo:
return # _on_timeout() was here first.
todo.remove(f)
done.put_nowait(f)
if not todo and timeout_handle is not None:
timeout_handle.cancel()
@coroutine
def _wait_for_one():
f = yield from done.get()
if f is None:
# Dummy value from _on_timeout().
raise futures.TimeoutError
return f.result() # May raise f.exception().
for f in todo:
f.add_done_callback(_on_completion)
if todo and timeout is not None:
timeout_handle = loop.call_later(timeout, _on_timeout)
for _ in range(len(todo)):
yield _wait_for_one()
@coroutine
def sleep(delay, result=None, *, loop=None):
"""Coroutine that completes after a given time (in seconds)."""
if delay == 0:
yield
return result
if loop is None:
loop = events.get_event_loop()
future = loop.create_future()
h = future._loop.call_later(delay,
futures._set_result_unless_cancelled,
future, result)
try:
return (yield from future)
finally:
h.cancel()
def async_(coro_or_future, *, loop=None):
"""Wrap a coroutine in a future.
If the argument is a Future, it is returned directly.
This function is deprecated in 3.5. Use asyncio.ensure_future() instead.
"""
warnings.warn("asyncio.async() function is deprecated, use ensure_future()",
DeprecationWarning,
stacklevel=2)
return ensure_future(coro_or_future, loop=loop)
# Silence DeprecationWarning:
globals()['async'] = async_
async_.__name__ = 'async'
del async_
def ensure_future(coro_or_future, *, loop=None):
"""Wrap a coroutine or an awaitable in a future.
If the argument is a Future, it is returned directly.
"""
if futures.isfuture(coro_or_future):
if loop is not None and loop is not coro_or_future._loop:
raise ValueError('loop argument must agree with Future')
return coro_or_future
elif coroutines.iscoroutine(coro_or_future):
if loop is None:
loop = events.get_event_loop()
task = loop.create_task(coro_or_future)
if task._source_traceback:
del task._source_traceback[-1]
return task
elif compat.PY35 and inspect.isawaitable(coro_or_future):
return ensure_future(_wrap_awaitable(coro_or_future), loop=loop)
else:
raise TypeError('An asyncio.Future, a coroutine or an awaitable is '
'required')
@coroutine
def _wrap_awaitable(awaitable):
"""Helper for asyncio.ensure_future().
Wraps awaitable (an object with __await__) into a coroutine
that will later be wrapped in a Task by ensure_future().
"""
return (yield from awaitable.__await__())
class _GatheringFuture(futures.Future):
"""Helper for gather().
This overrides cancel() to cancel all the children and act more
like Task.cancel(), which doesn't immediately mark itself as
cancelled.
"""
def __init__(self, children, *, loop=None):
super().__init__(loop=loop)
self._children = children
self._cancel_requested = False
def cancel(self):
if self.done():
return False
ret = False
for child in self._children:
if child.cancel():
ret = True
if ret:
# If any child tasks were actually cancelled, we should
# propagate the cancellation request regardless of
# *return_exceptions* argument. See issue 32684.
self._cancel_requested = True
return ret
def gather(*coros_or_futures, loop=None, return_exceptions=False):
"""Return a future aggregating results from the given coroutines
or futures.
Coroutines will be wrapped in a future and scheduled in the event
loop. They will not necessarily be scheduled in the same order as
passed in.
All futures must share the same event loop. If all the tasks are
done successfully, the returned future's result is the list of
results (in the order of the original sequence, not necessarily
the order of results arrival). If *return_exceptions* is True,
exceptions in the tasks are treated the same as successful
results, and gathered in the result list; otherwise, the first
raised exception will be immediately propagated to the returned
future.
Cancellation: if the outer Future is cancelled, all children (that
have not completed yet) are also cancelled. If any child is
cancelled, this is treated as if it raised CancelledError --
the outer Future is *not* cancelled in this case. (This is to
prevent the cancellation of one child to cause other children to
be cancelled.)
"""
if not coros_or_futures:
if loop is None:
loop = events.get_event_loop()
outer = loop.create_future()
outer.set_result([])
return outer
arg_to_fut = {}
for arg in set(coros_or_futures):
if not futures.isfuture(arg):
fut = ensure_future(arg, loop=loop)
if loop is None:
loop = fut._loop
# The caller cannot control this future, the "destroy pending task"
# warning should not be emitted.
fut._log_destroy_pending = False
else:
fut = arg
if loop is None:
loop = fut._loop
elif fut._loop is not loop:
raise ValueError("futures are tied to different event loops")
arg_to_fut[arg] = fut
children = [arg_to_fut[arg] for arg in coros_or_futures]
nchildren = len(children)
outer = _GatheringFuture(children, loop=loop)
nfinished = 0
results = [None] * nchildren
def _done_callback(i, fut):
nonlocal nfinished
if outer.done():
if not fut.cancelled():
# Mark exception retrieved.
fut.exception()
return
if fut.cancelled():
res = futures.CancelledError()
if not return_exceptions:
outer.set_exception(res)
return
elif fut._exception is not None:
res = fut.exception() # Mark exception retrieved.
if not return_exceptions:
outer.set_exception(res)
return
else:
res = fut._result
results[i] = res
nfinished += 1
if nfinished == nchildren:
if outer._cancel_requested:
outer.set_exception(futures.CancelledError())
else:
outer.set_result(results)
for i, fut in enumerate(children):
fut.add_done_callback(functools.partial(_done_callback, i))
return outer
def shield(arg, *, loop=None):
"""Wait for a future, shielding it from cancellation.
The statement
res = yield from shield(something())
is exactly equivalent to the statement
res = yield from something()
*except* that if the coroutine containing it is cancelled, the
task running in something() is not cancelled. From the POV of
something(), the cancellation did not happen. But its caller is
still cancelled, so the yield-from expression still raises
CancelledError. Note: If something() is cancelled by other means
this will still cancel shield().
If you want to completely ignore cancellation (not recommended)
you can combine shield() with a try/except clause, as follows:
try:
res = yield from shield(something())
except CancelledError:
res = None
"""
inner = ensure_future(arg, loop=loop)
if inner.done():
# Shortcut.
return inner
loop = inner._loop
outer = loop.create_future()
def _done_callback(inner):
if outer.cancelled():
if not inner.cancelled():
# Mark inner's result as retrieved.
inner.exception()
return
if inner.cancelled():
outer.cancel()
else:
exc = inner.exception()
if exc is not None:
outer.set_exception(exc)
else:
outer.set_result(inner.result())
inner.add_done_callback(_done_callback)
return outer
def run_coroutine_threadsafe(coro, loop):
"""Submit a coroutine object to a given event loop.
Return a concurrent.futures.Future to access the result.
"""
if not coroutines.iscoroutine(coro):
raise TypeError('A coroutine object is required')
future = concurrent.futures.Future()
def callback():
try:
futures._chain_future(ensure_future(coro, loop=loop), future)
except Exception as exc:
if future.set_running_or_notify_cancel():
future.set_exception(exc)
raise
loop.call_soon_threadsafe(callback)
return future

View file

@ -0,0 +1,537 @@
"""Utilities shared by tests."""
import collections
import contextlib
import io
import logging
import os
import re
import socket
import socketserver
import sys
import tempfile
import threading
import time
import unittest
import weakref
from unittest import mock
from http.server import HTTPServer
from wsgiref.simple_server import WSGIRequestHandler, WSGIServer
try:
import ssl
except ImportError: # pragma: no cover
ssl = None
from . import base_events
from . import compat
from . import events
from . import futures
from . import selectors
from . import tasks
from .coroutines import coroutine
from .log import logger
from test import support
if sys.platform == 'win32': # pragma: no cover
from .windows_utils import socketpair
else:
from socket import socketpair # pragma: no cover
def data_file(filename):
if hasattr(support, 'TEST_HOME_DIR'):
fullname = os.path.join(support.TEST_HOME_DIR, filename)
if os.path.isfile(fullname):
return fullname
fullname = os.path.join(os.path.dirname(os.__file__), 'test', filename)
if os.path.isfile(fullname):
return fullname
raise FileNotFoundError(filename)
ONLYCERT = data_file('ssl_cert.pem')
ONLYKEY = data_file('ssl_key.pem')
def dummy_ssl_context():
if ssl is None:
return None
else:
return ssl.SSLContext(ssl.PROTOCOL_SSLv23)
def run_briefly(loop):
@coroutine
def once():
pass
gen = once()
t = loop.create_task(gen)
# Don't log a warning if the task is not done after run_until_complete().
# It occurs if the loop is stopped or if a task raises a BaseException.
t._log_destroy_pending = False
try:
loop.run_until_complete(t)
finally:
gen.close()
def run_until(loop, pred, timeout=30):
deadline = time.time() + timeout
while not pred():
if timeout is not None:
timeout = deadline - time.time()
if timeout <= 0:
raise futures.TimeoutError()
loop.run_until_complete(tasks.sleep(0.001, loop=loop))
def run_once(loop):
"""Legacy API to run once through the event loop.
This is the recommended pattern for test code. It will poll the
selector once and run all callbacks scheduled in response to I/O
events.
"""
loop.call_soon(loop.stop)
loop.run_forever()
class SilentWSGIRequestHandler(WSGIRequestHandler):
def get_stderr(self):
return io.StringIO()
def log_message(self, format, *args):
pass
class SilentWSGIServer(WSGIServer):
request_timeout = 2
def get_request(self):
request, client_addr = super().get_request()
request.settimeout(self.request_timeout)
return request, client_addr
def handle_error(self, request, client_address):
pass
class SSLWSGIServerMixin:
def finish_request(self, request, client_address):
# The relative location of our test directory (which
# contains the ssl key and certificate files) differs
# between the stdlib and stand-alone asyncio.
# Prefer our own if we can find it.
keyfile = ONLYKEY
certfile = ONLYCERT
context = ssl.SSLContext()
context.load_cert_chain(certfile, keyfile)
ssock = context.wrap_socket(request, server_side=True)
try:
self.RequestHandlerClass(ssock, client_address, self)
ssock.close()
except OSError:
# maybe socket has been closed by peer
pass
class SSLWSGIServer(SSLWSGIServerMixin, SilentWSGIServer):
pass
def _run_test_server(*, address, use_ssl=False, server_cls, server_ssl_cls):
def app(environ, start_response):
status = '200 OK'
headers = [('Content-type', 'text/plain')]
start_response(status, headers)
return [b'Test message']
# Run the test WSGI server in a separate thread in order not to
# interfere with event handling in the main thread
server_class = server_ssl_cls if use_ssl else server_cls
httpd = server_class(address, SilentWSGIRequestHandler)
httpd.set_app(app)
httpd.address = httpd.server_address
server_thread = threading.Thread(
target=lambda: httpd.serve_forever(poll_interval=0.05))
server_thread.start()
try:
yield httpd
finally:
httpd.shutdown()
httpd.server_close()
server_thread.join()
if hasattr(socket, 'AF_UNIX'):
class UnixHTTPServer(socketserver.UnixStreamServer, HTTPServer):
def server_bind(self):
socketserver.UnixStreamServer.server_bind(self)
self.server_name = '127.0.0.1'
self.server_port = 80
class UnixWSGIServer(UnixHTTPServer, WSGIServer):
request_timeout = 2
def server_bind(self):
UnixHTTPServer.server_bind(self)
self.setup_environ()
def get_request(self):
request, client_addr = super().get_request()
request.settimeout(self.request_timeout)
# Code in the stdlib expects that get_request
# will return a socket and a tuple (host, port).
# However, this isn't true for UNIX sockets,
# as the second return value will be a path;
# hence we return some fake data sufficient
# to get the tests going
return request, ('127.0.0.1', '')
class SilentUnixWSGIServer(UnixWSGIServer):
def handle_error(self, request, client_address):
pass
class UnixSSLWSGIServer(SSLWSGIServerMixin, SilentUnixWSGIServer):
pass
def gen_unix_socket_path():
with tempfile.NamedTemporaryFile() as file:
return file.name
@contextlib.contextmanager
def unix_socket_path():
path = gen_unix_socket_path()
try:
yield path
finally:
try:
os.unlink(path)
except OSError:
pass
@contextlib.contextmanager
def run_test_unix_server(*, use_ssl=False):
with unix_socket_path() as path:
yield from _run_test_server(address=path, use_ssl=use_ssl,
server_cls=SilentUnixWSGIServer,
server_ssl_cls=UnixSSLWSGIServer)
@contextlib.contextmanager
def run_test_server(*, host='127.0.0.1', port=0, use_ssl=False):
yield from _run_test_server(address=(host, port), use_ssl=use_ssl,
server_cls=SilentWSGIServer,
server_ssl_cls=SSLWSGIServer)
def make_test_protocol(base):
dct = {}
for name in dir(base):
if name.startswith('__') and name.endswith('__'):
# skip magic names
continue
dct[name] = MockCallback(return_value=None)
return type('TestProtocol', (base,) + base.__bases__, dct)()
class TestSelector(selectors.BaseSelector):
def __init__(self):
self.keys = {}
def register(self, fileobj, events, data=None):
key = selectors.SelectorKey(fileobj, 0, events, data)
self.keys[fileobj] = key
return key
def unregister(self, fileobj):
return self.keys.pop(fileobj)
def select(self, timeout):
return []
def get_map(self):
return self.keys
class TestLoop(base_events.BaseEventLoop):
"""Loop for unittests.
It manages self time directly.
If something scheduled to be executed later then
on next loop iteration after all ready handlers done
generator passed to __init__ is calling.
Generator should be like this:
def gen():
...
when = yield ...
... = yield time_advance
Value returned by yield is absolute time of next scheduled handler.
Value passed to yield is time advance to move loop's time forward.
"""
def __init__(self, gen=None):
super().__init__()
if gen is None:
def gen():
yield
self._check_on_close = False
else:
self._check_on_close = True
self._gen = gen()
next(self._gen)
self._time = 0
self._clock_resolution = 1e-9
self._timers = []
self._selector = TestSelector()
self.readers = {}
self.writers = {}
self.reset_counters()
self._transports = weakref.WeakValueDictionary()
def time(self):
return self._time
def advance_time(self, advance):
"""Move test time forward."""
if advance:
self._time += advance
def close(self):
super().close()
if self._check_on_close:
try:
self._gen.send(0)
except StopIteration:
pass
else: # pragma: no cover
raise AssertionError("Time generator is not finished")
def _add_reader(self, fd, callback, *args):
self.readers[fd] = events.Handle(callback, args, self)
def _remove_reader(self, fd):
self.remove_reader_count[fd] += 1
if fd in self.readers:
del self.readers[fd]
return True
else:
return False
def assert_reader(self, fd, callback, *args):
if fd not in self.readers:
raise AssertionError(f'fd {fd} is not registered')
handle = self.readers[fd]
if handle._callback != callback:
raise AssertionError(
f'unexpected callback: {handle._callback} != {callback}')
if handle._args != args:
raise AssertionError(
f'unexpected callback args: {handle._args} != {args}')
def assert_no_reader(self, fd):
if fd in self.readers:
raise AssertionError(f'fd {fd} is registered')
def _add_writer(self, fd, callback, *args):
self.writers[fd] = events.Handle(callback, args, self)
def _remove_writer(self, fd):
self.remove_writer_count[fd] += 1
if fd in self.writers:
del self.writers[fd]
return True
else:
return False
def assert_writer(self, fd, callback, *args):
assert fd in self.writers, 'fd {} is not registered'.format(fd)
handle = self.writers[fd]
assert handle._callback == callback, '{!r} != {!r}'.format(
handle._callback, callback)
assert handle._args == args, '{!r} != {!r}'.format(
handle._args, args)
def _ensure_fd_no_transport(self, fd):
try:
transport = self._transports[fd]
except KeyError:
pass
else:
raise RuntimeError(
'File descriptor {!r} is used by transport {!r}'.format(
fd, transport))
def add_reader(self, fd, callback, *args):
"""Add a reader callback."""
self._ensure_fd_no_transport(fd)
return self._add_reader(fd, callback, *args)
def remove_reader(self, fd):
"""Remove a reader callback."""
self._ensure_fd_no_transport(fd)
return self._remove_reader(fd)
def add_writer(self, fd, callback, *args):
"""Add a writer callback.."""
self._ensure_fd_no_transport(fd)
return self._add_writer(fd, callback, *args)
def remove_writer(self, fd):
"""Remove a writer callback."""
self._ensure_fd_no_transport(fd)
return self._remove_writer(fd)
def reset_counters(self):
self.remove_reader_count = collections.defaultdict(int)
self.remove_writer_count = collections.defaultdict(int)
def _run_once(self):
super()._run_once()
for when in self._timers:
advance = self._gen.send(when)
self.advance_time(advance)
self._timers = []
def call_at(self, when, callback, *args):
self._timers.append(when)
return super().call_at(when, callback, *args)
def _process_events(self, event_list):
return
def _write_to_self(self):
pass
def MockCallback(**kwargs):
return mock.Mock(spec=['__call__'], **kwargs)
class MockPattern(str):
"""A regex based str with a fuzzy __eq__.
Use this helper with 'mock.assert_called_with', or anywhere
where a regex comparison between strings is needed.
For instance:
mock_call.assert_called_with(MockPattern('spam.*ham'))
"""
def __eq__(self, other):
return bool(re.search(str(self), other, re.S))
def get_function_source(func):
source = events._get_function_source(func)
if source is None:
raise ValueError("unable to get the source of %r" % (func,))
return source
class TestCase(unittest.TestCase):
@staticmethod
def close_loop(loop):
executor = loop._default_executor
if executor is not None:
executor.shutdown(wait=True)
loop.close()
def set_event_loop(self, loop, *, cleanup=True):
assert loop is not None
# ensure that the event loop is passed explicitly in asyncio
events.set_event_loop(None)
if cleanup:
self.addCleanup(self.close_loop, loop)
def new_test_loop(self, gen=None):
loop = TestLoop(gen)
self.set_event_loop(loop)
return loop
def unpatch_get_running_loop(self):
events._get_running_loop = self._get_running_loop
def setUp(self):
self._get_running_loop = events._get_running_loop
events._get_running_loop = lambda: None
self._thread_cleanup = support.threading_setup()
def tearDown(self):
self.unpatch_get_running_loop()
events.set_event_loop(None)
# Detect CPython bug #23353: ensure that yield/yield-from is not used
# in an except block of a generator
self.assertEqual(sys.exc_info(), (None, None, None))
self.doCleanups()
support.threading_cleanup(*self._thread_cleanup)
support.reap_children()
if not compat.PY34:
# Python 3.3 compatibility
def subTest(self, *args, **kwargs):
class EmptyCM:
def __enter__(self):
pass
def __exit__(self, *exc):
pass
return EmptyCM()
@contextlib.contextmanager
def disable_logger():
"""Context manager to disable asyncio logger.
For example, it can be used to ignore warnings in debug mode.
"""
old_level = logger.level
try:
logger.setLevel(logging.CRITICAL+1)
yield
finally:
logger.setLevel(old_level)
def mock_nonblocking_socket(proto=socket.IPPROTO_TCP, type=socket.SOCK_STREAM,
family=socket.AF_INET):
"""Create a mock of a non-blocking socket."""
sock = mock.MagicMock(socket.socket)
sock.proto = proto
sock.type = type
sock.family = family
sock.gettimeout.return_value = 0.0
return sock
def force_legacy_ssl_support():
return mock.patch('asyncio.sslproto._is_sslproto_available',
return_value=False)

View file

@ -0,0 +1,306 @@
"""Abstract Transport class."""
from asyncio import compat
__all__ = ['BaseTransport', 'ReadTransport', 'WriteTransport',
'Transport', 'DatagramTransport', 'SubprocessTransport',
]
class BaseTransport:
"""Base class for transports."""
def __init__(self, extra=None):
if extra is None:
extra = {}
self._extra = extra
def get_extra_info(self, name, default=None):
"""Get optional transport information."""
return self._extra.get(name, default)
def is_closing(self):
"""Return True if the transport is closing or closed."""
raise NotImplementedError
def close(self):
"""Close the transport.
Buffered data will be flushed asynchronously. No more data
will be received. After all buffered data is flushed, the
protocol's connection_lost() method will (eventually) called
with None as its argument.
"""
raise NotImplementedError
def set_protocol(self, protocol):
"""Set a new protocol."""
raise NotImplementedError
def get_protocol(self):
"""Return the current protocol."""
raise NotImplementedError
class ReadTransport(BaseTransport):
"""Interface for read-only transports."""
def pause_reading(self):
"""Pause the receiving end.
No data will be passed to the protocol's data_received()
method until resume_reading() is called.
"""
raise NotImplementedError
def resume_reading(self):
"""Resume the receiving end.
Data received will once again be passed to the protocol's
data_received() method.
"""
raise NotImplementedError
class WriteTransport(BaseTransport):
"""Interface for write-only transports."""
def set_write_buffer_limits(self, high=None, low=None):
"""Set the high- and low-water limits for write flow control.
These two values control when to call the protocol's
pause_writing() and resume_writing() methods. If specified,
the low-water limit must be less than or equal to the
high-water limit. Neither value can be negative.
The defaults are implementation-specific. If only the
high-water limit is given, the low-water limit defaults to an
implementation-specific value less than or equal to the
high-water limit. Setting high to zero forces low to zero as
well, and causes pause_writing() to be called whenever the
buffer becomes non-empty. Setting low to zero causes
resume_writing() to be called only once the buffer is empty.
Use of zero for either limit is generally sub-optimal as it
reduces opportunities for doing I/O and computation
concurrently.
"""
raise NotImplementedError
def get_write_buffer_size(self):
"""Return the current size of the write buffer."""
raise NotImplementedError
def write(self, data):
"""Write some data bytes to the transport.
This does not block; it buffers the data and arranges for it
to be sent out asynchronously.
"""
raise NotImplementedError
def writelines(self, list_of_data):
"""Write a list (or any iterable) of data bytes to the transport.
The default implementation concatenates the arguments and
calls write() on the result.
"""
data = compat.flatten_list_bytes(list_of_data)
self.write(data)
def write_eof(self):
"""Close the write end after flushing buffered data.
(This is like typing ^D into a UNIX program reading from stdin.)
Data may still be received.
"""
raise NotImplementedError
def can_write_eof(self):
"""Return True if this transport supports write_eof(), False if not."""
raise NotImplementedError
def abort(self):
"""Close the transport immediately.
Buffered data will be lost. No more data will be received.
The protocol's connection_lost() method will (eventually) be
called with None as its argument.
"""
raise NotImplementedError
class Transport(ReadTransport, WriteTransport):
"""Interface representing a bidirectional transport.
There may be several implementations, but typically, the user does
not implement new transports; rather, the platform provides some
useful transports that are implemented using the platform's best
practices.
The user never instantiates a transport directly; they call a
utility function, passing it a protocol factory and other
information necessary to create the transport and protocol. (E.g.
EventLoop.create_connection() or EventLoop.create_server().)
The utility function will asynchronously create a transport and a
protocol and hook them up by calling the protocol's
connection_made() method, passing it the transport.
The implementation here raises NotImplemented for every method
except writelines(), which calls write() in a loop.
"""
class DatagramTransport(BaseTransport):
"""Interface for datagram (UDP) transports."""
def sendto(self, data, addr=None):
"""Send data to the transport.
This does not block; it buffers the data and arranges for it
to be sent out asynchronously.
addr is target socket address.
If addr is None use target address pointed on transport creation.
"""
raise NotImplementedError
def abort(self):
"""Close the transport immediately.
Buffered data will be lost. No more data will be received.
The protocol's connection_lost() method will (eventually) be
called with None as its argument.
"""
raise NotImplementedError
class SubprocessTransport(BaseTransport):
def get_pid(self):
"""Get subprocess id."""
raise NotImplementedError
def get_returncode(self):
"""Get subprocess returncode.
See also
http://docs.python.org/3/library/subprocess#subprocess.Popen.returncode
"""
raise NotImplementedError
def get_pipe_transport(self, fd):
"""Get transport for pipe with number fd."""
raise NotImplementedError
def send_signal(self, signal):
"""Send signal to subprocess.
See also:
docs.python.org/3/library/subprocess#subprocess.Popen.send_signal
"""
raise NotImplementedError
def terminate(self):
"""Stop the subprocess.
Alias for close() method.
On Posix OSs the method sends SIGTERM to the subprocess.
On Windows the Win32 API function TerminateProcess()
is called to stop the subprocess.
See also:
http://docs.python.org/3/library/subprocess#subprocess.Popen.terminate
"""
raise NotImplementedError
def kill(self):
"""Kill the subprocess.
On Posix OSs the function sends SIGKILL to the subprocess.
On Windows kill() is an alias for terminate().
See also:
http://docs.python.org/3/library/subprocess#subprocess.Popen.kill
"""
raise NotImplementedError
class _FlowControlMixin(Transport):
"""All the logic for (write) flow control in a mix-in base class.
The subclass must implement get_write_buffer_size(). It must call
_maybe_pause_protocol() whenever the write buffer size increases,
and _maybe_resume_protocol() whenever it decreases. It may also
override set_write_buffer_limits() (e.g. to specify different
defaults).
The subclass constructor must call super().__init__(extra). This
will call set_write_buffer_limits().
The user may call set_write_buffer_limits() and
get_write_buffer_size(), and their protocol's pause_writing() and
resume_writing() may be called.
"""
def __init__(self, extra=None, loop=None):
super().__init__(extra)
assert loop is not None
self._loop = loop
self._protocol_paused = False
self._set_write_buffer_limits()
def _maybe_pause_protocol(self):
size = self.get_write_buffer_size()
if size <= self._high_water:
return
if not self._protocol_paused:
self._protocol_paused = True
try:
self._protocol.pause_writing()
except Exception as exc:
self._loop.call_exception_handler({
'message': 'protocol.pause_writing() failed',
'exception': exc,
'transport': self,
'protocol': self._protocol,
})
def _maybe_resume_protocol(self):
if (self._protocol_paused and
self.get_write_buffer_size() <= self._low_water):
self._protocol_paused = False
try:
self._protocol.resume_writing()
except Exception as exc:
self._loop.call_exception_handler({
'message': 'protocol.resume_writing() failed',
'exception': exc,
'transport': self,
'protocol': self._protocol,
})
def get_write_buffer_limits(self):
return (self._low_water, self._high_water)
def _set_write_buffer_limits(self, high=None, low=None):
if high is None:
if low is None:
high = 64*1024
else:
high = 4*low
if low is None:
low = high // 4
if not high >= low >= 0:
raise ValueError('high (%r) must be >= low (%r) must be >= 0' %
(high, low))
self._high_water = high
self._low_water = low
def set_write_buffer_limits(self, high=None, low=None):
self._set_write_buffer_limits(high=high, low=low)
self._maybe_pause_protocol()
def get_write_buffer_size(self):
raise NotImplementedError

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,779 @@
"""Selector and proactor event loops for Windows."""
import _winapi
import errno
import math
import socket
import struct
import weakref
from . import events
from . import base_subprocess
from . import futures
from . import proactor_events
from . import selector_events
from . import tasks
from . import windows_utils
from . import _overlapped
from .coroutines import coroutine
from .log import logger
__all__ = ['SelectorEventLoop', 'ProactorEventLoop', 'IocpProactor',
'DefaultEventLoopPolicy',
]
NULL = 0
INFINITE = 0xffffffff
ERROR_CONNECTION_REFUSED = 1225
ERROR_CONNECTION_ABORTED = 1236
# Initial delay in seconds for connect_pipe() before retrying to connect
CONNECT_PIPE_INIT_DELAY = 0.001
# Maximum delay in seconds for connect_pipe() before retrying to connect
CONNECT_PIPE_MAX_DELAY = 0.100
class _OverlappedFuture(futures.Future):
"""Subclass of Future which represents an overlapped operation.
Cancelling it will immediately cancel the overlapped operation.
"""
def __init__(self, ov, *, loop=None):
super().__init__(loop=loop)
if self._source_traceback:
del self._source_traceback[-1]
self._ov = ov
def _repr_info(self):
info = super()._repr_info()
if self._ov is not None:
state = 'pending' if self._ov.pending else 'completed'
info.insert(1, 'overlapped=<%s, %#x>' % (state, self._ov.address))
return info
def _cancel_overlapped(self):
if self._ov is None:
return
try:
self._ov.cancel()
except OSError as exc:
context = {
'message': 'Cancelling an overlapped future failed',
'exception': exc,
'future': self,
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
self._ov = None
def cancel(self):
self._cancel_overlapped()
return super().cancel()
def set_exception(self, exception):
super().set_exception(exception)
self._cancel_overlapped()
def set_result(self, result):
super().set_result(result)
self._ov = None
class _BaseWaitHandleFuture(futures.Future):
"""Subclass of Future which represents a wait handle."""
def __init__(self, ov, handle, wait_handle, *, loop=None):
super().__init__(loop=loop)
if self._source_traceback:
del self._source_traceback[-1]
# Keep a reference to the Overlapped object to keep it alive until the
# wait is unregistered
self._ov = ov
self._handle = handle
self._wait_handle = wait_handle
# Should we call UnregisterWaitEx() if the wait completes
# or is cancelled?
self._registered = True
def _poll(self):
# non-blocking wait: use a timeout of 0 millisecond
return (_winapi.WaitForSingleObject(self._handle, 0) ==
_winapi.WAIT_OBJECT_0)
def _repr_info(self):
info = super()._repr_info()
info.append('handle=%#x' % self._handle)
if self._handle is not None:
state = 'signaled' if self._poll() else 'waiting'
info.append(state)
if self._wait_handle is not None:
info.append('wait_handle=%#x' % self._wait_handle)
return info
def _unregister_wait_cb(self, fut):
# The wait was unregistered: it's not safe to destroy the Overlapped
# object
self._ov = None
def _unregister_wait(self):
if not self._registered:
return
self._registered = False
wait_handle = self._wait_handle
self._wait_handle = None
try:
_overlapped.UnregisterWait(wait_handle)
except OSError as exc:
if exc.winerror != _overlapped.ERROR_IO_PENDING:
context = {
'message': 'Failed to unregister the wait handle',
'exception': exc,
'future': self,
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
return
# ERROR_IO_PENDING means that the unregister is pending
self._unregister_wait_cb(None)
def cancel(self):
self._unregister_wait()
return super().cancel()
def set_exception(self, exception):
self._unregister_wait()
super().set_exception(exception)
def set_result(self, result):
self._unregister_wait()
super().set_result(result)
class _WaitCancelFuture(_BaseWaitHandleFuture):
"""Subclass of Future which represents a wait for the cancellation of a
_WaitHandleFuture using an event.
"""
def __init__(self, ov, event, wait_handle, *, loop=None):
super().__init__(ov, event, wait_handle, loop=loop)
self._done_callback = None
def cancel(self):
raise RuntimeError("_WaitCancelFuture must not be cancelled")
def set_result(self, result):
super().set_result(result)
if self._done_callback is not None:
self._done_callback(self)
def set_exception(self, exception):
super().set_exception(exception)
if self._done_callback is not None:
self._done_callback(self)
class _WaitHandleFuture(_BaseWaitHandleFuture):
def __init__(self, ov, handle, wait_handle, proactor, *, loop=None):
super().__init__(ov, handle, wait_handle, loop=loop)
self._proactor = proactor
self._unregister_proactor = True
self._event = _overlapped.CreateEvent(None, True, False, None)
self._event_fut = None
def _unregister_wait_cb(self, fut):
if self._event is not None:
_winapi.CloseHandle(self._event)
self._event = None
self._event_fut = None
# If the wait was cancelled, the wait may never be signalled, so
# it's required to unregister it. Otherwise, IocpProactor.close() will
# wait forever for an event which will never come.
#
# If the IocpProactor already received the event, it's safe to call
# _unregister() because we kept a reference to the Overlapped object
# which is used as a unique key.
self._proactor._unregister(self._ov)
self._proactor = None
super()._unregister_wait_cb(fut)
def _unregister_wait(self):
if not self._registered:
return
self._registered = False
wait_handle = self._wait_handle
self._wait_handle = None
try:
_overlapped.UnregisterWaitEx(wait_handle, self._event)
except OSError as exc:
if exc.winerror != _overlapped.ERROR_IO_PENDING:
context = {
'message': 'Failed to unregister the wait handle',
'exception': exc,
'future': self,
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
return
# ERROR_IO_PENDING is not an error, the wait was unregistered
self._event_fut = self._proactor._wait_cancel(self._event,
self._unregister_wait_cb)
class PipeServer(object):
"""Class representing a pipe server.
This is much like a bound, listening socket.
"""
def __init__(self, address):
self._address = address
self._free_instances = weakref.WeakSet()
# initialize the pipe attribute before calling _server_pipe_handle()
# because this function can raise an exception and the destructor calls
# the close() method
self._pipe = None
self._accept_pipe_future = None
self._pipe = self._server_pipe_handle(True)
def _get_unconnected_pipe(self):
# Create new instance and return previous one. This ensures
# that (until the server is closed) there is always at least
# one pipe handle for address. Therefore if a client attempt
# to connect it will not fail with FileNotFoundError.
tmp, self._pipe = self._pipe, self._server_pipe_handle(False)
return tmp
def _server_pipe_handle(self, first):
# Return a wrapper for a new pipe handle.
if self.closed():
return None
flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED
if first:
flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE
h = _winapi.CreateNamedPipe(
self._address, flags,
_winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE |
_winapi.PIPE_WAIT,
_winapi.PIPE_UNLIMITED_INSTANCES,
windows_utils.BUFSIZE, windows_utils.BUFSIZE,
_winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL)
pipe = windows_utils.PipeHandle(h)
self._free_instances.add(pipe)
return pipe
def closed(self):
return (self._address is None)
def close(self):
if self._accept_pipe_future is not None:
self._accept_pipe_future.cancel()
self._accept_pipe_future = None
# Close all instances which have not been connected to by a client.
if self._address is not None:
for pipe in self._free_instances:
pipe.close()
self._pipe = None
self._address = None
self._free_instances.clear()
__del__ = close
class _WindowsSelectorEventLoop(selector_events.BaseSelectorEventLoop):
"""Windows version of selector event loop."""
def _socketpair(self):
return windows_utils.socketpair()
class ProactorEventLoop(proactor_events.BaseProactorEventLoop):
"""Windows version of proactor event loop using IOCP."""
def __init__(self, proactor=None):
if proactor is None:
proactor = IocpProactor()
super().__init__(proactor)
def _socketpair(self):
return windows_utils.socketpair()
@coroutine
def create_pipe_connection(self, protocol_factory, address):
f = self._proactor.connect_pipe(address)
pipe = yield from f
protocol = protocol_factory()
trans = self._make_duplex_pipe_transport(pipe, protocol,
extra={'addr': address})
return trans, protocol
@coroutine
def start_serving_pipe(self, protocol_factory, address):
server = PipeServer(address)
def loop_accept_pipe(f=None):
pipe = None
try:
if f:
pipe = f.result()
server._free_instances.discard(pipe)
if server.closed():
# A client connected before the server was closed:
# drop the client (close the pipe) and exit
pipe.close()
return
protocol = protocol_factory()
self._make_duplex_pipe_transport(
pipe, protocol, extra={'addr': address})
pipe = server._get_unconnected_pipe()
if pipe is None:
return
f = self._proactor.accept_pipe(pipe)
except OSError as exc:
if pipe and pipe.fileno() != -1:
self.call_exception_handler({
'message': 'Pipe accept failed',
'exception': exc,
'pipe': pipe,
})
pipe.close()
elif self._debug:
logger.warning("Accept pipe failed on pipe %r",
pipe, exc_info=True)
except futures.CancelledError:
if pipe:
pipe.close()
else:
server._accept_pipe_future = f
f.add_done_callback(loop_accept_pipe)
self.call_soon(loop_accept_pipe)
return [server]
@coroutine
def _make_subprocess_transport(self, protocol, args, shell,
stdin, stdout, stderr, bufsize,
extra=None, **kwargs):
waiter = self.create_future()
transp = _WindowsSubprocessTransport(self, protocol, args, shell,
stdin, stdout, stderr, bufsize,
waiter=waiter, extra=extra,
**kwargs)
try:
yield from waiter
except Exception as exc:
# Workaround CPython bug #23353: using yield/yield-from in an
# except block of a generator doesn't clear properly sys.exc_info()
err = exc
else:
err = None
if err is not None:
transp.close()
yield from transp._wait()
raise err
return transp
class IocpProactor:
"""Proactor implementation using IOCP."""
def __init__(self, concurrency=0xffffffff):
self._loop = None
self._results = []
self._iocp = _overlapped.CreateIoCompletionPort(
_overlapped.INVALID_HANDLE_VALUE, NULL, 0, concurrency)
self._cache = {}
self._registered = weakref.WeakSet()
self._unregistered = []
self._stopped_serving = weakref.WeakSet()
def __repr__(self):
return ('<%s overlapped#=%s result#=%s>'
% (self.__class__.__name__, len(self._cache),
len(self._results)))
def set_loop(self, loop):
self._loop = loop
def select(self, timeout=None):
if not self._results:
self._poll(timeout)
tmp = self._results
self._results = []
return tmp
def _result(self, value):
fut = self._loop.create_future()
fut.set_result(value)
return fut
def recv(self, conn, nbytes, flags=0):
self._register_with_iocp(conn)
ov = _overlapped.Overlapped(NULL)
try:
if isinstance(conn, socket.socket):
ov.WSARecv(conn.fileno(), nbytes, flags)
else:
ov.ReadFile(conn.fileno(), nbytes)
except BrokenPipeError:
return self._result(b'')
def finish_recv(trans, key, ov):
try:
return ov.getresult()
except OSError as exc:
if exc.winerror == _overlapped.ERROR_NETNAME_DELETED:
raise ConnectionResetError(*exc.args)
else:
raise
return self._register(ov, conn, finish_recv)
def send(self, conn, buf, flags=0):
self._register_with_iocp(conn)
ov = _overlapped.Overlapped(NULL)
if isinstance(conn, socket.socket):
ov.WSASend(conn.fileno(), buf, flags)
else:
ov.WriteFile(conn.fileno(), buf)
def finish_send(trans, key, ov):
try:
return ov.getresult()
except OSError as exc:
if exc.winerror == _overlapped.ERROR_NETNAME_DELETED:
raise ConnectionResetError(*exc.args)
else:
raise
return self._register(ov, conn, finish_send)
def accept(self, listener):
self._register_with_iocp(listener)
conn = self._get_accept_socket(listener.family)
ov = _overlapped.Overlapped(NULL)
ov.AcceptEx(listener.fileno(), conn.fileno())
def finish_accept(trans, key, ov):
ov.getresult()
# Use SO_UPDATE_ACCEPT_CONTEXT so getsockname() etc work.
buf = struct.pack('@P', listener.fileno())
conn.setsockopt(socket.SOL_SOCKET,
_overlapped.SO_UPDATE_ACCEPT_CONTEXT, buf)
conn.settimeout(listener.gettimeout())
return conn, conn.getpeername()
@coroutine
def accept_coro(future, conn):
# Coroutine closing the accept socket if the future is cancelled
try:
yield from future
except futures.CancelledError:
conn.close()
raise
future = self._register(ov, listener, finish_accept)
coro = accept_coro(future, conn)
tasks.ensure_future(coro, loop=self._loop)
return future
def connect(self, conn, address):
self._register_with_iocp(conn)
# The socket needs to be locally bound before we call ConnectEx().
try:
_overlapped.BindLocal(conn.fileno(), conn.family)
except OSError as e:
if e.winerror != errno.WSAEINVAL:
raise
# Probably already locally bound; check using getsockname().
if conn.getsockname()[1] == 0:
raise
ov = _overlapped.Overlapped(NULL)
ov.ConnectEx(conn.fileno(), address)
def finish_connect(trans, key, ov):
ov.getresult()
# Use SO_UPDATE_CONNECT_CONTEXT so getsockname() etc work.
conn.setsockopt(socket.SOL_SOCKET,
_overlapped.SO_UPDATE_CONNECT_CONTEXT, 0)
return conn
return self._register(ov, conn, finish_connect)
def accept_pipe(self, pipe):
self._register_with_iocp(pipe)
ov = _overlapped.Overlapped(NULL)
connected = ov.ConnectNamedPipe(pipe.fileno())
if connected:
# ConnectNamePipe() failed with ERROR_PIPE_CONNECTED which means
# that the pipe is connected. There is no need to wait for the
# completion of the connection.
return self._result(pipe)
def finish_accept_pipe(trans, key, ov):
ov.getresult()
return pipe
return self._register(ov, pipe, finish_accept_pipe)
@coroutine
def connect_pipe(self, address):
delay = CONNECT_PIPE_INIT_DELAY
while True:
# Unfortunately there is no way to do an overlapped connect to a pipe.
# Call CreateFile() in a loop until it doesn't fail with
# ERROR_PIPE_BUSY
try:
handle = _overlapped.ConnectPipe(address)
break
except OSError as exc:
if exc.winerror != _overlapped.ERROR_PIPE_BUSY:
raise
# ConnectPipe() failed with ERROR_PIPE_BUSY: retry later
delay = min(delay * 2, CONNECT_PIPE_MAX_DELAY)
yield from tasks.sleep(delay, loop=self._loop)
return windows_utils.PipeHandle(handle)
def wait_for_handle(self, handle, timeout=None):
"""Wait for a handle.
Return a Future object. The result of the future is True if the wait
completed, or False if the wait did not complete (on timeout).
"""
return self._wait_for_handle(handle, timeout, False)
def _wait_cancel(self, event, done_callback):
fut = self._wait_for_handle(event, None, True)
# add_done_callback() cannot be used because the wait may only complete
# in IocpProactor.close(), while the event loop is not running.
fut._done_callback = done_callback
return fut
def _wait_for_handle(self, handle, timeout, _is_cancel):
if timeout is None:
ms = _winapi.INFINITE
else:
# RegisterWaitForSingleObject() has a resolution of 1 millisecond,
# round away from zero to wait *at least* timeout seconds.
ms = math.ceil(timeout * 1e3)
# We only create ov so we can use ov.address as a key for the cache.
ov = _overlapped.Overlapped(NULL)
wait_handle = _overlapped.RegisterWaitWithQueue(
handle, self._iocp, ov.address, ms)
if _is_cancel:
f = _WaitCancelFuture(ov, handle, wait_handle, loop=self._loop)
else:
f = _WaitHandleFuture(ov, handle, wait_handle, self,
loop=self._loop)
if f._source_traceback:
del f._source_traceback[-1]
def finish_wait_for_handle(trans, key, ov):
# Note that this second wait means that we should only use
# this with handles types where a successful wait has no
# effect. So events or processes are all right, but locks
# or semaphores are not. Also note if the handle is
# signalled and then quickly reset, then we may return
# False even though we have not timed out.
return f._poll()
self._cache[ov.address] = (f, ov, 0, finish_wait_for_handle)
return f
def _register_with_iocp(self, obj):
# To get notifications of finished ops on this objects sent to the
# completion port, were must register the handle.
if obj not in self._registered:
self._registered.add(obj)
_overlapped.CreateIoCompletionPort(obj.fileno(), self._iocp, 0, 0)
# XXX We could also use SetFileCompletionNotificationModes()
# to avoid sending notifications to completion port of ops
# that succeed immediately.
def _register(self, ov, obj, callback):
# Return a future which will be set with the result of the
# operation when it completes. The future's value is actually
# the value returned by callback().
f = _OverlappedFuture(ov, loop=self._loop)
if f._source_traceback:
del f._source_traceback[-1]
if not ov.pending:
# The operation has completed, so no need to postpone the
# work. We cannot take this short cut if we need the
# NumberOfBytes, CompletionKey values returned by
# PostQueuedCompletionStatus().
try:
value = callback(None, None, ov)
except OSError as e:
f.set_exception(e)
else:
f.set_result(value)
# Even if GetOverlappedResult() was called, we have to wait for the
# notification of the completion in GetQueuedCompletionStatus().
# Register the overlapped operation to keep a reference to the
# OVERLAPPED object, otherwise the memory is freed and Windows may
# read uninitialized memory.
# Register the overlapped operation for later. Note that
# we only store obj to prevent it from being garbage
# collected too early.
self._cache[ov.address] = (f, ov, obj, callback)
return f
def _unregister(self, ov):
"""Unregister an overlapped object.
Call this method when its future has been cancelled. The event can
already be signalled (pending in the proactor event queue). It is also
safe if the event is never signalled (because it was cancelled).
"""
self._unregistered.append(ov)
def _get_accept_socket(self, family):
s = socket.socket(family)
s.settimeout(0)
return s
def _poll(self, timeout=None):
if timeout is None:
ms = INFINITE
elif timeout < 0:
raise ValueError("negative timeout")
else:
# GetQueuedCompletionStatus() has a resolution of 1 millisecond,
# round away from zero to wait *at least* timeout seconds.
ms = math.ceil(timeout * 1e3)
if ms >= INFINITE:
raise ValueError("timeout too big")
while True:
status = _overlapped.GetQueuedCompletionStatus(self._iocp, ms)
if status is None:
break
ms = 0
err, transferred, key, address = status
try:
f, ov, obj, callback = self._cache.pop(address)
except KeyError:
if self._loop.get_debug():
self._loop.call_exception_handler({
'message': ('GetQueuedCompletionStatus() returned an '
'unexpected event'),
'status': ('err=%s transferred=%s key=%#x address=%#x'
% (err, transferred, key, address)),
})
# key is either zero, or it is used to return a pipe
# handle which should be closed to avoid a leak.
if key not in (0, _overlapped.INVALID_HANDLE_VALUE):
_winapi.CloseHandle(key)
continue
if obj in self._stopped_serving:
f.cancel()
# Don't call the callback if _register() already read the result or
# if the overlapped has been cancelled
elif not f.done():
try:
value = callback(transferred, key, ov)
except OSError as e:
f.set_exception(e)
self._results.append(f)
else:
f.set_result(value)
self._results.append(f)
# Remove unregisted futures
for ov in self._unregistered:
self._cache.pop(ov.address, None)
self._unregistered.clear()
def _stop_serving(self, obj):
# obj is a socket or pipe handle. It will be closed in
# BaseProactorEventLoop._stop_serving() which will make any
# pending operations fail quickly.
self._stopped_serving.add(obj)
def close(self):
# Cancel remaining registered operations.
for address, (fut, ov, obj, callback) in list(self._cache.items()):
if fut.cancelled():
# Nothing to do with cancelled futures
pass
elif isinstance(fut, _WaitCancelFuture):
# _WaitCancelFuture must not be cancelled
pass
else:
try:
fut.cancel()
except OSError as exc:
if self._loop is not None:
context = {
'message': 'Cancelling a future failed',
'exception': exc,
'future': fut,
}
if fut._source_traceback:
context['source_traceback'] = fut._source_traceback
self._loop.call_exception_handler(context)
while self._cache:
if not self._poll(1):
logger.debug('taking long time to close proactor')
self._results = []
if self._iocp is not None:
_winapi.CloseHandle(self._iocp)
self._iocp = None
def __del__(self):
self.close()
class _WindowsSubprocessTransport(base_subprocess.BaseSubprocessTransport):
def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs):
self._proc = windows_utils.Popen(
args, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr,
bufsize=bufsize, **kwargs)
def callback(f):
returncode = self._proc.poll()
self._process_exited(returncode)
f = self._loop._proactor.wait_for_handle(int(self._proc._handle))
f.add_done_callback(callback)
SelectorEventLoop = _WindowsSelectorEventLoop
class _WindowsDefaultEventLoopPolicy(events.BaseDefaultEventLoopPolicy):
_loop_factory = SelectorEventLoop
DefaultEventLoopPolicy = _WindowsDefaultEventLoopPolicy

View file

@ -0,0 +1,224 @@
"""
Various Windows specific bits and pieces
"""
import sys
if sys.platform != 'win32': # pragma: no cover
raise ImportError('win32 only')
import _winapi
import itertools
import msvcrt
import os
import socket
import subprocess
import tempfile
import warnings
__all__ = ['socketpair', 'pipe', 'Popen', 'PIPE', 'PipeHandle']
# Constants/globals
BUFSIZE = 8192
PIPE = subprocess.PIPE
STDOUT = subprocess.STDOUT
_mmap_counter = itertools.count()
if hasattr(socket, 'socketpair'):
# Since Python 3.5, socket.socketpair() is now also available on Windows
socketpair = socket.socketpair
else:
# Replacement for socket.socketpair()
def socketpair(family=socket.AF_INET, type=socket.SOCK_STREAM, proto=0):
"""A socket pair usable as a self-pipe, for Windows.
Origin: https://gist.github.com/4325783, by Geert Jansen.
Public domain.
"""
if family == socket.AF_INET:
host = '127.0.0.1'
elif family == socket.AF_INET6:
host = '::1'
else:
raise ValueError("Only AF_INET and AF_INET6 socket address "
"families are supported")
if type != socket.SOCK_STREAM:
raise ValueError("Only SOCK_STREAM socket type is supported")
if proto != 0:
raise ValueError("Only protocol zero is supported")
# We create a connected TCP socket. Note the trick with setblocking(0)
# that prevents us from having to create a thread.
lsock = socket.socket(family, type, proto)
try:
lsock.bind((host, 0))
lsock.listen(1)
# On IPv6, ignore flow_info and scope_id
addr, port = lsock.getsockname()[:2]
csock = socket.socket(family, type, proto)
try:
csock.setblocking(False)
try:
csock.connect((addr, port))
except (BlockingIOError, InterruptedError):
pass
csock.setblocking(True)
ssock, _ = lsock.accept()
except:
csock.close()
raise
finally:
lsock.close()
return (ssock, csock)
# Replacement for os.pipe() using handles instead of fds
def pipe(*, duplex=False, overlapped=(True, True), bufsize=BUFSIZE):
"""Like os.pipe() but with overlapped support and using handles not fds."""
address = tempfile.mktemp(prefix=r'\\.\pipe\python-pipe-%d-%d-' %
(os.getpid(), next(_mmap_counter)))
if duplex:
openmode = _winapi.PIPE_ACCESS_DUPLEX
access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE
obsize, ibsize = bufsize, bufsize
else:
openmode = _winapi.PIPE_ACCESS_INBOUND
access = _winapi.GENERIC_WRITE
obsize, ibsize = 0, bufsize
openmode |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE
if overlapped[0]:
openmode |= _winapi.FILE_FLAG_OVERLAPPED
if overlapped[1]:
flags_and_attribs = _winapi.FILE_FLAG_OVERLAPPED
else:
flags_and_attribs = 0
h1 = h2 = None
try:
h1 = _winapi.CreateNamedPipe(
address, openmode, _winapi.PIPE_WAIT,
1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL)
h2 = _winapi.CreateFile(
address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING,
flags_and_attribs, _winapi.NULL)
ov = _winapi.ConnectNamedPipe(h1, overlapped=True)
ov.GetOverlappedResult(True)
return h1, h2
except:
if h1 is not None:
_winapi.CloseHandle(h1)
if h2 is not None:
_winapi.CloseHandle(h2)
raise
# Wrapper for a pipe handle
class PipeHandle:
"""Wrapper for an overlapped pipe handle which is vaguely file-object like.
The IOCP event loop can use these instead of socket objects.
"""
def __init__(self, handle):
self._handle = handle
def __repr__(self):
if self._handle is not None:
handle = 'handle=%r' % self._handle
else:
handle = 'closed'
return '<%s %s>' % (self.__class__.__name__, handle)
@property
def handle(self):
return self._handle
def fileno(self):
if self._handle is None:
raise ValueError("I/O operatioon on closed pipe")
return self._handle
def close(self, *, CloseHandle=_winapi.CloseHandle):
if self._handle is not None:
CloseHandle(self._handle)
self._handle = None
def __del__(self):
if self._handle is not None:
warnings.warn("unclosed %r" % self, ResourceWarning,
source=self)
self.close()
def __enter__(self):
return self
def __exit__(self, t, v, tb):
self.close()
# Replacement for subprocess.Popen using overlapped pipe handles
class Popen(subprocess.Popen):
"""Replacement for subprocess.Popen using overlapped pipe handles.
The stdin, stdout, stderr are None or instances of PipeHandle.
"""
def __init__(self, args, stdin=None, stdout=None, stderr=None, **kwds):
assert not kwds.get('universal_newlines')
assert kwds.get('bufsize', 0) == 0
stdin_rfd = stdout_wfd = stderr_wfd = None
stdin_wh = stdout_rh = stderr_rh = None
if stdin == PIPE:
stdin_rh, stdin_wh = pipe(overlapped=(False, True), duplex=True)
stdin_rfd = msvcrt.open_osfhandle(stdin_rh, os.O_RDONLY)
else:
stdin_rfd = stdin
if stdout == PIPE:
stdout_rh, stdout_wh = pipe(overlapped=(True, False))
stdout_wfd = msvcrt.open_osfhandle(stdout_wh, 0)
else:
stdout_wfd = stdout
if stderr == PIPE:
stderr_rh, stderr_wh = pipe(overlapped=(True, False))
stderr_wfd = msvcrt.open_osfhandle(stderr_wh, 0)
elif stderr == STDOUT:
stderr_wfd = stdout_wfd
else:
stderr_wfd = stderr
try:
super().__init__(args, stdin=stdin_rfd, stdout=stdout_wfd,
stderr=stderr_wfd, **kwds)
except:
for h in (stdin_wh, stdout_rh, stderr_rh):
if h is not None:
_winapi.CloseHandle(h)
raise
else:
if stdin_wh is not None:
self.stdin = PipeHandle(stdin_wh)
if stdout_rh is not None:
self.stdout = PipeHandle(stdout_rh)
if stderr_rh is not None:
self.stderr = PipeHandle(stderr_rh)
finally:
if stdin == PIPE:
os.close(stdin_rfd)
if stdout == PIPE:
os.close(stdout_wfd)
if stderr == PIPE:
os.close(stderr_wfd)

645
third_party/python/Lib/asyncore.py vendored Normal file
View file

@ -0,0 +1,645 @@
# -*- Mode: Python -*-
# Id: asyncore.py,v 2.51 2000/09/07 22:29:26 rushing Exp
# Author: Sam Rushing <rushing@nightmare.com>
# ======================================================================
# Copyright 1996 by Sam Rushing
#
# All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================
"""Basic infrastructure for asynchronous socket service clients and servers.
There are only two ways to have a program on a single processor do "more
than one thing at a time". Multi-threaded programming is the simplest and
most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without
actually using multiple threads. it's really only practical if your program
is largely I/O bound. If your program is CPU bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are
rarely CPU-bound, however.
If your operating system supports the select() system call in its I/O
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the "background." Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap.
"""
import select
import socket
import sys
import time
import warnings
import os
from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, EINVAL, \
ENOTCONN, ESHUTDOWN, EISCONN, EBADF, ECONNABORTED, EPIPE, EAGAIN, \
errorcode
_DISCONNECTED = frozenset({ECONNRESET, ENOTCONN, ESHUTDOWN, ECONNABORTED, EPIPE,
EBADF})
try:
socket_map
except NameError:
socket_map = {}
def _strerror(err):
try:
return os.strerror(err)
except (ValueError, OverflowError, NameError):
if err in errorcode:
return errorcode[err]
return "Unknown error %s" %err
class ExitNow(Exception):
pass
_reraised_exceptions = (ExitNow, KeyboardInterrupt, SystemExit)
def read(obj):
try:
obj.handle_read_event()
except _reraised_exceptions:
raise
except:
obj.handle_error()
def write(obj):
try:
obj.handle_write_event()
except _reraised_exceptions:
raise
except:
obj.handle_error()
def _exception(obj):
try:
obj.handle_expt_event()
except _reraised_exceptions:
raise
except:
obj.handle_error()
def readwrite(obj, flags):
try:
if flags & select.POLLIN:
obj.handle_read_event()
if flags & select.POLLOUT:
obj.handle_write_event()
if flags & select.POLLPRI:
obj.handle_expt_event()
if flags & (select.POLLHUP | select.POLLERR | select.POLLNVAL):
obj.handle_close()
except OSError as e:
if e.args[0] not in _DISCONNECTED:
obj.handle_error()
else:
obj.handle_close()
except _reraised_exceptions:
raise
except:
obj.handle_error()
def poll(timeout=0.0, map=None):
if map is None:
map = socket_map
if map:
r = []; w = []; e = []
for fd, obj in list(map.items()):
is_r = obj.readable()
is_w = obj.writable()
if is_r:
r.append(fd)
# accepting sockets should not be writable
if is_w and not obj.accepting:
w.append(fd)
if is_r or is_w:
e.append(fd)
if [] == r == w == e:
time.sleep(timeout)
return
r, w, e = select.select(r, w, e, timeout)
for fd in r:
obj = map.get(fd)
if obj is None:
continue
read(obj)
for fd in w:
obj = map.get(fd)
if obj is None:
continue
write(obj)
for fd in e:
obj = map.get(fd)
if obj is None:
continue
_exception(obj)
def poll2(timeout=0.0, map=None):
# Use the poll() support added to the select module in Python 2.0
if map is None:
map = socket_map
if timeout is not None:
# timeout is in milliseconds
timeout = int(timeout*1000)
pollster = select.poll()
if map:
for fd, obj in list(map.items()):
flags = 0
if obj.readable():
flags |= select.POLLIN | select.POLLPRI
# accepting sockets should not be writable
if obj.writable() and not obj.accepting:
flags |= select.POLLOUT
if flags:
pollster.register(fd, flags)
r = pollster.poll(timeout)
for fd, flags in r:
obj = map.get(fd)
if obj is None:
continue
readwrite(obj, flags)
poll3 = poll2 # Alias for backward compatibility
def loop(timeout=30.0, use_poll=False, map=None, count=None):
if map is None:
map = socket_map
if use_poll and hasattr(select, 'poll'):
poll_fun = poll2
else:
poll_fun = poll
if count is None:
while map:
poll_fun(timeout, map)
else:
while map and count > 0:
poll_fun(timeout, map)
count = count - 1
class dispatcher:
debug = False
connected = False
accepting = False
connecting = False
closing = False
addr = None
ignore_log_types = frozenset({'warning'})
def __init__(self, sock=None, map=None):
if map is None:
self._map = socket_map
else:
self._map = map
self._fileno = None
if sock:
# Set to nonblocking just to make sure for cases where we
# get a socket from a blocking source.
sock.setblocking(0)
self.set_socket(sock, map)
self.connected = True
# The constructor no longer requires that the socket
# passed be connected.
try:
self.addr = sock.getpeername()
except OSError as err:
if err.args[0] in (ENOTCONN, EINVAL):
# To handle the case where we got an unconnected
# socket.
self.connected = False
else:
# The socket is broken in some unknown way, alert
# the user and remove it from the map (to prevent
# polling of broken sockets).
self.del_channel(map)
raise
else:
self.socket = None
def __repr__(self):
status = [self.__class__.__module__+"."+self.__class__.__qualname__]
if self.accepting and self.addr:
status.append('listening')
elif self.connected:
status.append('connected')
if self.addr is not None:
try:
status.append('%s:%d' % self.addr)
except TypeError:
status.append(repr(self.addr))
return '<%s at %#x>' % (' '.join(status), id(self))
__str__ = __repr__
def add_channel(self, map=None):
#self.log_info('adding channel %s' % self)
if map is None:
map = self._map
map[self._fileno] = self
def del_channel(self, map=None):
fd = self._fileno
if map is None:
map = self._map
if fd in map:
#self.log_info('closing channel %d:%s' % (fd, self))
del map[fd]
self._fileno = None
def create_socket(self, family=socket.AF_INET, type=socket.SOCK_STREAM):
self.family_and_type = family, type
sock = socket.socket(family, type)
sock.setblocking(0)
self.set_socket(sock)
def set_socket(self, sock, map=None):
self.socket = sock
## self.__dict__['socket'] = sock
self._fileno = sock.fileno()
self.add_channel(map)
def set_reuse_addr(self):
# try to re-use a server port if possible
try:
self.socket.setsockopt(
socket.SOL_SOCKET, socket.SO_REUSEADDR,
self.socket.getsockopt(socket.SOL_SOCKET,
socket.SO_REUSEADDR) | 1
)
except OSError:
pass
# ==================================================
# predicates for select()
# these are used as filters for the lists of sockets
# to pass to select().
# ==================================================
def readable(self):
return True
def writable(self):
return True
# ==================================================
# socket object methods.
# ==================================================
def listen(self, num):
self.accepting = True
if os.name == 'nt' and num > 5:
num = 5
return self.socket.listen(num)
def bind(self, addr):
self.addr = addr
return self.socket.bind(addr)
def connect(self, address):
self.connected = False
self.connecting = True
err = self.socket.connect_ex(address)
if err in (EINPROGRESS, EALREADY, EWOULDBLOCK) \
or err == EINVAL and os.name == 'nt':
self.addr = address
return
if err in (0, EISCONN):
self.addr = address
self.handle_connect_event()
else:
raise OSError(err, errorcode[err])
def accept(self):
# XXX can return either an address pair or None
try:
conn, addr = self.socket.accept()
except TypeError:
return None
except OSError as why:
if why.args[0] in (EWOULDBLOCK, ECONNABORTED, EAGAIN):
return None
else:
raise
else:
return conn, addr
def send(self, data):
try:
result = self.socket.send(data)
return result
except OSError as why:
if why.args[0] == EWOULDBLOCK:
return 0
elif why.args[0] in _DISCONNECTED:
self.handle_close()
return 0
else:
raise
def recv(self, buffer_size):
try:
data = self.socket.recv(buffer_size)
if not data:
# a closed connection is indicated by signaling
# a read condition, and having recv() return 0.
self.handle_close()
return b''
else:
return data
except OSError as why:
# winsock sometimes raises ENOTCONN
if why.args[0] in _DISCONNECTED:
self.handle_close()
return b''
else:
raise
def close(self):
self.connected = False
self.accepting = False
self.connecting = False
self.del_channel()
if self.socket is not None:
try:
self.socket.close()
except OSError as why:
if why.args[0] not in (ENOTCONN, EBADF):
raise
# log and log_info may be overridden to provide more sophisticated
# logging and warning methods. In general, log is for 'hit' logging
# and 'log_info' is for informational, warning and error logging.
def log(self, message):
sys.stderr.write('log: %s\n' % str(message))
def log_info(self, message, type='info'):
if type not in self.ignore_log_types:
print('%s: %s' % (type, message))
def handle_read_event(self):
if self.accepting:
# accepting sockets are never connected, they "spawn" new
# sockets that are connected
self.handle_accept()
elif not self.connected:
if self.connecting:
self.handle_connect_event()
self.handle_read()
else:
self.handle_read()
def handle_connect_event(self):
err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
if err != 0:
raise OSError(err, _strerror(err))
self.handle_connect()
self.connected = True
self.connecting = False
def handle_write_event(self):
if self.accepting:
# Accepting sockets shouldn't get a write event.
# We will pretend it didn't happen.
return
if not self.connected:
if self.connecting:
self.handle_connect_event()
self.handle_write()
def handle_expt_event(self):
# handle_expt_event() is called if there might be an error on the
# socket, or if there is OOB data
# check for the error condition first
err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
if err != 0:
# we can get here when select.select() says that there is an
# exceptional condition on the socket
# since there is an error, we'll go ahead and close the socket
# like we would in a subclassed handle_read() that received no
# data
self.handle_close()
else:
self.handle_expt()
def handle_error(self):
nil, t, v, tbinfo = compact_traceback()
# sometimes a user repr method will crash.
try:
self_repr = repr(self)
except:
self_repr = '<__repr__(self) failed for object at %0x>' % id(self)
self.log_info(
'uncaptured python exception, closing channel %s (%s:%s %s)' % (
self_repr,
t,
v,
tbinfo
),
'error'
)
self.handle_close()
def handle_expt(self):
self.log_info('unhandled incoming priority event', 'warning')
def handle_read(self):
self.log_info('unhandled read event', 'warning')
def handle_write(self):
self.log_info('unhandled write event', 'warning')
def handle_connect(self):
self.log_info('unhandled connect event', 'warning')
def handle_accept(self):
pair = self.accept()
if pair is not None:
self.handle_accepted(*pair)
def handle_accepted(self, sock, addr):
sock.close()
self.log_info('unhandled accepted event', 'warning')
def handle_close(self):
self.log_info('unhandled close event', 'warning')
self.close()
# ---------------------------------------------------------------------------
# adds simple buffered output capability, useful for simple clients.
# [for more sophisticated usage use asynchat.async_chat]
# ---------------------------------------------------------------------------
class dispatcher_with_send(dispatcher):
def __init__(self, sock=None, map=None):
dispatcher.__init__(self, sock, map)
self.out_buffer = b''
def initiate_send(self):
num_sent = 0
num_sent = dispatcher.send(self, self.out_buffer[:65536])
self.out_buffer = self.out_buffer[num_sent:]
def handle_write(self):
self.initiate_send()
def writable(self):
return (not self.connected) or len(self.out_buffer)
def send(self, data):
if self.debug:
self.log_info('sending %s' % repr(data))
self.out_buffer = self.out_buffer + data
self.initiate_send()
# ---------------------------------------------------------------------------
# used for debugging.
# ---------------------------------------------------------------------------
def compact_traceback():
t, v, tb = sys.exc_info()
tbinfo = []
if not tb: # Must have a traceback
raise AssertionError("traceback does not exist")
while tb:
tbinfo.append((
tb.tb_frame.f_code.co_filename,
tb.tb_frame.f_code.co_name,
str(tb.tb_lineno)
))
tb = tb.tb_next
# just to be safe
del tb
file, function, line = tbinfo[-1]
info = ' '.join(['[%s|%s|%s]' % x for x in tbinfo])
return (file, function, line), t, v, info
def close_all(map=None, ignore_all=False):
if map is None:
map = socket_map
for x in list(map.values()):
try:
x.close()
except OSError as x:
if x.args[0] == EBADF:
pass
elif not ignore_all:
raise
except _reraised_exceptions:
raise
except:
if not ignore_all:
raise
map.clear()
# Asynchronous File I/O:
#
# After a little research (reading man pages on various unixen, and
# digging through the linux kernel), I've determined that select()
# isn't meant for doing asynchronous file i/o.
# Heartening, though - reading linux/mm/filemap.c shows that linux
# supports asynchronous read-ahead. So _MOST_ of the time, the data
# will be sitting in memory for us already when we go to read it.
#
# What other OS's (besides NT) support async file i/o? [VMS?]
#
# Regardless, this is useful for pipes, and stdin/stdout...
if os.name == 'posix':
class file_wrapper:
# Here we override just enough to make a file
# look like a socket for the purposes of asyncore.
# The passed fd is automatically os.dup()'d
def __init__(self, fd):
self.fd = os.dup(fd)
def __del__(self):
if self.fd >= 0:
warnings.warn("unclosed file %r" % self, ResourceWarning,
source=self)
self.close()
def recv(self, *args):
return os.read(self.fd, *args)
def send(self, *args):
return os.write(self.fd, *args)
def getsockopt(self, level, optname, buflen=None):
if (level == socket.SOL_SOCKET and
optname == socket.SO_ERROR and
not buflen):
return 0
raise NotImplementedError("Only asyncore specific behaviour "
"implemented.")
read = recv
write = send
def close(self):
if self.fd < 0:
return
fd = self.fd
self.fd = -1
os.close(fd)
def fileno(self):
return self.fd
class file_dispatcher(dispatcher):
def __init__(self, fd, map=None):
dispatcher.__init__(self, None, map)
self.connected = True
try:
fd = fd.fileno()
except AttributeError:
pass
self.set_file(fd)
# set it to non-blocking mode
os.set_blocking(fd, False)
def set_file(self, fd):
self.socket = file_wrapper(fd)
self._fileno = self.socket.fileno()
self.add_channel()

595
third_party/python/Lib/base64.py vendored Executable file
View file

@ -0,0 +1,595 @@
#! /usr/bin/env python3
"""Base16, Base32, Base64 (RFC 3548), Base85 and Ascii85 data encodings"""
# Modified 04-Oct-1995 by Jack Jansen to use binascii module
# Modified 30-Dec-2003 by Barry Warsaw to add full RFC 3548 support
# Modified 22-May-2007 by Guido van Rossum to use bytes everywhere
import re
import struct
import binascii
__all__ = [
# Legacy interface exports traditional RFC 2045 Base64 encodings
'encode', 'decode', 'encodebytes', 'decodebytes',
# Generalized interface for other encodings
'b64encode', 'b64decode', 'b32encode', 'b32decode',
'b16encode', 'b16decode',
# Base85 and Ascii85 encodings
'b85encode', 'b85decode', 'a85encode', 'a85decode',
# Standard Base64 encoding
'standard_b64encode', 'standard_b64decode',
# Some common Base64 alternatives. As referenced by RFC 3458, see thread
# starting at:
#
# http://zgp.org/pipermail/p2p-hackers/2001-September/000316.html
'urlsafe_b64encode', 'urlsafe_b64decode',
]
bytes_types = (bytes, bytearray) # Types acceptable as binary data
def _bytes_from_decode_data(s):
if isinstance(s, str):
try:
return s.encode('ascii')
except UnicodeEncodeError:
raise ValueError('string argument should contain only ASCII characters')
if isinstance(s, bytes_types):
return s
try:
return memoryview(s).tobytes()
except TypeError:
raise TypeError("argument should be a bytes-like object or ASCII "
"string, not %r" % s.__class__.__name__) from None
# Base64 encoding/decoding uses binascii
def b64encode(s, altchars=None):
"""Encode the bytes-like object s using Base64 and return a bytes object.
Optional altchars should be a byte string of length 2 which specifies an
alternative alphabet for the '+' and '/' characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.
"""
encoded = binascii.b2a_base64(s, newline=False)
if altchars is not None:
assert len(altchars) == 2, repr(altchars)
return encoded.translate(bytes.maketrans(b'+/', altchars))
return encoded
def b64decode(s, altchars=None, validate=False):
"""Decode the Base64 encoded bytes-like object or ASCII string s.
Optional altchars must be a bytes-like object or ASCII string of length 2
which specifies the alternative alphabet used instead of the '+' and '/'
characters.
The result is returned as a bytes object. A binascii.Error is raised if
s is incorrectly padded.
If validate is False (the default), characters that are neither in the
normal base-64 alphabet nor the alternative alphabet are discarded prior
to the padding check. If validate is True, these non-alphabet characters
in the input result in a binascii.Error.
"""
s = _bytes_from_decode_data(s)
if altchars is not None:
altchars = _bytes_from_decode_data(altchars)
assert len(altchars) == 2, repr(altchars)
s = s.translate(bytes.maketrans(altchars, b'+/'))
if validate and not re.match(b'^[A-Za-z0-9+/]*={0,2}$', s):
raise binascii.Error('Non-base64 digit found')
return binascii.a2b_base64(s)
def standard_b64encode(s):
"""Encode bytes-like object s using the standard Base64 alphabet.
The result is returned as a bytes object.
"""
return b64encode(s)
def standard_b64decode(s):
"""Decode bytes encoded with the standard Base64 alphabet.
Argument s is a bytes-like object or ASCII string to decode. The result
is returned as a bytes object. A binascii.Error is raised if the input
is incorrectly padded. Characters that are not in the standard alphabet
are discarded prior to the padding check.
"""
return b64decode(s)
_urlsafe_encode_translation = bytes.maketrans(b'+/', b'-_')
_urlsafe_decode_translation = bytes.maketrans(b'-_', b'+/')
def urlsafe_b64encode(s):
"""Encode bytes using the URL- and filesystem-safe Base64 alphabet.
Argument s is a bytes-like object to encode. The result is returned as a
bytes object. The alphabet uses '-' instead of '+' and '_' instead of
'/'.
"""
return b64encode(s).translate(_urlsafe_encode_translation)
def urlsafe_b64decode(s):
"""Decode bytes using the URL- and filesystem-safe Base64 alphabet.
Argument s is a bytes-like object or ASCII string to decode. The result
is returned as a bytes object. A binascii.Error is raised if the input
is incorrectly padded. Characters that are not in the URL-safe base-64
alphabet, and are not a plus '+' or slash '/', are discarded prior to the
padding check.
The alphabet uses '-' instead of '+' and '_' instead of '/'.
"""
s = _bytes_from_decode_data(s)
s = s.translate(_urlsafe_decode_translation)
return b64decode(s)
# Base32 encoding/decoding must be done in Python
_b32alphabet = b'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567'
_b32tab2 = None
_b32rev = None
def b32encode(s):
"""Encode the bytes-like object s using Base32 and return a bytes object.
"""
global _b32tab2
# Delay the initialization of the table to not waste memory
# if the function is never called
if _b32tab2 is None:
b32tab = [bytes((i,)) for i in _b32alphabet]
_b32tab2 = [a + b for a in b32tab for b in b32tab]
b32tab = None
if not isinstance(s, bytes_types):
s = memoryview(s).tobytes()
leftover = len(s) % 5
# Pad the last quantum with zero bits if necessary
if leftover:
s = s + b'\0' * (5 - leftover) # Don't use += !
encoded = bytearray()
from_bytes = int.from_bytes
b32tab2 = _b32tab2
for i in range(0, len(s), 5):
c = from_bytes(s[i: i + 5], 'big')
encoded += (b32tab2[c >> 30] + # bits 1 - 10
b32tab2[(c >> 20) & 0x3ff] + # bits 11 - 20
b32tab2[(c >> 10) & 0x3ff] + # bits 21 - 30
b32tab2[c & 0x3ff] # bits 31 - 40
)
# Adjust for any leftover partial quanta
if leftover == 1:
encoded[-6:] = b'======'
elif leftover == 2:
encoded[-4:] = b'===='
elif leftover == 3:
encoded[-3:] = b'==='
elif leftover == 4:
encoded[-1:] = b'='
return bytes(encoded)
def b32decode(s, casefold=False, map01=None):
"""Decode the Base32 encoded bytes-like object or ASCII string s.
Optional casefold is a flag specifying whether a lowercase alphabet is
acceptable as input. For security purposes, the default is False.
RFC 3548 allows for optional mapping of the digit 0 (zero) to the
letter O (oh), and for optional mapping of the digit 1 (one) to
either the letter I (eye) or letter L (el). The optional argument
map01 when not None, specifies which letter the digit 1 should be
mapped to (when map01 is not None, the digit 0 is always mapped to
the letter O). For security purposes the default is None, so that
0 and 1 are not allowed in the input.
The result is returned as a bytes object. A binascii.Error is raised if
the input is incorrectly padded or if there are non-alphabet
characters present in the input.
"""
global _b32rev
# Delay the initialization of the table to not waste memory
# if the function is never called
if _b32rev is None:
_b32rev = {v: k for k, v in enumerate(_b32alphabet)}
s = _bytes_from_decode_data(s)
if len(s) % 8:
raise binascii.Error('Incorrect padding')
# Handle section 2.4 zero and one mapping. The flag map01 will be either
# False, or the character to map the digit 1 (one) to. It should be
# either L (el) or I (eye).
if map01 is not None:
map01 = _bytes_from_decode_data(map01)
assert len(map01) == 1, repr(map01)
s = s.translate(bytes.maketrans(b'01', b'O' + map01))
if casefold:
s = s.upper()
# Strip off pad characters from the right. We need to count the pad
# characters because this will tell us how many null bytes to remove from
# the end of the decoded string.
l = len(s)
s = s.rstrip(b'=')
padchars = l - len(s)
# Now decode the full quanta
decoded = bytearray()
b32rev = _b32rev
for i in range(0, len(s), 8):
quanta = s[i: i + 8]
acc = 0
try:
for c in quanta:
acc = (acc << 5) + b32rev[c]
except KeyError:
raise binascii.Error('Non-base32 digit found') from None
decoded += acc.to_bytes(5, 'big')
# Process the last, partial quanta
if l % 8 or padchars not in {0, 1, 3, 4, 6}:
raise binascii.Error('Incorrect padding')
if padchars and decoded:
acc <<= 5 * padchars
last = acc.to_bytes(5, 'big')
leftover = (43 - 5 * padchars) // 8 # 1: 4, 3: 3, 4: 2, 6: 1
decoded[-5:] = last[:leftover]
return bytes(decoded)
# RFC 3548, Base 16 Alphabet specifies uppercase, but hexlify() returns
# lowercase. The RFC also recommends against accepting input case
# insensitively.
def b16encode(s):
"""Encode the bytes-like object s using Base16 and return a bytes object.
"""
return binascii.hexlify(s).upper()
def b16decode(s, casefold=False):
"""Decode the Base16 encoded bytes-like object or ASCII string s.
Optional casefold is a flag specifying whether a lowercase alphabet is
acceptable as input. For security purposes, the default is False.
The result is returned as a bytes object. A binascii.Error is raised if
s is incorrectly padded or if there are non-alphabet characters present
in the input.
"""
s = _bytes_from_decode_data(s)
if casefold:
s = s.upper()
if re.search(b'[^0-9A-F]', s):
raise binascii.Error('Non-base16 digit found')
return binascii.unhexlify(s)
#
# Ascii85 encoding/decoding
#
_a85chars = None
_a85chars2 = None
_A85START = b"<~"
_A85END = b"~>"
def _85encode(b, chars, chars2, pad=False, foldnuls=False, foldspaces=False):
# Helper function for a85encode and b85encode
if not isinstance(b, bytes_types):
b = memoryview(b).tobytes()
padding = (-len(b)) % 4
if padding:
b = b + b'\0' * padding
words = struct.Struct('!%dI' % (len(b) // 4)).unpack(b)
chunks = [b'z' if foldnuls and not word else
b'y' if foldspaces and word == 0x20202020 else
(chars2[word // 614125] +
chars2[word // 85 % 7225] +
chars[word % 85])
for word in words]
if padding and not pad:
if chunks[-1] == b'z':
chunks[-1] = chars[0] * 5
chunks[-1] = chunks[-1][:-padding]
return b''.join(chunks)
def a85encode(b, *, foldspaces=False, wrapcol=0, pad=False, adobe=False):
"""Encode bytes-like object b using Ascii85 and return a bytes object.
foldspaces is an optional flag that uses the special short sequence 'y'
instead of 4 consecutive spaces (ASCII 0x20) as supported by 'btoa'. This
feature is not supported by the "standard" Adobe encoding.
wrapcol controls whether the output should have newline (b'\\n') characters
added to it. If this is non-zero, each output line will be at most this
many characters long.
pad controls whether the input is padded to a multiple of 4 before
encoding. Note that the btoa implementation always pads.
adobe controls whether the encoded byte sequence is framed with <~ and ~>,
which is used by the Adobe implementation.
"""
global _a85chars, _a85chars2
# Delay the initialization of tables to not waste memory
# if the function is never called
if _a85chars is None:
_a85chars = [bytes((i,)) for i in range(33, 118)]
_a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]
result = _85encode(b, _a85chars, _a85chars2, pad, True, foldspaces)
if adobe:
result = _A85START + result
if wrapcol:
wrapcol = max(2 if adobe else 1, wrapcol)
chunks = [result[i: i + wrapcol]
for i in range(0, len(result), wrapcol)]
if adobe:
if len(chunks[-1]) + 2 > wrapcol:
chunks.append(b'')
result = b'\n'.join(chunks)
if adobe:
result += _A85END
return result
def a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b' \t\n\r\v'):
"""Decode the Ascii85 encoded bytes-like object or ASCII string b.
foldspaces is a flag that specifies whether the 'y' short sequence should be
accepted as shorthand for 4 consecutive spaces (ASCII 0x20). This feature is
not supported by the "standard" Adobe encoding.
adobe controls whether the input sequence is in Adobe Ascii85 format (i.e.
is framed with <~ and ~>).
ignorechars should be a byte string containing characters to ignore from the
input. This should only contain whitespace characters, and by default
contains all whitespace characters in ASCII.
The result is returned as a bytes object.
"""
b = _bytes_from_decode_data(b)
if adobe:
if not b.endswith(_A85END):
raise ValueError(
"Ascii85 encoded byte sequences must end "
"with {!r}".format(_A85END)
)
if b.startswith(_A85START):
b = b[2:-2] # Strip off start/end markers
else:
b = b[:-2]
#
# We have to go through this stepwise, so as to ignore spaces and handle
# special short sequences
#
packI = struct.Struct('!I').pack
decoded = []
decoded_append = decoded.append
curr = []
curr_append = curr.append
curr_clear = curr.clear
for x in b + b'u' * 4:
if b'!'[0] <= x <= b'u'[0]:
curr_append(x)
if len(curr) == 5:
acc = 0
for x in curr:
acc = 85 * acc + (x - 33)
try:
decoded_append(packI(acc))
except struct.error:
raise ValueError('Ascii85 overflow') from None
curr_clear()
elif x == b'z'[0]:
if curr:
raise ValueError('z inside Ascii85 5-tuple')
decoded_append(b'\0\0\0\0')
elif foldspaces and x == b'y'[0]:
if curr:
raise ValueError('y inside Ascii85 5-tuple')
decoded_append(b'\x20\x20\x20\x20')
elif x in ignorechars:
# Skip whitespace
continue
else:
raise ValueError('Non-Ascii85 digit found: %c' % x)
result = b''.join(decoded)
padding = 4 - len(curr)
if padding:
# Throw away the extra padding
result = result[:-padding]
return result
# The following code is originally taken (with permission) from Mercurial
_b85alphabet = (b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
b"abcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~")
_b85chars = None
_b85chars2 = None
_b85dec = None
def b85encode(b, pad=False):
"""Encode bytes-like object b in base85 format and return a bytes object.
If pad is true, the input is padded with b'\\0' so its length is a multiple of
4 bytes before encoding.
"""
global _b85chars, _b85chars2
# Delay the initialization of tables to not waste memory
# if the function is never called
if _b85chars is None:
_b85chars = [bytes((i,)) for i in _b85alphabet]
_b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]
return _85encode(b, _b85chars, _b85chars2, pad)
def b85decode(b):
"""Decode the base85-encoded bytes-like object or ASCII string b
The result is returned as a bytes object.
"""
global _b85dec
# Delay the initialization of tables to not waste memory
# if the function is never called
if _b85dec is None:
_b85dec = [None] * 256
for i, c in enumerate(_b85alphabet):
_b85dec[c] = i
b = _bytes_from_decode_data(b)
padding = (-len(b)) % 5
b = b + b'~' * padding
out = []
packI = struct.Struct('!I').pack
for i in range(0, len(b), 5):
chunk = b[i:i + 5]
acc = 0
try:
for c in chunk:
acc = acc * 85 + _b85dec[c]
except TypeError:
for j, c in enumerate(chunk):
if _b85dec[c] is None:
raise ValueError('bad base85 character at position %d'
% (i + j)) from None
raise
try:
out.append(packI(acc))
except struct.error:
raise ValueError('base85 overflow in hunk starting at byte %d'
% i) from None
result = b''.join(out)
if padding:
result = result[:-padding]
return result
# Legacy interface. This code could be cleaned up since I don't believe
# binascii has any line length limitations. It just doesn't seem worth it
# though. The files should be opened in binary mode.
MAXLINESIZE = 76 # Excluding the CRLF
MAXBINSIZE = (MAXLINESIZE//4)*3
def encode(input, output):
"""Encode a file; input and output are binary files."""
while True:
s = input.read(MAXBINSIZE)
if not s:
break
while len(s) < MAXBINSIZE:
ns = input.read(MAXBINSIZE-len(s))
if not ns:
break
s += ns
line = binascii.b2a_base64(s)
output.write(line)
def decode(input, output):
"""Decode a file; input and output are binary files."""
while True:
line = input.readline()
if not line:
break
s = binascii.a2b_base64(line)
output.write(s)
def _input_type_check(s):
try:
m = memoryview(s)
except TypeError as err:
msg = "expected bytes-like object, not %s" % s.__class__.__name__
raise TypeError(msg) from err
if m.format not in ('c', 'b', 'B'):
msg = ("expected single byte elements, not %r from %s" %
(m.format, s.__class__.__name__))
raise TypeError(msg)
if m.ndim != 1:
msg = ("expected 1-D data, not %d-D data from %s" %
(m.ndim, s.__class__.__name__))
raise TypeError(msg)
def encodebytes(s):
"""Encode a bytestring into a bytes object containing multiple lines
of base-64 data."""
_input_type_check(s)
pieces = []
for i in range(0, len(s), MAXBINSIZE):
chunk = s[i : i + MAXBINSIZE]
pieces.append(binascii.b2a_base64(chunk))
return b"".join(pieces)
def encodestring(s):
"""Legacy alias of encodebytes()."""
import warnings
warnings.warn("encodestring() is a deprecated alias since 3.1, "
"use encodebytes()",
DeprecationWarning, 2)
return encodebytes(s)
def decodebytes(s):
"""Decode a bytestring of base-64 data into a bytes object."""
_input_type_check(s)
return binascii.a2b_base64(s)
def decodestring(s):
"""Legacy alias of decodebytes()."""
import warnings
warnings.warn("decodestring() is a deprecated alias since Python 3.1, "
"use decodebytes()",
DeprecationWarning, 2)
return decodebytes(s)
# Usable as a script...
def main():
"""Small main program"""
import sys, getopt
try:
opts, args = getopt.getopt(sys.argv[1:], 'deut')
except getopt.error as msg:
sys.stdout = sys.stderr
print(msg)
print("""usage: %s [-d|-e|-u|-t] [file|-]
-d, -u: decode
-e: encode (default)
-t: encode and decode string 'Aladdin:open sesame'"""%sys.argv[0])
sys.exit(2)
func = encode
for o, a in opts:
if o == '-e': func = encode
if o == '-d': func = decode
if o == '-u': func = decode
if o == '-t': test(); return
if args and args[0] != '-':
with open(args[0], 'rb') as f:
func(f, sys.stdout.buffer)
else:
func(sys.stdin.buffer, sys.stdout.buffer)
def test():
s0 = b"Aladdin:open sesame"
print(repr(s0))
s1 = encodebytes(s0)
print(repr(s1))
s2 = decodebytes(s1)
print(repr(s2))
assert s0 == s2
if __name__ == '__main__':
main()

676
third_party/python/Lib/bdb.py vendored Normal file
View file

@ -0,0 +1,676 @@
"""Debugger basics"""
import fnmatch
import sys
import os
from inspect import CO_GENERATOR, CO_COROUTINE, CO_ASYNC_GENERATOR
__all__ = ["BdbQuit", "Bdb", "Breakpoint"]
GENERATOR_AND_COROUTINE_FLAGS = CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR
class BdbQuit(Exception):
"""Exception to give up completely."""
class Bdb:
"""Generic Python debugger base class.
This class takes care of details of the trace facility;
a derived class should implement user interaction.
The standard debugger class (pdb.Pdb) is an example.
"""
def __init__(self, skip=None):
self.skip = set(skip) if skip else None
self.breaks = {}
self.fncache = {}
self.frame_returning = None
def canonic(self, filename):
if filename == "<" + filename[1:-1] + ">":
return filename
canonic = self.fncache.get(filename)
if not canonic:
canonic = os.path.abspath(filename)
canonic = os.path.normcase(canonic)
self.fncache[filename] = canonic
return canonic
def reset(self):
import linecache
linecache.checkcache()
self.botframe = None
self._set_stopinfo(None, None)
def trace_dispatch(self, frame, event, arg):
if self.quitting:
return # None
if event == 'line':
return self.dispatch_line(frame)
if event == 'call':
return self.dispatch_call(frame, arg)
if event == 'return':
return self.dispatch_return(frame, arg)
if event == 'exception':
return self.dispatch_exception(frame, arg)
if event == 'c_call':
return self.trace_dispatch
if event == 'c_exception':
return self.trace_dispatch
if event == 'c_return':
return self.trace_dispatch
print('bdb.Bdb.dispatch: unknown debugging event:', repr(event))
return self.trace_dispatch
def dispatch_line(self, frame):
if self.stop_here(frame) or self.break_here(frame):
self.user_line(frame)
if self.quitting: raise BdbQuit
return self.trace_dispatch
def dispatch_call(self, frame, arg):
# XXX 'arg' is no longer used
if self.botframe is None:
# First call of dispatch since reset()
self.botframe = frame.f_back # (CT) Note that this may also be None!
return self.trace_dispatch
if not (self.stop_here(frame) or self.break_anywhere(frame)):
# No need to trace this function
return # None
# Ignore call events in generator except when stepping.
if self.stopframe and frame.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS:
return self.trace_dispatch
self.user_call(frame, arg)
if self.quitting: raise BdbQuit
return self.trace_dispatch
def dispatch_return(self, frame, arg):
if self.stop_here(frame) or frame == self.returnframe:
# Ignore return events in generator except when stepping.
if self.stopframe and frame.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS:
return self.trace_dispatch
try:
self.frame_returning = frame
self.user_return(frame, arg)
finally:
self.frame_returning = None
if self.quitting: raise BdbQuit
# The user issued a 'next' or 'until' command.
if self.stopframe is frame and self.stoplineno != -1:
self._set_stopinfo(None, None)
return self.trace_dispatch
def dispatch_exception(self, frame, arg):
if self.stop_here(frame):
# When stepping with next/until/return in a generator frame, skip
# the internal StopIteration exception (with no traceback)
# triggered by a subiterator run with the 'yield from' statement.
if not (frame.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS
and arg[0] is StopIteration and arg[2] is None):
self.user_exception(frame, arg)
if self.quitting: raise BdbQuit
# Stop at the StopIteration or GeneratorExit exception when the user
# has set stopframe in a generator by issuing a return command, or a
# next/until command at the last statement in the generator before the
# exception.
elif (self.stopframe and frame is not self.stopframe
and self.stopframe.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS
and arg[0] in (StopIteration, GeneratorExit)):
self.user_exception(frame, arg)
if self.quitting: raise BdbQuit
return self.trace_dispatch
# Normally derived classes don't override the following
# methods, but they may if they want to redefine the
# definition of stopping and breakpoints.
def is_skipped_module(self, module_name):
for pattern in self.skip:
if fnmatch.fnmatch(module_name, pattern):
return True
return False
def stop_here(self, frame):
# (CT) stopframe may now also be None, see dispatch_call.
# (CT) the former test for None is therefore removed from here.
if self.skip and \
self.is_skipped_module(frame.f_globals.get('__name__')):
return False
if frame is self.stopframe:
if self.stoplineno == -1:
return False
return frame.f_lineno >= self.stoplineno
if not self.stopframe:
return True
return False
def break_here(self, frame):
filename = self.canonic(frame.f_code.co_filename)
if filename not in self.breaks:
return False
lineno = frame.f_lineno
if lineno not in self.breaks[filename]:
# The line itself has no breakpoint, but maybe the line is the
# first line of a function with breakpoint set by function name.
lineno = frame.f_code.co_firstlineno
if lineno not in self.breaks[filename]:
return False
# flag says ok to delete temp. bp
(bp, flag) = effective(filename, lineno, frame)
if bp:
self.currentbp = bp.number
if (flag and bp.temporary):
self.do_clear(str(bp.number))
return True
else:
return False
def do_clear(self, arg):
raise NotImplementedError("subclass of bdb must implement do_clear()")
def break_anywhere(self, frame):
return self.canonic(frame.f_code.co_filename) in self.breaks
# Derived classes should override the user_* methods
# to gain control.
def user_call(self, frame, argument_list):
"""This method is called when there is the remote possibility
that we ever need to stop in this function."""
pass
def user_line(self, frame):
"""This method is called when we stop or break at this line."""
pass
def user_return(self, frame, return_value):
"""This method is called when a return trap is set here."""
pass
def user_exception(self, frame, exc_info):
"""This method is called if an exception occurs,
but only if we are to stop at or just below this level."""
pass
def _set_stopinfo(self, stopframe, returnframe, stoplineno=0):
self.stopframe = stopframe
self.returnframe = returnframe
self.quitting = False
# stoplineno >= 0 means: stop at line >= the stoplineno
# stoplineno -1 means: don't stop at all
self.stoplineno = stoplineno
# Derived classes and clients can call the following methods
# to affect the stepping state.
def set_until(self, frame, lineno=None):
"""Stop when the line with the line no greater than the current one is
reached or when returning from current frame"""
# the name "until" is borrowed from gdb
if lineno is None:
lineno = frame.f_lineno + 1
self._set_stopinfo(frame, frame, lineno)
def set_step(self):
"""Stop after one line of code."""
# Issue #13183: pdb skips frames after hitting a breakpoint and running
# step commands.
# Restore the trace function in the caller (that may not have been set
# for performance reasons) when returning from the current frame.
if self.frame_returning:
caller_frame = self.frame_returning.f_back
if caller_frame and not caller_frame.f_trace:
caller_frame.f_trace = self.trace_dispatch
self._set_stopinfo(None, None)
def set_next(self, frame):
"""Stop on the next line in or below the given frame."""
self._set_stopinfo(frame, None)
def set_return(self, frame):
"""Stop when returning from the given frame."""
if frame.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS:
self._set_stopinfo(frame, None, -1)
else:
self._set_stopinfo(frame.f_back, frame)
def set_trace(self, frame=None):
"""Start debugging from `frame`.
If frame is not specified, debugging starts from caller's frame.
"""
if frame is None:
frame = sys._getframe().f_back
self.reset()
while frame:
frame.f_trace = self.trace_dispatch
self.botframe = frame
frame = frame.f_back
self.set_step()
sys.settrace(self.trace_dispatch)
def set_continue(self):
# Don't stop except at breakpoints or when finished
self._set_stopinfo(self.botframe, None, -1)
if not self.breaks:
# no breakpoints; run without debugger overhead
sys.settrace(None)
frame = sys._getframe().f_back
while frame and frame is not self.botframe:
del frame.f_trace
frame = frame.f_back
def set_quit(self):
self.stopframe = self.botframe
self.returnframe = None
self.quitting = True
sys.settrace(None)
# Derived classes and clients can call the following methods
# to manipulate breakpoints. These methods return an
# error message is something went wrong, None if all is well.
# Set_break prints out the breakpoint line and file:lineno.
# Call self.get_*break*() to see the breakpoints or better
# for bp in Breakpoint.bpbynumber: if bp: bp.bpprint().
def set_break(self, filename, lineno, temporary=False, cond=None,
funcname=None):
filename = self.canonic(filename)
import linecache # Import as late as possible
line = linecache.getline(filename, lineno)
if not line:
return 'Line %s:%d does not exist' % (filename, lineno)
list = self.breaks.setdefault(filename, [])
if lineno not in list:
list.append(lineno)
bp = Breakpoint(filename, lineno, temporary, cond, funcname)
def _prune_breaks(self, filename, lineno):
if (filename, lineno) not in Breakpoint.bplist:
self.breaks[filename].remove(lineno)
if not self.breaks[filename]:
del self.breaks[filename]
def clear_break(self, filename, lineno):
filename = self.canonic(filename)
if filename not in self.breaks:
return 'There are no breakpoints in %s' % filename
if lineno not in self.breaks[filename]:
return 'There is no breakpoint at %s:%d' % (filename, lineno)
# If there's only one bp in the list for that file,line
# pair, then remove the breaks entry
for bp in Breakpoint.bplist[filename, lineno][:]:
bp.deleteMe()
self._prune_breaks(filename, lineno)
def clear_bpbynumber(self, arg):
try:
bp = self.get_bpbynumber(arg)
except ValueError as err:
return str(err)
bp.deleteMe()
self._prune_breaks(bp.file, bp.line)
def clear_all_file_breaks(self, filename):
filename = self.canonic(filename)
if filename not in self.breaks:
return 'There are no breakpoints in %s' % filename
for line in self.breaks[filename]:
blist = Breakpoint.bplist[filename, line]
for bp in blist:
bp.deleteMe()
del self.breaks[filename]
def clear_all_breaks(self):
if not self.breaks:
return 'There are no breakpoints'
for bp in Breakpoint.bpbynumber:
if bp:
bp.deleteMe()
self.breaks = {}
def get_bpbynumber(self, arg):
if not arg:
raise ValueError('Breakpoint number expected')
try:
number = int(arg)
except ValueError:
raise ValueError('Non-numeric breakpoint number %s' % arg)
try:
bp = Breakpoint.bpbynumber[number]
except IndexError:
raise ValueError('Breakpoint number %d out of range' % number)
if bp is None:
raise ValueError('Breakpoint %d already deleted' % number)
return bp
def get_break(self, filename, lineno):
filename = self.canonic(filename)
return filename in self.breaks and \
lineno in self.breaks[filename]
def get_breaks(self, filename, lineno):
filename = self.canonic(filename)
return filename in self.breaks and \
lineno in self.breaks[filename] and \
Breakpoint.bplist[filename, lineno] or []
def get_file_breaks(self, filename):
filename = self.canonic(filename)
if filename in self.breaks:
return self.breaks[filename]
else:
return []
def get_all_breaks(self):
return self.breaks
# Derived classes and clients can call the following method
# to get a data structure representing a stack trace.
def get_stack(self, f, t):
stack = []
if t and t.tb_frame is f:
t = t.tb_next
while f is not None:
stack.append((f, f.f_lineno))
if f is self.botframe:
break
f = f.f_back
stack.reverse()
i = max(0, len(stack) - 1)
while t is not None:
stack.append((t.tb_frame, t.tb_lineno))
t = t.tb_next
if f is None:
i = max(0, len(stack) - 1)
return stack, i
def format_stack_entry(self, frame_lineno, lprefix=': '):
import linecache, reprlib
frame, lineno = frame_lineno
filename = self.canonic(frame.f_code.co_filename)
s = '%s(%r)' % (filename, lineno)
if frame.f_code.co_name:
s += frame.f_code.co_name
else:
s += "<lambda>"
if '__args__' in frame.f_locals:
args = frame.f_locals['__args__']
else:
args = None
if args:
s += reprlib.repr(args)
else:
s += '()'
if '__return__' in frame.f_locals:
rv = frame.f_locals['__return__']
s += '->'
s += reprlib.repr(rv)
line = linecache.getline(filename, lineno, frame.f_globals)
if line:
s += lprefix + line.strip()
return s
# The following methods can be called by clients to use
# a debugger to debug a statement or an expression.
# Both can be given as a string, or a code object.
def run(self, cmd, globals=None, locals=None):
if globals is None:
import __main__
globals = __main__.__dict__
if locals is None:
locals = globals
self.reset()
if isinstance(cmd, str):
cmd = compile(cmd, "<string>", "exec")
sys.settrace(self.trace_dispatch)
try:
exec(cmd, globals, locals)
except BdbQuit:
pass
finally:
self.quitting = True
sys.settrace(None)
def runeval(self, expr, globals=None, locals=None):
if globals is None:
import __main__
globals = __main__.__dict__
if locals is None:
locals = globals
self.reset()
sys.settrace(self.trace_dispatch)
try:
return eval(expr, globals, locals)
except BdbQuit:
pass
finally:
self.quitting = True
sys.settrace(None)
def runctx(self, cmd, globals, locals):
# B/W compatibility
self.run(cmd, globals, locals)
# This method is more useful to debug a single function call.
def runcall(self, func, *args, **kwds):
self.reset()
sys.settrace(self.trace_dispatch)
res = None
try:
res = func(*args, **kwds)
except BdbQuit:
pass
finally:
self.quitting = True
sys.settrace(None)
return res
def set_trace():
Bdb().set_trace()
class Breakpoint:
"""Breakpoint class.
Implements temporary breakpoints, ignore counts, disabling and
(re)-enabling, and conditionals.
Breakpoints are indexed by number through bpbynumber and by
the file,line tuple using bplist. The former points to a
single instance of class Breakpoint. The latter points to a
list of such instances since there may be more than one
breakpoint per line.
"""
# XXX Keeping state in the class is a mistake -- this means
# you cannot have more than one active Bdb instance.
next = 1 # Next bp to be assigned
bplist = {} # indexed by (file, lineno) tuple
bpbynumber = [None] # Each entry is None or an instance of Bpt
# index 0 is unused, except for marking an
# effective break .... see effective()
def __init__(self, file, line, temporary=False, cond=None, funcname=None):
self.funcname = funcname
# Needed if funcname is not None.
self.func_first_executable_line = None
self.file = file # This better be in canonical form!
self.line = line
self.temporary = temporary
self.cond = cond
self.enabled = True
self.ignore = 0
self.hits = 0
self.number = Breakpoint.next
Breakpoint.next += 1
# Build the two lists
self.bpbynumber.append(self)
if (file, line) in self.bplist:
self.bplist[file, line].append(self)
else:
self.bplist[file, line] = [self]
def deleteMe(self):
index = (self.file, self.line)
self.bpbynumber[self.number] = None # No longer in list
self.bplist[index].remove(self)
if not self.bplist[index]:
# No more bp for this f:l combo
del self.bplist[index]
def enable(self):
self.enabled = True
def disable(self):
self.enabled = False
def bpprint(self, out=None):
if out is None:
out = sys.stdout
print(self.bpformat(), file=out)
def bpformat(self):
if self.temporary:
disp = 'del '
else:
disp = 'keep '
if self.enabled:
disp = disp + 'yes '
else:
disp = disp + 'no '
ret = '%-4dbreakpoint %s at %s:%d' % (self.number, disp,
self.file, self.line)
if self.cond:
ret += '\n\tstop only if %s' % (self.cond,)
if self.ignore:
ret += '\n\tignore next %d hits' % (self.ignore,)
if self.hits:
if self.hits > 1:
ss = 's'
else:
ss = ''
ret += '\n\tbreakpoint already hit %d time%s' % (self.hits, ss)
return ret
def __str__(self):
return 'breakpoint %s at %s:%s' % (self.number, self.file, self.line)
# -----------end of Breakpoint class----------
def checkfuncname(b, frame):
"""Check whether we should break here because of `b.funcname`."""
if not b.funcname:
# Breakpoint was set via line number.
if b.line != frame.f_lineno:
# Breakpoint was set at a line with a def statement and the function
# defined is called: don't break.
return False
return True
# Breakpoint set via function name.
if frame.f_code.co_name != b.funcname:
# It's not a function call, but rather execution of def statement.
return False
# We are in the right frame.
if not b.func_first_executable_line:
# The function is entered for the 1st time.
b.func_first_executable_line = frame.f_lineno
if b.func_first_executable_line != frame.f_lineno:
# But we are not at the first line number: don't break.
return False
return True
# Determines if there is an effective (active) breakpoint at this
# line of code. Returns breakpoint number or 0 if none
def effective(file, line, frame):
"""Determine which breakpoint for this file:line is to be acted upon.
Called only if we know there is a bpt at this
location. Returns breakpoint that was triggered and a flag
that indicates if it is ok to delete a temporary bp.
"""
possibles = Breakpoint.bplist[file, line]
for b in possibles:
if not b.enabled:
continue
if not checkfuncname(b, frame):
continue
# Count every hit when bp is enabled
b.hits += 1
if not b.cond:
# If unconditional, and ignoring go on to next, else break
if b.ignore > 0:
b.ignore -= 1
continue
else:
# breakpoint and marker that it's ok to delete if temporary
return (b, True)
else:
# Conditional bp.
# Ignore count applies only to those bpt hits where the
# condition evaluates to true.
try:
val = eval(b.cond, frame.f_globals, frame.f_locals)
if val:
if b.ignore > 0:
b.ignore -= 1
# continue
else:
return (b, True)
# else:
# continue
except:
# if eval fails, most conservative thing is to stop on
# breakpoint regardless of ignore count. Don't delete
# temporary, as another hint to user.
return (b, False)
return (None, None)
# -------------------- testing --------------------
class Tdb(Bdb):
def user_call(self, frame, args):
name = frame.f_code.co_name
if not name: name = '???'
print('+++ call', name, args)
def user_line(self, frame):
import linecache
name = frame.f_code.co_name
if not name: name = '???'
fn = self.canonic(frame.f_code.co_filename)
line = linecache.getline(fn, frame.f_lineno, frame.f_globals)
print('+++', fn, frame.f_lineno, name, ':', line.strip())
def user_return(self, frame, retval):
print('+++ return', retval)
def user_exception(self, frame, exc_stuff):
print('+++ exception', exc_stuff)
self.set_continue()
def foo(n):
print('foo(', n, ')')
x = bar(n*10)
print('bar returned', x)
def bar(a):
print('bar(', a, ')')
return a/2
def test():
t = Tdb()
t.run('import bdb; bdb.foo(10)')

479
third_party/python/Lib/binhex.py vendored Normal file
View file

@ -0,0 +1,479 @@
"""Macintosh binhex compression/decompression.
easy interface:
binhex(inputfilename, outputfilename)
hexbin(inputfilename, outputfilename)
"""
#
# Jack Jansen, CWI, August 1995.
#
# The module is supposed to be as compatible as possible. Especially the
# easy interface should work "as expected" on any platform.
# XXXX Note: currently, textfiles appear in mac-form on all platforms.
# We seem to lack a simple character-translate in python.
# (we should probably use ISO-Latin-1 on all but the mac platform).
# XXXX The simple routines are too simple: they expect to hold the complete
# files in-core. Should be fixed.
# XXXX It would be nice to handle AppleDouble format on unix
# (for servers serving macs).
# XXXX I don't understand what happens when you get 0x90 times the same byte on
# input. The resulting code (xx 90 90) would appear to be interpreted as an
# escaped *value* of 0x90. All coders I've seen appear to ignore this nicety...
#
import io
import os
import struct
import binascii
__all__ = ["binhex","hexbin","Error"]
class Error(Exception):
pass
# States (what have we written)
_DID_HEADER = 0
_DID_DATA = 1
# Various constants
REASONABLY_LARGE = 32768 # Minimal amount we pass the rle-coder
LINELEN = 64
RUNCHAR = b"\x90"
#
# This code is no longer byte-order dependent
class FInfo:
def __init__(self):
self.Type = '????'
self.Creator = '????'
self.Flags = 0
def getfileinfo(name):
finfo = FInfo()
with io.open(name, 'rb') as fp:
# Quick check for textfile
data = fp.read(512)
if 0 not in data:
finfo.Type = 'TEXT'
fp.seek(0, 2)
dsize = fp.tell()
dir, file = os.path.split(name)
file = file.replace(':', '-', 1)
return file, finfo, dsize, 0
class openrsrc:
def __init__(self, *args):
pass
def read(self, *args):
return b''
def write(self, *args):
pass
def close(self):
pass
class _Hqxcoderengine:
"""Write data to the coder in 3-byte chunks"""
def __init__(self, ofp):
self.ofp = ofp
self.data = b''
self.hqxdata = b''
self.linelen = LINELEN - 1
def write(self, data):
self.data = self.data + data
datalen = len(self.data)
todo = (datalen // 3) * 3
data = self.data[:todo]
self.data = self.data[todo:]
if not data:
return
self.hqxdata = self.hqxdata + binascii.b2a_hqx(data)
self._flush(0)
def _flush(self, force):
first = 0
while first <= len(self.hqxdata) - self.linelen:
last = first + self.linelen
self.ofp.write(self.hqxdata[first:last] + b'\n')
self.linelen = LINELEN
first = last
self.hqxdata = self.hqxdata[first:]
if force:
self.ofp.write(self.hqxdata + b':\n')
def close(self):
if self.data:
self.hqxdata = self.hqxdata + binascii.b2a_hqx(self.data)
self._flush(1)
self.ofp.close()
del self.ofp
class _Rlecoderengine:
"""Write data to the RLE-coder in suitably large chunks"""
def __init__(self, ofp):
self.ofp = ofp
self.data = b''
def write(self, data):
self.data = self.data + data
if len(self.data) < REASONABLY_LARGE:
return
rledata = binascii.rlecode_hqx(self.data)
self.ofp.write(rledata)
self.data = b''
def close(self):
if self.data:
rledata = binascii.rlecode_hqx(self.data)
self.ofp.write(rledata)
self.ofp.close()
del self.ofp
class BinHex:
def __init__(self, name_finfo_dlen_rlen, ofp):
name, finfo, dlen, rlen = name_finfo_dlen_rlen
close_on_error = False
if isinstance(ofp, str):
ofname = ofp
ofp = io.open(ofname, 'wb')
close_on_error = True
try:
ofp.write(b'(This file must be converted with BinHex 4.0)\r\r:')
hqxer = _Hqxcoderengine(ofp)
self.ofp = _Rlecoderengine(hqxer)
self.crc = 0
if finfo is None:
finfo = FInfo()
self.dlen = dlen
self.rlen = rlen
self._writeinfo(name, finfo)
self.state = _DID_HEADER
except:
if close_on_error:
ofp.close()
raise
def _writeinfo(self, name, finfo):
nl = len(name)
if nl > 63:
raise Error('Filename too long')
d = bytes([nl]) + name.encode("latin-1") + b'\0'
tp, cr = finfo.Type, finfo.Creator
if isinstance(tp, str):
tp = tp.encode("latin-1")
if isinstance(cr, str):
cr = cr.encode("latin-1")
d2 = tp + cr
# Force all structs to be packed with big-endian
d3 = struct.pack('>h', finfo.Flags)
d4 = struct.pack('>ii', self.dlen, self.rlen)
info = d + d2 + d3 + d4
self._write(info)
self._writecrc()
def _write(self, data):
self.crc = binascii.crc_hqx(data, self.crc)
self.ofp.write(data)
def _writecrc(self):
# XXXX Should this be here??
# self.crc = binascii.crc_hqx('\0\0', self.crc)
if self.crc < 0:
fmt = '>h'
else:
fmt = '>H'
self.ofp.write(struct.pack(fmt, self.crc))
self.crc = 0
def write(self, data):
if self.state != _DID_HEADER:
raise Error('Writing data at the wrong time')
self.dlen = self.dlen - len(data)
self._write(data)
def close_data(self):
if self.dlen != 0:
raise Error('Incorrect data size, diff=%r' % (self.rlen,))
self._writecrc()
self.state = _DID_DATA
def write_rsrc(self, data):
if self.state < _DID_DATA:
self.close_data()
if self.state != _DID_DATA:
raise Error('Writing resource data at the wrong time')
self.rlen = self.rlen - len(data)
self._write(data)
def close(self):
if self.state is None:
return
try:
if self.state < _DID_DATA:
self.close_data()
if self.state != _DID_DATA:
raise Error('Close at the wrong time')
if self.rlen != 0:
raise Error("Incorrect resource-datasize, diff=%r" % (self.rlen,))
self._writecrc()
finally:
self.state = None
ofp = self.ofp
del self.ofp
ofp.close()
def binhex(inp, out):
"""binhex(infilename, outfilename): create binhex-encoded copy of a file"""
finfo = getfileinfo(inp)
ofp = BinHex(finfo, out)
with io.open(inp, 'rb') as ifp:
# XXXX Do textfile translation on non-mac systems
while True:
d = ifp.read(128000)
if not d: break
ofp.write(d)
ofp.close_data()
ifp = openrsrc(inp, 'rb')
while True:
d = ifp.read(128000)
if not d: break
ofp.write_rsrc(d)
ofp.close()
ifp.close()
class _Hqxdecoderengine:
"""Read data via the decoder in 4-byte chunks"""
def __init__(self, ifp):
self.ifp = ifp
self.eof = 0
def read(self, totalwtd):
"""Read at least wtd bytes (or until EOF)"""
decdata = b''
wtd = totalwtd
#
# The loop here is convoluted, since we don't really now how
# much to decode: there may be newlines in the incoming data.
while wtd > 0:
if self.eof: return decdata
wtd = ((wtd + 2) // 3) * 4
data = self.ifp.read(wtd)
#
# Next problem: there may not be a complete number of
# bytes in what we pass to a2b. Solve by yet another
# loop.
#
while True:
try:
decdatacur, self.eof = binascii.a2b_hqx(data)
break
except binascii.Incomplete:
pass
newdata = self.ifp.read(1)
if not newdata:
raise Error('Premature EOF on binhex file')
data = data + newdata
decdata = decdata + decdatacur
wtd = totalwtd - len(decdata)
if not decdata and not self.eof:
raise Error('Premature EOF on binhex file')
return decdata
def close(self):
self.ifp.close()
class _Rledecoderengine:
"""Read data via the RLE-coder"""
def __init__(self, ifp):
self.ifp = ifp
self.pre_buffer = b''
self.post_buffer = b''
self.eof = 0
def read(self, wtd):
if wtd > len(self.post_buffer):
self._fill(wtd - len(self.post_buffer))
rv = self.post_buffer[:wtd]
self.post_buffer = self.post_buffer[wtd:]
return rv
def _fill(self, wtd):
self.pre_buffer = self.pre_buffer + self.ifp.read(wtd + 4)
if self.ifp.eof:
self.post_buffer = self.post_buffer + \
binascii.rledecode_hqx(self.pre_buffer)
self.pre_buffer = b''
return
#
# Obfuscated code ahead. We have to take care that we don't
# end up with an orphaned RUNCHAR later on. So, we keep a couple
# of bytes in the buffer, depending on what the end of
# the buffer looks like:
# '\220\0\220' - Keep 3 bytes: repeated \220 (escaped as \220\0)
# '?\220' - Keep 2 bytes: repeated something-else
# '\220\0' - Escaped \220: Keep 2 bytes.
# '?\220?' - Complete repeat sequence: decode all
# otherwise: keep 1 byte.
#
mark = len(self.pre_buffer)
if self.pre_buffer[-3:] == RUNCHAR + b'\0' + RUNCHAR:
mark = mark - 3
elif self.pre_buffer[-1:] == RUNCHAR:
mark = mark - 2
elif self.pre_buffer[-2:] == RUNCHAR + b'\0':
mark = mark - 2
elif self.pre_buffer[-2:-1] == RUNCHAR:
pass # Decode all
else:
mark = mark - 1
self.post_buffer = self.post_buffer + \
binascii.rledecode_hqx(self.pre_buffer[:mark])
self.pre_buffer = self.pre_buffer[mark:]
def close(self):
self.ifp.close()
class HexBin:
def __init__(self, ifp):
if isinstance(ifp, str):
ifp = io.open(ifp, 'rb')
#
# Find initial colon.
#
while True:
ch = ifp.read(1)
if not ch:
raise Error("No binhex data found")
# Cater for \r\n terminated lines (which show up as \n\r, hence
# all lines start with \r)
if ch == b'\r':
continue
if ch == b':':
break
hqxifp = _Hqxdecoderengine(ifp)
self.ifp = _Rledecoderengine(hqxifp)
self.crc = 0
self._readheader()
def _read(self, len):
data = self.ifp.read(len)
self.crc = binascii.crc_hqx(data, self.crc)
return data
def _checkcrc(self):
filecrc = struct.unpack('>h', self.ifp.read(2))[0] & 0xffff
#self.crc = binascii.crc_hqx('\0\0', self.crc)
# XXXX Is this needed??
self.crc = self.crc & 0xffff
if filecrc != self.crc:
raise Error('CRC error, computed %x, read %x'
% (self.crc, filecrc))
self.crc = 0
def _readheader(self):
len = self._read(1)
fname = self._read(ord(len))
rest = self._read(1 + 4 + 4 + 2 + 4 + 4)
self._checkcrc()
type = rest[1:5]
creator = rest[5:9]
flags = struct.unpack('>h', rest[9:11])[0]
self.dlen = struct.unpack('>l', rest[11:15])[0]
self.rlen = struct.unpack('>l', rest[15:19])[0]
self.FName = fname
self.FInfo = FInfo()
self.FInfo.Creator = creator
self.FInfo.Type = type
self.FInfo.Flags = flags
self.state = _DID_HEADER
def read(self, *n):
if self.state != _DID_HEADER:
raise Error('Read data at wrong time')
if n:
n = n[0]
n = min(n, self.dlen)
else:
n = self.dlen
rv = b''
while len(rv) < n:
rv = rv + self._read(n-len(rv))
self.dlen = self.dlen - n
return rv
def close_data(self):
if self.state != _DID_HEADER:
raise Error('close_data at wrong time')
if self.dlen:
dummy = self._read(self.dlen)
self._checkcrc()
self.state = _DID_DATA
def read_rsrc(self, *n):
if self.state == _DID_HEADER:
self.close_data()
if self.state != _DID_DATA:
raise Error('Read resource data at wrong time')
if n:
n = n[0]
n = min(n, self.rlen)
else:
n = self.rlen
self.rlen = self.rlen - n
return self._read(n)
def close(self):
if self.state is None:
return
try:
if self.rlen:
dummy = self.read_rsrc(self.rlen)
self._checkcrc()
finally:
self.state = None
self.ifp.close()
def hexbin(inp, out):
"""hexbin(infilename, outfilename) - Decode binhexed file"""
ifp = HexBin(inp)
finfo = ifp.FInfo
if not out:
out = ifp.FName
with io.open(out, 'wb') as ofp:
# XXXX Do translation on non-mac systems
while True:
d = ifp.read(128000)
if not d: break
ofp.write(d)
ifp.close_data()
d = ifp.read_rsrc(128000)
if d:
ofp = openrsrc(out, 'wb')
ofp.write(d)
while True:
d = ifp.read_rsrc(128000)
if not d: break
ofp.write(d)
ofp.close()
ifp.close()

92
third_party/python/Lib/bisect.py vendored Normal file
View file

@ -0,0 +1,92 @@
"""Bisection algorithms."""
def insort_right(a, x, lo=0, hi=None):
"""Insert item x in list a, and keep it sorted assuming a is sorted.
If x is already in a, insert it to the right of the rightmost x.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if x < a[mid]: hi = mid
else: lo = mid+1
a.insert(lo, x)
insort = insort_right # backward compatibility
def bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted.
The return value i is such that all e in a[:i] have e <= x, and all e in
a[i:] have e > x. So if x already appears in the list, a.insert(x) will
insert just after the rightmost x already there.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if x < a[mid]: hi = mid
else: lo = mid+1
return lo
bisect = bisect_right # backward compatibility
def insort_left(a, x, lo=0, hi=None):
"""Insert item x in list a, and keep it sorted assuming a is sorted.
If x is already in a, insert it to the left of the leftmost x.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if a[mid] < x: lo = mid+1
else: hi = mid
a.insert(lo, x)
def bisect_left(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted.
The return value i is such that all e in a[:i] have e < x, and all e in
a[i:] have e >= x. So if x already appears in the list, a.insert(x) will
insert just before the leftmost x already there.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if a[mid] < x: lo = mid+1
else: hi = mid
return lo
# Overwrite above definitions with a fast C implementation
try:
from _bisect import *
except ImportError:
pass

361
third_party/python/Lib/bz2.py vendored Normal file
View file

@ -0,0 +1,361 @@
"""Interface to the libbzip2 compression library.
This module provides a file interface, classes for incremental
(de)compression, and functions for one-shot (de)compression.
"""
__all__ = ["BZ2File", "BZ2Compressor", "BZ2Decompressor",
"open", "compress", "decompress"]
__author__ = "Nadeem Vawda <nadeem.vawda@gmail.com>"
from builtins import open as _builtin_open
import io
import os
import warnings
import _compression
try:
from threading import RLock
except ImportError:
from dummy_threading import RLock
from _bz2 import BZ2Compressor, BZ2Decompressor
_MODE_CLOSED = 0
_MODE_READ = 1
# Value 2 no longer used
_MODE_WRITE = 3
class BZ2File(_compression.BaseStream):
"""A file object providing transparent bzip2 (de)compression.
A BZ2File can act as a wrapper for an existing file object, or refer
directly to a named file on disk.
Note that BZ2File provides a *binary* file interface - data read is
returned as bytes, and data to be written should be given as bytes.
"""
def __init__(self, filename, mode="r", buffering=None, compresslevel=9):
"""Open a bzip2-compressed file.
If filename is a str, bytes, or PathLike object, it gives the
name of the file to be opened. Otherwise, it should be a file
object, which will be used to read or write the compressed data.
mode can be 'r' for reading (default), 'w' for (over)writing,
'x' for creating exclusively, or 'a' for appending. These can
equivalently be given as 'rb', 'wb', 'xb', and 'ab'.
buffering is ignored. Its use is deprecated.
If mode is 'w', 'x' or 'a', compresslevel can be a number between 1
and 9 specifying the level of compression: 1 produces the least
compression, and 9 (default) produces the most compression.
If mode is 'r', the input file may be the concatenation of
multiple compressed streams.
"""
# This lock must be recursive, so that BufferedIOBase's
# writelines() does not deadlock.
self._lock = RLock()
self._fp = None
self._closefp = False
self._mode = _MODE_CLOSED
if buffering is not None:
warnings.warn("Use of 'buffering' argument is deprecated",
DeprecationWarning)
if not (1 <= compresslevel <= 9):
raise ValueError("compresslevel must be between 1 and 9")
if mode in ("", "r", "rb"):
mode = "rb"
mode_code = _MODE_READ
elif mode in ("w", "wb"):
mode = "wb"
mode_code = _MODE_WRITE
self._compressor = BZ2Compressor(compresslevel)
elif mode in ("x", "xb"):
mode = "xb"
mode_code = _MODE_WRITE
self._compressor = BZ2Compressor(compresslevel)
elif mode in ("a", "ab"):
mode = "ab"
mode_code = _MODE_WRITE
self._compressor = BZ2Compressor(compresslevel)
else:
raise ValueError("Invalid mode: %r" % (mode,))
if isinstance(filename, (str, bytes, os.PathLike)):
self._fp = _builtin_open(filename, mode)
self._closefp = True
self._mode = mode_code
elif hasattr(filename, "read") or hasattr(filename, "write"):
self._fp = filename
self._mode = mode_code
else:
raise TypeError("filename must be a str, bytes, file or PathLike object")
if self._mode == _MODE_READ:
raw = _compression.DecompressReader(self._fp,
BZ2Decompressor, trailing_error=OSError)
self._buffer = io.BufferedReader(raw)
else:
self._pos = 0
def close(self):
"""Flush and close the file.
May be called more than once without error. Once the file is
closed, any other operation on it will raise a ValueError.
"""
with self._lock:
if self._mode == _MODE_CLOSED:
return
try:
if self._mode == _MODE_READ:
self._buffer.close()
elif self._mode == _MODE_WRITE:
self._fp.write(self._compressor.flush())
self._compressor = None
finally:
try:
if self._closefp:
self._fp.close()
finally:
self._fp = None
self._closefp = False
self._mode = _MODE_CLOSED
self._buffer = None
@property
def closed(self):
"""True if this file is closed."""
return self._mode == _MODE_CLOSED
def fileno(self):
"""Return the file descriptor for the underlying file."""
self._check_not_closed()
return self._fp.fileno()
def seekable(self):
"""Return whether the file supports seeking."""
return self.readable() and self._buffer.seekable()
def readable(self):
"""Return whether the file was opened for reading."""
self._check_not_closed()
return self._mode == _MODE_READ
def writable(self):
"""Return whether the file was opened for writing."""
self._check_not_closed()
return self._mode == _MODE_WRITE
def peek(self, n=0):
"""Return buffered data without advancing the file position.
Always returns at least one byte of data, unless at EOF.
The exact number of bytes returned is unspecified.
"""
with self._lock:
self._check_can_read()
# Relies on the undocumented fact that BufferedReader.peek()
# always returns at least one byte (except at EOF), independent
# of the value of n
return self._buffer.peek(n)
def read(self, size=-1):
"""Read up to size uncompressed bytes from the file.
If size is negative or omitted, read until EOF is reached.
Returns b'' if the file is already at EOF.
"""
with self._lock:
self._check_can_read()
return self._buffer.read(size)
def read1(self, size=-1):
"""Read up to size uncompressed bytes, while trying to avoid
making multiple reads from the underlying stream. Reads up to a
buffer's worth of data if size is negative.
Returns b'' if the file is at EOF.
"""
with self._lock:
self._check_can_read()
if size < 0:
size = io.DEFAULT_BUFFER_SIZE
return self._buffer.read1(size)
def readinto(self, b):
"""Read bytes into b.
Returns the number of bytes read (0 for EOF).
"""
with self._lock:
self._check_can_read()
return self._buffer.readinto(b)
def readline(self, size=-1):
"""Read a line of uncompressed bytes from the file.
The terminating newline (if present) is retained. If size is
non-negative, no more than size bytes will be read (in which
case the line may be incomplete). Returns b'' if already at EOF.
"""
if not isinstance(size, int):
if not hasattr(size, "__index__"):
raise TypeError("Integer argument expected")
size = size.__index__()
with self._lock:
self._check_can_read()
return self._buffer.readline(size)
def readlines(self, size=-1):
"""Read a list of lines of uncompressed bytes from the file.
size can be specified to control the number of lines read: no
further lines will be read once the total size of the lines read
so far equals or exceeds size.
"""
if not isinstance(size, int):
if not hasattr(size, "__index__"):
raise TypeError("Integer argument expected")
size = size.__index__()
with self._lock:
self._check_can_read()
return self._buffer.readlines(size)
def write(self, data):
"""Write a byte string to the file.
Returns the number of uncompressed bytes written, which is
always len(data). Note that due to buffering, the file on disk
may not reflect the data written until close() is called.
"""
with self._lock:
self._check_can_write()
compressed = self._compressor.compress(data)
self._fp.write(compressed)
self._pos += len(data)
return len(data)
def writelines(self, seq):
"""Write a sequence of byte strings to the file.
Returns the number of uncompressed bytes written.
seq can be any iterable yielding byte strings.
Line separators are not added between the written byte strings.
"""
with self._lock:
return _compression.BaseStream.writelines(self, seq)
def seek(self, offset, whence=io.SEEK_SET):
"""Change the file position.
The new position is specified by offset, relative to the
position indicated by whence. Values for whence are:
0: start of stream (default); offset must not be negative
1: current stream position
2: end of stream; offset must not be positive
Returns the new file position.
Note that seeking is emulated, so depending on the parameters,
this operation may be extremely slow.
"""
with self._lock:
self._check_can_seek()
return self._buffer.seek(offset, whence)
def tell(self):
"""Return the current file position."""
with self._lock:
self._check_not_closed()
if self._mode == _MODE_READ:
return self._buffer.tell()
return self._pos
def open(filename, mode="rb", compresslevel=9,
encoding=None, errors=None, newline=None):
"""Open a bzip2-compressed file in binary or text mode.
The filename argument can be an actual filename (a str, bytes, or
PathLike object), or an existing file object to read from or write
to.
The mode argument can be "r", "rb", "w", "wb", "x", "xb", "a" or
"ab" for binary mode, or "rt", "wt", "xt" or "at" for text mode.
The default mode is "rb", and the default compresslevel is 9.
For binary mode, this function is equivalent to the BZ2File
constructor: BZ2File(filename, mode, compresslevel). In this case,
the encoding, errors and newline arguments must not be provided.
For text mode, a BZ2File object is created, and wrapped in an
io.TextIOWrapper instance with the specified encoding, error
handling behavior, and line ending(s).
"""
if "t" in mode:
if "b" in mode:
raise ValueError("Invalid mode: %r" % (mode,))
else:
if encoding is not None:
raise ValueError("Argument 'encoding' not supported in binary mode")
if errors is not None:
raise ValueError("Argument 'errors' not supported in binary mode")
if newline is not None:
raise ValueError("Argument 'newline' not supported in binary mode")
bz_mode = mode.replace("t", "")
binary_file = BZ2File(filename, bz_mode, compresslevel=compresslevel)
if "t" in mode:
return io.TextIOWrapper(binary_file, encoding, errors, newline)
else:
return binary_file
def compress(data, compresslevel=9):
"""Compress a block of data.
compresslevel, if given, must be a number between 1 and 9.
For incremental compression, use a BZ2Compressor object instead.
"""
comp = BZ2Compressor(compresslevel)
return comp.compress(data) + comp.flush()
def decompress(data):
"""Decompress a block of data.
For incremental decompression, use a BZ2Decompressor object instead.
"""
results = []
while data:
decomp = BZ2Decompressor()
try:
res = decomp.decompress(data)
except OSError:
if results:
break # Leftover data is not a valid bzip2 stream; ignore it.
else:
raise # Error on the first iteration; bail out.
results.append(res)
if not decomp.eof:
raise ValueError("Compressed data ended before the "
"end-of-stream marker was reached")
data = decomp.unused_data
return b"".join(results)

161
third_party/python/Lib/cProfile.py vendored Executable file
View file

@ -0,0 +1,161 @@
#! /usr/bin/env python3
"""Python interface for the 'lsprof' profiler.
Compatible with the 'profile' module.
"""
__all__ = ["run", "runctx", "Profile"]
import _lsprof
import profile as _pyprofile
# ____________________________________________________________
# Simple interface
def run(statement, filename=None, sort=-1):
return _pyprofile._Utils(Profile).run(statement, filename, sort)
def runctx(statement, globals, locals, filename=None, sort=-1):
return _pyprofile._Utils(Profile).runctx(statement, globals, locals,
filename, sort)
run.__doc__ = _pyprofile.run.__doc__
runctx.__doc__ = _pyprofile.runctx.__doc__
# ____________________________________________________________
class Profile(_lsprof.Profiler):
"""Profile(timer=None, timeunit=None, subcalls=True, builtins=True)
Builds a profiler object using the specified timer function.
The default timer is a fast built-in one based on real time.
For custom timer functions returning integers, timeunit can
be a float specifying a scale (i.e. how long each integer unit
is, in seconds).
"""
# Most of the functionality is in the base class.
# This subclass only adds convenient and backward-compatible methods.
def print_stats(self, sort=-1):
import pstats
pstats.Stats(self).strip_dirs().sort_stats(sort).print_stats()
def dump_stats(self, file):
import marshal
with open(file, 'wb') as f:
self.create_stats()
marshal.dump(self.stats, f)
def create_stats(self):
self.disable()
self.snapshot_stats()
def snapshot_stats(self):
entries = self.getstats()
self.stats = {}
callersdicts = {}
# call information
for entry in entries:
func = label(entry.code)
nc = entry.callcount # ncalls column of pstats (before '/')
cc = nc - entry.reccallcount # ncalls column of pstats (after '/')
tt = entry.inlinetime # tottime column of pstats
ct = entry.totaltime # cumtime column of pstats
callers = {}
callersdicts[id(entry.code)] = callers
self.stats[func] = cc, nc, tt, ct, callers
# subcall information
for entry in entries:
if entry.calls:
func = label(entry.code)
for subentry in entry.calls:
try:
callers = callersdicts[id(subentry.code)]
except KeyError:
continue
nc = subentry.callcount
cc = nc - subentry.reccallcount
tt = subentry.inlinetime
ct = subentry.totaltime
if func in callers:
prev = callers[func]
nc += prev[0]
cc += prev[1]
tt += prev[2]
ct += prev[3]
callers[func] = nc, cc, tt, ct
# The following two methods can be called by clients to use
# a profiler to profile a statement, given as a string.
def run(self, cmd):
import __main__
dict = __main__.__dict__
return self.runctx(cmd, dict, dict)
def runctx(self, cmd, globals, locals):
self.enable()
try:
exec(cmd, globals, locals)
finally:
self.disable()
return self
# This method is more useful to profile a single function call.
def runcall(self, func, *args, **kw):
self.enable()
try:
return func(*args, **kw)
finally:
self.disable()
# ____________________________________________________________
def label(code):
if isinstance(code, str):
return ('~', 0, code) # built-in functions ('~' sorts at the end)
else:
return (code.co_filename, code.co_firstlineno, code.co_name)
# ____________________________________________________________
def main():
import os, sys, pstats
from optparse import OptionParser
usage = "cProfile.py [-o output_file_path] [-s sort] scriptfile [arg] ..."
parser = OptionParser(usage=usage)
parser.allow_interspersed_args = False
parser.add_option('-o', '--outfile', dest="outfile",
help="Save stats to <outfile>", default=None)
parser.add_option('-s', '--sort', dest="sort",
help="Sort order when printing to stdout, based on pstats.Stats class",
default=-1,
choices=sorted(pstats.Stats.sort_arg_dict_default))
if not sys.argv[1:]:
parser.print_usage()
sys.exit(2)
(options, args) = parser.parse_args()
sys.argv[:] = args
if len(args) > 0:
progname = args[0]
sys.path.insert(0, os.path.dirname(progname))
with open(progname, 'rb') as fp:
code = compile(fp.read(), progname, 'exec')
globs = {
'__file__': progname,
'__name__': '__main__',
'__package__': None,
'__cached__': None,
}
runctx(code, globs, None, options.outfile, options.sort)
else:
parser.print_usage()
return parser
# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
main()

713
third_party/python/Lib/calendar.py vendored Normal file
View file

@ -0,0 +1,713 @@
"""Calendar printing functions
Note when comparing these calendars to the ones printed by cal(1): By
default, these calendars have Monday as the first day of the week, and
Sunday as the last (the European convention). Use setfirstweekday() to
set the first day of the week (0=Monday, 6=Sunday)."""
import sys
import datetime
import locale as _locale
from itertools import repeat
__all__ = ["IllegalMonthError", "IllegalWeekdayError", "setfirstweekday",
"firstweekday", "isleap", "leapdays", "weekday", "monthrange",
"monthcalendar", "prmonth", "month", "prcal", "calendar",
"timegm", "month_name", "month_abbr", "day_name", "day_abbr",
"Calendar", "TextCalendar", "HTMLCalendar", "LocaleTextCalendar",
"LocaleHTMLCalendar", "weekheader"]
# Exception raised for bad input (with string parameter for details)
error = ValueError
# Exceptions raised for bad input
class IllegalMonthError(ValueError):
def __init__(self, month):
self.month = month
def __str__(self):
return "bad month number %r; must be 1-12" % self.month
class IllegalWeekdayError(ValueError):
def __init__(self, weekday):
self.weekday = weekday
def __str__(self):
return "bad weekday number %r; must be 0 (Monday) to 6 (Sunday)" % self.weekday
# Constants for months referenced later
January = 1
February = 2
# Number of days per month (except for February in leap years)
mdays = [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
# This module used to have hard-coded lists of day and month names, as
# English strings. The classes following emulate a read-only version of
# that, but supply localized names. Note that the values are computed
# fresh on each call, in case the user changes locale between calls.
class _localized_month:
_months = [datetime.date(2001, i+1, 1).strftime for i in range(12)]
_months.insert(0, lambda x: "")
def __init__(self, format):
self.format = format
def __getitem__(self, i):
funcs = self._months[i]
if isinstance(i, slice):
return [f(self.format) for f in funcs]
else:
return funcs(self.format)
def __len__(self):
return 13
class _localized_day:
# January 1, 2001, was a Monday.
_days = [datetime.date(2001, 1, i+1).strftime for i in range(7)]
def __init__(self, format):
self.format = format
def __getitem__(self, i):
funcs = self._days[i]
if isinstance(i, slice):
return [f(self.format) for f in funcs]
else:
return funcs(self.format)
def __len__(self):
return 7
# Full and abbreviated names of weekdays
day_name = _localized_day('%A')
day_abbr = _localized_day('%a')
# Full and abbreviated names of months (1-based arrays!!!)
month_name = _localized_month('%B')
month_abbr = _localized_month('%b')
# Constants for weekdays
(MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7)
def isleap(year):
"""Return True for leap years, False for non-leap years."""
return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)
def leapdays(y1, y2):
"""Return number of leap years in range [y1, y2).
Assume y1 <= y2."""
y1 -= 1
y2 -= 1
return (y2//4 - y1//4) - (y2//100 - y1//100) + (y2//400 - y1//400)
def weekday(year, month, day):
"""Return weekday (0-6 ~ Mon-Sun) for year (1970-...), month (1-12),
day (1-31)."""
return datetime.date(year, month, day).weekday()
def monthrange(year, month):
"""Return weekday (0-6 ~ Mon-Sun) and number of days (28-31) for
year, month."""
if not 1 <= month <= 12:
raise IllegalMonthError(month)
day1 = weekday(year, month, 1)
ndays = mdays[month] + (month == February and isleap(year))
return day1, ndays
class Calendar(object):
"""
Base calendar class. This class doesn't do any formatting. It simply
provides data to subclasses.
"""
def __init__(self, firstweekday=0):
self.firstweekday = firstweekday # 0 = Monday, 6 = Sunday
def getfirstweekday(self):
return self._firstweekday % 7
def setfirstweekday(self, firstweekday):
self._firstweekday = firstweekday
firstweekday = property(getfirstweekday, setfirstweekday)
def iterweekdays(self):
"""
Return an iterator for one week of weekday numbers starting with the
configured first one.
"""
for i in range(self.firstweekday, self.firstweekday + 7):
yield i%7
def itermonthdates(self, year, month):
"""
Return an iterator for one month. The iterator will yield datetime.date
values and will always iterate through complete weeks, so it will yield
dates outside the specified month.
"""
date = datetime.date(year, month, 1)
# Go back to the beginning of the week
days = (date.weekday() - self.firstweekday) % 7
date -= datetime.timedelta(days=days)
oneday = datetime.timedelta(days=1)
while True:
yield date
try:
date += oneday
except OverflowError:
# Adding one day could fail after datetime.MAXYEAR
break
if date.month != month and date.weekday() == self.firstweekday:
break
def itermonthdays2(self, year, month):
"""
Like itermonthdates(), but will yield (day number, weekday number)
tuples. For days outside the specified month the day number is 0.
"""
for i, d in enumerate(self.itermonthdays(year, month), self.firstweekday):
yield d, i % 7
def itermonthdays(self, year, month):
"""
Like itermonthdates(), but will yield day numbers. For days outside
the specified month the day number is 0.
"""
day1, ndays = monthrange(year, month)
days_before = (day1 - self.firstweekday) % 7
yield from repeat(0, days_before)
yield from range(1, ndays + 1)
days_after = (self.firstweekday - day1 - ndays) % 7
yield from repeat(0, days_after)
def monthdatescalendar(self, year, month):
"""
Return a matrix (list of lists) representing a month's calendar.
Each row represents a week; week entries are datetime.date values.
"""
dates = list(self.itermonthdates(year, month))
return [ dates[i:i+7] for i in range(0, len(dates), 7) ]
def monthdays2calendar(self, year, month):
"""
Return a matrix representing a month's calendar.
Each row represents a week; week entries are
(day number, weekday number) tuples. Day numbers outside this month
are zero.
"""
days = list(self.itermonthdays2(year, month))
return [ days[i:i+7] for i in range(0, len(days), 7) ]
def monthdayscalendar(self, year, month):
"""
Return a matrix representing a month's calendar.
Each row represents a week; days outside this month are zero.
"""
days = list(self.itermonthdays(year, month))
return [ days[i:i+7] for i in range(0, len(days), 7) ]
def yeardatescalendar(self, year, width=3):
"""
Return the data for the specified year ready for formatting. The return
value is a list of month rows. Each month row contains up to width months.
Each month contains between 4 and 6 weeks and each week contains 1-7
days. Days are datetime.date objects.
"""
months = [
self.monthdatescalendar(year, i)
for i in range(January, January+12)
]
return [months[i:i+width] for i in range(0, len(months), width) ]
def yeardays2calendar(self, year, width=3):
"""
Return the data for the specified year ready for formatting (similar to
yeardatescalendar()). Entries in the week lists are
(day number, weekday number) tuples. Day numbers outside this month are
zero.
"""
months = [
self.monthdays2calendar(year, i)
for i in range(January, January+12)
]
return [months[i:i+width] for i in range(0, len(months), width) ]
def yeardayscalendar(self, year, width=3):
"""
Return the data for the specified year ready for formatting (similar to
yeardatescalendar()). Entries in the week lists are day numbers.
Day numbers outside this month are zero.
"""
months = [
self.monthdayscalendar(year, i)
for i in range(January, January+12)
]
return [months[i:i+width] for i in range(0, len(months), width) ]
class TextCalendar(Calendar):
"""
Subclass of Calendar that outputs a calendar as a simple plain text
similar to the UNIX program cal.
"""
def prweek(self, theweek, width):
"""
Print a single week (no newline).
"""
print(self.formatweek(theweek, width), end=' ')
def formatday(self, day, weekday, width):
"""
Returns a formatted day.
"""
if day == 0:
s = ''
else:
s = '%2i' % day # right-align single-digit days
return s.center(width)
def formatweek(self, theweek, width):
"""
Returns a single week in a string (no newline).
"""
return ' '.join(self.formatday(d, wd, width) for (d, wd) in theweek)
def formatweekday(self, day, width):
"""
Returns a formatted week day name.
"""
if width >= 9:
names = day_name
else:
names = day_abbr
return names[day][:width].center(width)
def formatweekheader(self, width):
"""
Return a header for a week.
"""
return ' '.join(self.formatweekday(i, width) for i in self.iterweekdays())
def formatmonthname(self, theyear, themonth, width, withyear=True):
"""
Return a formatted month name.
"""
s = month_name[themonth]
if withyear:
s = "%s %r" % (s, theyear)
return s.center(width)
def prmonth(self, theyear, themonth, w=0, l=0):
"""
Print a month's calendar.
"""
print(self.formatmonth(theyear, themonth, w, l), end='')
def formatmonth(self, theyear, themonth, w=0, l=0):
"""
Return a month's calendar string (multi-line).
"""
w = max(2, w)
l = max(1, l)
s = self.formatmonthname(theyear, themonth, 7 * (w + 1) - 1)
s = s.rstrip()
s += '\n' * l
s += self.formatweekheader(w).rstrip()
s += '\n' * l
for week in self.monthdays2calendar(theyear, themonth):
s += self.formatweek(week, w).rstrip()
s += '\n' * l
return s
def formatyear(self, theyear, w=2, l=1, c=6, m=3):
"""
Returns a year's calendar as a multi-line string.
"""
w = max(2, w)
l = max(1, l)
c = max(2, c)
colwidth = (w + 1) * 7 - 1
v = []
a = v.append
a(repr(theyear).center(colwidth*m+c*(m-1)).rstrip())
a('\n'*l)
header = self.formatweekheader(w)
for (i, row) in enumerate(self.yeardays2calendar(theyear, m)):
# months in this row
months = range(m*i+1, min(m*(i+1)+1, 13))
a('\n'*l)
names = (self.formatmonthname(theyear, k, colwidth, False)
for k in months)
a(formatstring(names, colwidth, c).rstrip())
a('\n'*l)
headers = (header for k in months)
a(formatstring(headers, colwidth, c).rstrip())
a('\n'*l)
# max number of weeks for this row
height = max(len(cal) for cal in row)
for j in range(height):
weeks = []
for cal in row:
if j >= len(cal):
weeks.append('')
else:
weeks.append(self.formatweek(cal[j], w))
a(formatstring(weeks, colwidth, c).rstrip())
a('\n' * l)
return ''.join(v)
def pryear(self, theyear, w=0, l=0, c=6, m=3):
"""Print a year's calendar."""
print(self.formatyear(theyear, w, l, c, m))
class HTMLCalendar(Calendar):
"""
This calendar returns complete HTML pages.
"""
# CSS classes for the day <td>s
cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]
def formatday(self, day, weekday):
"""
Return a day as a table cell.
"""
if day == 0:
return '<td class="noday">&nbsp;</td>' # day outside month
else:
return '<td class="%s">%d</td>' % (self.cssclasses[weekday], day)
def formatweek(self, theweek):
"""
Return a complete week as a table row.
"""
s = ''.join(self.formatday(d, wd) for (d, wd) in theweek)
return '<tr>%s</tr>' % s
def formatweekday(self, day):
"""
Return a weekday name as a table header.
"""
return '<th class="%s">%s</th>' % (self.cssclasses[day], day_abbr[day])
def formatweekheader(self):
"""
Return a header for a week as a table row.
"""
s = ''.join(self.formatweekday(i) for i in self.iterweekdays())
return '<tr>%s</tr>' % s
def formatmonthname(self, theyear, themonth, withyear=True):
"""
Return a month name as a table row.
"""
if withyear:
s = '%s %s' % (month_name[themonth], theyear)
else:
s = '%s' % month_name[themonth]
return '<tr><th colspan="7" class="month">%s</th></tr>' % s
def formatmonth(self, theyear, themonth, withyear=True):
"""
Return a formatted month as a table.
"""
v = []
a = v.append
a('<table border="0" cellpadding="0" cellspacing="0" class="month">')
a('\n')
a(self.formatmonthname(theyear, themonth, withyear=withyear))
a('\n')
a(self.formatweekheader())
a('\n')
for week in self.monthdays2calendar(theyear, themonth):
a(self.formatweek(week))
a('\n')
a('</table>')
a('\n')
return ''.join(v)
def formatyear(self, theyear, width=3):
"""
Return a formatted year as a table of tables.
"""
v = []
a = v.append
width = max(width, 1)
a('<table border="0" cellpadding="0" cellspacing="0" class="year">')
a('\n')
a('<tr><th colspan="%d" class="year">%s</th></tr>' % (width, theyear))
for i in range(January, January+12, width):
# months in this row
months = range(i, min(i+width, 13))
a('<tr>')
for m in months:
a('<td>')
a(self.formatmonth(theyear, m, withyear=False))
a('</td>')
a('</tr>')
a('</table>')
return ''.join(v)
def formatyearpage(self, theyear, width=3, css='calendar.css', encoding=None):
"""
Return a formatted year as a complete HTML page.
"""
if encoding is None:
encoding = sys.getdefaultencoding()
v = []
a = v.append
a('<?xml version="1.0" encoding="%s"?>\n' % encoding)
a('<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n')
a('<html>\n')
a('<head>\n')
a('<meta http-equiv="Content-Type" content="text/html; charset=%s" />\n' % encoding)
if css is not None:
a('<link rel="stylesheet" type="text/css" href="%s" />\n' % css)
a('<title>Calendar for %d</title>\n' % theyear)
a('</head>\n')
a('<body>\n')
a(self.formatyear(theyear, width))
a('</body>\n')
a('</html>\n')
return ''.join(v).encode(encoding, "xmlcharrefreplace")
class different_locale:
def __init__(self, locale):
self.locale = locale
def __enter__(self):
self.oldlocale = _locale.getlocale(_locale.LC_TIME)
_locale.setlocale(_locale.LC_TIME, self.locale)
def __exit__(self, *args):
_locale.setlocale(_locale.LC_TIME, self.oldlocale)
class LocaleTextCalendar(TextCalendar):
"""
This class can be passed a locale name in the constructor and will return
month and weekday names in the specified locale. If this locale includes
an encoding all strings containing month and weekday names will be returned
as unicode.
"""
def __init__(self, firstweekday=0, locale=None):
TextCalendar.__init__(self, firstweekday)
if locale is None:
locale = _locale.getdefaultlocale()
self.locale = locale
def formatweekday(self, day, width):
with different_locale(self.locale):
if width >= 9:
names = day_name
else:
names = day_abbr
name = names[day]
return name[:width].center(width)
def formatmonthname(self, theyear, themonth, width, withyear=True):
with different_locale(self.locale):
s = month_name[themonth]
if withyear:
s = "%s %r" % (s, theyear)
return s.center(width)
class LocaleHTMLCalendar(HTMLCalendar):
"""
This class can be passed a locale name in the constructor and will return
month and weekday names in the specified locale. If this locale includes
an encoding all strings containing month and weekday names will be returned
as unicode.
"""
def __init__(self, firstweekday=0, locale=None):
HTMLCalendar.__init__(self, firstweekday)
if locale is None:
locale = _locale.getdefaultlocale()
self.locale = locale
def formatweekday(self, day):
with different_locale(self.locale):
s = day_abbr[day]
return '<th class="%s">%s</th>' % (self.cssclasses[day], s)
def formatmonthname(self, theyear, themonth, withyear=True):
with different_locale(self.locale):
s = month_name[themonth]
if withyear:
s = '%s %s' % (s, theyear)
return '<tr><th colspan="7" class="month">%s</th></tr>' % s
# Support for old module level interface
c = TextCalendar()
firstweekday = c.getfirstweekday
def setfirstweekday(firstweekday):
if not MONDAY <= firstweekday <= SUNDAY:
raise IllegalWeekdayError(firstweekday)
c.firstweekday = firstweekday
monthcalendar = c.monthdayscalendar
prweek = c.prweek
week = c.formatweek
weekheader = c.formatweekheader
prmonth = c.prmonth
month = c.formatmonth
calendar = c.formatyear
prcal = c.pryear
# Spacing of month columns for multi-column year calendar
_colwidth = 7*3 - 1 # Amount printed by prweek()
_spacing = 6 # Number of spaces between columns
def format(cols, colwidth=_colwidth, spacing=_spacing):
"""Prints multi-column formatting for year calendars"""
print(formatstring(cols, colwidth, spacing))
def formatstring(cols, colwidth=_colwidth, spacing=_spacing):
"""Returns a string formatted from n strings, centered within n columns."""
spacing *= ' '
return spacing.join(c.center(colwidth) for c in cols)
EPOCH = 1970
_EPOCH_ORD = datetime.date(EPOCH, 1, 1).toordinal()
def timegm(tuple):
"""Unrelated but handy function to calculate Unix timestamp from GMT."""
year, month, day, hour, minute, second = tuple[:6]
days = datetime.date(year, month, 1).toordinal() - _EPOCH_ORD + day - 1
hours = days*24 + hour
minutes = hours*60 + minute
seconds = minutes*60 + second
return seconds
def main(args):
import argparse
parser = argparse.ArgumentParser()
textgroup = parser.add_argument_group('text only arguments')
htmlgroup = parser.add_argument_group('html only arguments')
textgroup.add_argument(
"-w", "--width",
type=int, default=2,
help="width of date column (default 2)"
)
textgroup.add_argument(
"-l", "--lines",
type=int, default=1,
help="number of lines for each week (default 1)"
)
textgroup.add_argument(
"-s", "--spacing",
type=int, default=6,
help="spacing between months (default 6)"
)
textgroup.add_argument(
"-m", "--months",
type=int, default=3,
help="months per row (default 3)"
)
htmlgroup.add_argument(
"-c", "--css",
default="calendar.css",
help="CSS to use for page"
)
parser.add_argument(
"-L", "--locale",
default=None,
help="locale to be used from month and weekday names"
)
parser.add_argument(
"-e", "--encoding",
default=None,
help="encoding to use for output"
)
parser.add_argument(
"-t", "--type",
default="text",
choices=("text", "html"),
help="output type (text or html)"
)
parser.add_argument(
"year",
nargs='?', type=int,
help="year number (1-9999)"
)
parser.add_argument(
"month",
nargs='?', type=int,
help="month number (1-12, text only)"
)
options = parser.parse_args(args[1:])
if options.locale and not options.encoding:
parser.error("if --locale is specified --encoding is required")
sys.exit(1)
locale = options.locale, options.encoding
if options.type == "html":
if options.locale:
cal = LocaleHTMLCalendar(locale=locale)
else:
cal = HTMLCalendar()
encoding = options.encoding
if encoding is None:
encoding = sys.getdefaultencoding()
optdict = dict(encoding=encoding, css=options.css)
write = sys.stdout.buffer.write
if options.year is None:
write(cal.formatyearpage(datetime.date.today().year, **optdict))
elif options.month is None:
write(cal.formatyearpage(options.year, **optdict))
else:
parser.error("incorrect number of arguments")
sys.exit(1)
else:
if options.locale:
cal = LocaleTextCalendar(locale=locale)
else:
cal = TextCalendar()
optdict = dict(w=options.width, l=options.lines)
if options.month is None:
optdict["c"] = options.spacing
optdict["m"] = options.months
if options.year is None:
result = cal.formatyear(datetime.date.today().year, **optdict)
elif options.month is None:
result = cal.formatyear(options.year, **optdict)
else:
result = cal.formatmonth(options.year, options.month, **optdict)
write = sys.stdout.write
if options.encoding:
result = result.encode(options.encoding)
write = sys.stdout.buffer.write
write(result)
if __name__ == "__main__":
main(sys.argv)

1099
third_party/python/Lib/cgi.py vendored Executable file

File diff suppressed because it is too large Load diff

319
third_party/python/Lib/cgitb.py vendored Normal file
View file

@ -0,0 +1,319 @@
"""More comprehensive traceback formatting for Python scripts.
To enable this module, do:
import cgitb; cgitb.enable()
at the top of your script. The optional arguments to enable() are:
display - if true, tracebacks are displayed in the web browser
logdir - if set, tracebacks are written to files in this directory
context - number of lines of source code to show for each stack frame
format - 'text' or 'html' controls the output format
By default, tracebacks are displayed but not saved, the context is 5 lines
and the output format is 'html' (for backwards compatibility with the
original use of this module)
Alternatively, if you have caught an exception and want cgitb to display it
for you, call cgitb.handler(). The optional argument to handler() is a
3-item tuple (etype, evalue, etb) just like the value of sys.exc_info().
The default handler displays output as HTML.
"""
import inspect
import keyword
import linecache
import os
import pydoc
import sys
import tempfile
import time
import tokenize
import traceback
def reset():
"""Return a string that resets the CGI and browser to a known state."""
return '''<!--: spam
Content-Type: text/html
<body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> -->
<body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> --> -->
</font> </font> </font> </script> </object> </blockquote> </pre>
</table> </table> </table> </table> </table> </font> </font> </font>'''
__UNDEF__ = [] # a special sentinel object
def small(text):
if text:
return '<small>' + text + '</small>'
else:
return ''
def strong(text):
if text:
return '<strong>' + text + '</strong>'
else:
return ''
def grey(text):
if text:
return '<font color="#909090">' + text + '</font>'
else:
return ''
def lookup(name, frame, locals):
"""Find the value for a given name in the given environment."""
if name in locals:
return 'local', locals[name]
if name in frame.f_globals:
return 'global', frame.f_globals[name]
if '__builtins__' in frame.f_globals:
builtins = frame.f_globals['__builtins__']
if type(builtins) is type({}):
if name in builtins:
return 'builtin', builtins[name]
else:
if hasattr(builtins, name):
return 'builtin', getattr(builtins, name)
return None, __UNDEF__
def scanvars(reader, frame, locals):
"""Scan one logical line of Python and look up values of variables used."""
vars, lasttoken, parent, prefix, value = [], None, None, '', __UNDEF__
for ttype, token, start, end, line in tokenize.generate_tokens(reader):
if ttype == tokenize.NEWLINE: break
if ttype == tokenize.NAME and token not in keyword.kwlist:
if lasttoken == '.':
if parent is not __UNDEF__:
value = getattr(parent, token, __UNDEF__)
vars.append((prefix + token, prefix, value))
else:
where, value = lookup(token, frame, locals)
vars.append((token, where, value))
elif token == '.':
prefix += lasttoken + '.'
parent = value
else:
parent, prefix = None, ''
lasttoken = token
return vars
def html(einfo, context=5):
"""Return a nice HTML document describing a given traceback."""
etype, evalue, etb = einfo
if isinstance(etype, type):
etype = etype.__name__
pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable
date = time.ctime(time.time())
head = '<body bgcolor="#f0f0f8">' + pydoc.html.heading(
'<big><big>%s</big></big>' %
strong(pydoc.html.escape(str(etype))),
'#ffffff', '#6622aa', pyver + '<br>' + date) + '''
<p>A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.</p>'''
indent = '<tt>' + small('&nbsp;' * 5) + '&nbsp;</tt>'
frames = []
records = inspect.getinnerframes(etb, context)
for frame, file, lnum, func, lines, index in records:
if file:
file = os.path.abspath(file)
link = '<a href="file://%s">%s</a>' % (file, pydoc.html.escape(file))
else:
file = link = '?'
args, varargs, varkw, locals = inspect.getargvalues(frame)
call = ''
if func != '?':
call = 'in ' + strong(pydoc.html.escape(func)) + \
inspect.formatargvalues(args, varargs, varkw, locals,
formatvalue=lambda value: '=' + pydoc.html.repr(value))
highlight = {}
def reader(lnum=[lnum]):
highlight[lnum[0]] = 1
try: return linecache.getline(file, lnum[0])
finally: lnum[0] += 1
vars = scanvars(reader, frame, locals)
rows = ['<tr><td bgcolor="#d8bbff">%s%s %s</td></tr>' %
('<big>&nbsp;</big>', link, call)]
if index is not None:
i = lnum - index
for line in lines:
num = small('&nbsp;' * (5-len(str(i))) + str(i)) + '&nbsp;'
if i in highlight:
line = '<tt>=&gt;%s%s</tt>' % (num, pydoc.html.preformat(line))
rows.append('<tr><td bgcolor="#ffccee">%s</td></tr>' % line)
else:
line = '<tt>&nbsp;&nbsp;%s%s</tt>' % (num, pydoc.html.preformat(line))
rows.append('<tr><td>%s</td></tr>' % grey(line))
i += 1
done, dump = {}, []
for name, where, value in vars:
if name in done: continue
done[name] = 1
if value is not __UNDEF__:
if where in ('global', 'builtin'):
name = ('<em>%s</em> ' % where) + strong(name)
elif where == 'local':
name = strong(name)
else:
name = where + strong(name.split('.')[-1])
dump.append('%s&nbsp;= %s' % (name, pydoc.html.repr(value)))
else:
dump.append(name + ' <em>undefined</em>')
rows.append('<tr><td>%s</td></tr>' % small(grey(', '.join(dump))))
frames.append('''
<table width="100%%" cellspacing=0 cellpadding=0 border=0>
%s</table>''' % '\n'.join(rows))
exception = ['<p>%s: %s' % (strong(pydoc.html.escape(str(etype))),
pydoc.html.escape(str(evalue)))]
for name in dir(evalue):
if name[:1] == '_': continue
value = pydoc.html.repr(getattr(evalue, name))
exception.append('\n<br>%s%s&nbsp;=\n%s' % (indent, name, value))
return head + ''.join(frames) + ''.join(exception) + '''
<!-- The above is a description of an error in a Python program, formatted
for a Web browser because the 'cgitb' module was enabled. In case you
are not reading this in a Web browser, here is the original traceback:
%s
-->
''' % pydoc.html.escape(
''.join(traceback.format_exception(etype, evalue, etb)))
def text(einfo, context=5):
"""Return a plain text document describing a given traceback."""
etype, evalue, etb = einfo
if isinstance(etype, type):
etype = etype.__name__
pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable
date = time.ctime(time.time())
head = "%s\n%s\n%s\n" % (str(etype), pyver, date) + '''
A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.
'''
frames = []
records = inspect.getinnerframes(etb, context)
for frame, file, lnum, func, lines, index in records:
file = file and os.path.abspath(file) or '?'
args, varargs, varkw, locals = inspect.getargvalues(frame)
call = ''
if func != '?':
call = 'in ' + func + \
inspect.formatargvalues(args, varargs, varkw, locals,
formatvalue=lambda value: '=' + pydoc.text.repr(value))
highlight = {}
def reader(lnum=[lnum]):
highlight[lnum[0]] = 1
try: return linecache.getline(file, lnum[0])
finally: lnum[0] += 1
vars = scanvars(reader, frame, locals)
rows = [' %s %s' % (file, call)]
if index is not None:
i = lnum - index
for line in lines:
num = '%5d ' % i
rows.append(num+line.rstrip())
i += 1
done, dump = {}, []
for name, where, value in vars:
if name in done: continue
done[name] = 1
if value is not __UNDEF__:
if where == 'global': name = 'global ' + name
elif where != 'local': name = where + name.split('.')[-1]
dump.append('%s = %s' % (name, pydoc.text.repr(value)))
else:
dump.append(name + ' undefined')
rows.append('\n'.join(dump))
frames.append('\n%s\n' % '\n'.join(rows))
exception = ['%s: %s' % (str(etype), str(evalue))]
for name in dir(evalue):
value = pydoc.text.repr(getattr(evalue, name))
exception.append('\n%s%s = %s' % (" "*4, name, value))
return head + ''.join(frames) + ''.join(exception) + '''
The above is a description of an error in a Python program. Here is
the original traceback:
%s
''' % ''.join(traceback.format_exception(etype, evalue, etb))
class Hook:
"""A hook to replace sys.excepthook that shows tracebacks in HTML."""
def __init__(self, display=1, logdir=None, context=5, file=None,
format="html"):
self.display = display # send tracebacks to browser if true
self.logdir = logdir # log tracebacks to files if not None
self.context = context # number of source code lines per frame
self.file = file or sys.stdout # place to send the output
self.format = format
def __call__(self, etype, evalue, etb):
self.handle((etype, evalue, etb))
def handle(self, info=None):
info = info or sys.exc_info()
if self.format == "html":
self.file.write(reset())
formatter = (self.format=="html") and html or text
plain = False
try:
doc = formatter(info, self.context)
except: # just in case something goes wrong
doc = ''.join(traceback.format_exception(*info))
plain = True
if self.display:
if plain:
doc = pydoc.html.escape(doc)
self.file.write('<pre>' + doc + '</pre>\n')
else:
self.file.write(doc + '\n')
else:
self.file.write('<p>A problem occurred in a Python script.\n')
if self.logdir is not None:
suffix = ['.txt', '.html'][self.format=="html"]
(fd, path) = tempfile.mkstemp(suffix=suffix, dir=self.logdir)
try:
with os.fdopen(fd, 'w') as file:
file.write(doc)
msg = '%s contains the description of this error.' % path
except:
msg = 'Tried to save traceback to %s, but failed.' % path
if self.format == 'html':
self.file.write('<p>%s</p>\n' % msg)
else:
self.file.write(msg + '\n')
try:
self.file.flush()
except: pass
handler = Hook().handle
def enable(display=1, logdir=None, context=5, format="html"):
"""Install an exception handler that formats tracebacks as HTML.
The optional argument 'display' can be set to 0 to suppress sending the
traceback to the browser, and 'logdir' can be set to a directory to cause
tracebacks to be written to files there."""
sys.excepthook = Hook(display=display, logdir=logdir,
context=context, format=format)

169
third_party/python/Lib/chunk.py vendored Normal file
View file

@ -0,0 +1,169 @@
"""Simple class to read IFF chunks.
An IFF chunk (used in formats such as AIFF, TIFF, RMFF (RealMedia File
Format)) has the following structure:
+----------------+
| ID (4 bytes) |
+----------------+
| size (4 bytes) |
+----------------+
| data |
| ... |
+----------------+
The ID is a 4-byte string which identifies the type of chunk.
The size field (a 32-bit value, encoded using big-endian byte order)
gives the size of the whole chunk, including the 8-byte header.
Usually an IFF-type file consists of one or more chunks. The proposed
usage of the Chunk class defined here is to instantiate an instance at
the start of each chunk and read from the instance until it reaches
the end, after which a new instance can be instantiated. At the end
of the file, creating a new instance will fail with an EOFError
exception.
Usage:
while True:
try:
chunk = Chunk(file)
except EOFError:
break
chunktype = chunk.getname()
while True:
data = chunk.read(nbytes)
if not data:
pass
# do something with data
The interface is file-like. The implemented methods are:
read, close, seek, tell, isatty.
Extra methods are: skip() (called by close, skips to the end of the chunk),
getname() (returns the name (ID) of the chunk)
The __init__ method has one required argument, a file-like object
(including a chunk instance), and one optional argument, a flag which
specifies whether or not chunks are aligned on 2-byte boundaries. The
default is 1, i.e. aligned.
"""
class Chunk:
def __init__(self, file, align=True, bigendian=True, inclheader=False):
import struct
self.closed = False
self.align = align # whether to align to word (2-byte) boundaries
if bigendian:
strflag = '>'
else:
strflag = '<'
self.file = file
self.chunkname = file.read(4)
if len(self.chunkname) < 4:
raise EOFError
try:
self.chunksize = struct.unpack_from(strflag+'L', file.read(4))[0]
except struct.error:
raise EOFError
if inclheader:
self.chunksize = self.chunksize - 8 # subtract header
self.size_read = 0
try:
self.offset = self.file.tell()
except (AttributeError, OSError):
self.seekable = False
else:
self.seekable = True
def getname(self):
"""Return the name (ID) of the current chunk."""
return self.chunkname
def getsize(self):
"""Return the size of the current chunk."""
return self.chunksize
def close(self):
if not self.closed:
try:
self.skip()
finally:
self.closed = True
def isatty(self):
if self.closed:
raise ValueError("I/O operation on closed file")
return False
def seek(self, pos, whence=0):
"""Seek to specified position into the chunk.
Default position is 0 (start of chunk).
If the file is not seekable, this will result in an error.
"""
if self.closed:
raise ValueError("I/O operation on closed file")
if not self.seekable:
raise OSError("cannot seek")
if whence == 1:
pos = pos + self.size_read
elif whence == 2:
pos = pos + self.chunksize
if pos < 0 or pos > self.chunksize:
raise RuntimeError
self.file.seek(self.offset + pos, 0)
self.size_read = pos
def tell(self):
if self.closed:
raise ValueError("I/O operation on closed file")
return self.size_read
def read(self, size=-1):
"""Read at most size bytes from the chunk.
If size is omitted or negative, read until the end
of the chunk.
"""
if self.closed:
raise ValueError("I/O operation on closed file")
if self.size_read >= self.chunksize:
return b''
if size < 0:
size = self.chunksize - self.size_read
if size > self.chunksize - self.size_read:
size = self.chunksize - self.size_read
data = self.file.read(size)
self.size_read = self.size_read + len(data)
if self.size_read == self.chunksize and \
self.align and \
(self.chunksize & 1):
dummy = self.file.read(1)
self.size_read = self.size_read + len(dummy)
return data
def skip(self):
"""Skip the rest of the chunk.
If you are not interested in the contents of the chunk,
this method should be called so that the file points to
the start of the next chunk.
"""
if self.closed:
raise ValueError("I/O operation on closed file")
if self.seekable:
try:
n = self.chunksize - self.size_read
# maybe fix alignment
if self.align and (self.chunksize & 1):
n = n + 1
self.file.seek(n, 1)
self.size_read = self.size_read + n
return
except OSError:
pass
while self.size_read < self.chunksize:
n = min(8192, self.chunksize - self.size_read)
dummy = self.read(n)
if not dummy:
raise EOFError

401
third_party/python/Lib/cmd.py vendored Normal file
View file

@ -0,0 +1,401 @@
"""A generic class to build line-oriented command interpreters.
Interpreters constructed with this class obey the following conventions:
1. End of file on input is processed as the command 'EOF'.
2. A command is parsed out of each line by collecting the prefix composed
of characters in the identchars member.
3. A command `foo' is dispatched to a method 'do_foo()'; the do_ method
is passed a single argument consisting of the remainder of the line.
4. Typing an empty line repeats the last command. (Actually, it calls the
method `emptyline', which may be overridden in a subclass.)
5. There is a predefined `help' method. Given an argument `topic', it
calls the command `help_topic'. With no arguments, it lists all topics
with defined help_ functions, broken into up to three topics; documented
commands, miscellaneous help topics, and undocumented commands.
6. The command '?' is a synonym for `help'. The command '!' is a synonym
for `shell', if a do_shell method exists.
7. If completion is enabled, completing commands will be done automatically,
and completing of commands args is done by calling complete_foo() with
arguments text, line, begidx, endidx. text is string we are matching
against, all returned matches must begin with it. line is the current
input line (lstripped), begidx and endidx are the beginning and end
indexes of the text being matched, which could be used to provide
different completion depending upon which position the argument is in.
The `default' method may be overridden to intercept commands for which there
is no do_ method.
The `completedefault' method may be overridden to intercept completions for
commands that have no complete_ method.
The data member `self.ruler' sets the character used to draw separator lines
in the help messages. If empty, no ruler line is drawn. It defaults to "=".
If the value of `self.intro' is nonempty when the cmdloop method is called,
it is printed out on interpreter startup. This value may be overridden
via an optional argument to the cmdloop() method.
The data members `self.doc_header', `self.misc_header', and
`self.undoc_header' set the headers used for the help function's
listings of documented functions, miscellaneous topics, and undocumented
functions respectively.
"""
import string, sys
__all__ = ["Cmd"]
PROMPT = '(Cmd) '
IDENTCHARS = string.ascii_letters + string.digits + '_'
class Cmd:
"""A simple framework for writing line-oriented command interpreters.
These are often useful for test harnesses, administrative tools, and
prototypes that will later be wrapped in a more sophisticated interface.
A Cmd instance or subclass instance is a line-oriented interpreter
framework. There is no good reason to instantiate Cmd itself; rather,
it's useful as a superclass of an interpreter class you define yourself
in order to inherit Cmd's methods and encapsulate action methods.
"""
prompt = PROMPT
identchars = IDENTCHARS
ruler = '='
lastcmd = ''
intro = None
doc_leader = ""
doc_header = "Documented commands (type help <topic>):"
misc_header = "Miscellaneous help topics:"
undoc_header = "Undocumented commands:"
nohelp = "*** No help on %s"
use_rawinput = 1
def __init__(self, completekey='tab', stdin=None, stdout=None):
"""Instantiate a line-oriented interpreter framework.
The optional argument 'completekey' is the readline name of a
completion key; it defaults to the Tab key. If completekey is
not None and the readline module is available, command completion
is done automatically. The optional arguments stdin and stdout
specify alternate input and output file objects; if not specified,
sys.stdin and sys.stdout are used.
"""
if stdin is not None:
self.stdin = stdin
else:
self.stdin = sys.stdin
if stdout is not None:
self.stdout = stdout
else:
self.stdout = sys.stdout
self.cmdqueue = []
self.completekey = completekey
def cmdloop(self, intro=None):
"""Repeatedly issue a prompt, accept input, parse an initial prefix
off the received input, and dispatch to action methods, passing them
the remainder of the line as argument.
"""
self.preloop()
if self.use_rawinput and self.completekey:
try:
import readline
self.old_completer = readline.get_completer()
readline.set_completer(self.complete)
readline.parse_and_bind(self.completekey+": complete")
except ImportError:
pass
try:
if intro is not None:
self.intro = intro
if self.intro:
self.stdout.write(str(self.intro)+"\n")
stop = None
while not stop:
if self.cmdqueue:
line = self.cmdqueue.pop(0)
else:
if self.use_rawinput:
try:
line = input(self.prompt)
except EOFError:
line = 'EOF'
else:
self.stdout.write(self.prompt)
self.stdout.flush()
line = self.stdin.readline()
if not len(line):
line = 'EOF'
else:
line = line.rstrip('\r\n')
line = self.precmd(line)
stop = self.onecmd(line)
stop = self.postcmd(stop, line)
self.postloop()
finally:
if self.use_rawinput and self.completekey:
try:
import readline
readline.set_completer(self.old_completer)
except ImportError:
pass
def precmd(self, line):
"""Hook method executed just before the command line is
interpreted, but after the input prompt is generated and issued.
"""
return line
def postcmd(self, stop, line):
"""Hook method executed just after a command dispatch is finished."""
return stop
def preloop(self):
"""Hook method executed once when the cmdloop() method is called."""
pass
def postloop(self):
"""Hook method executed once when the cmdloop() method is about to
return.
"""
pass
def parseline(self, line):
"""Parse the line into a command name and a string containing
the arguments. Returns a tuple containing (command, args, line).
'command' and 'args' may be None if the line couldn't be parsed.
"""
line = line.strip()
if not line:
return None, None, line
elif line[0] == '?':
line = 'help ' + line[1:]
elif line[0] == '!':
if hasattr(self, 'do_shell'):
line = 'shell ' + line[1:]
else:
return None, None, line
i, n = 0, len(line)
while i < n and line[i] in self.identchars: i = i+1
cmd, arg = line[:i], line[i:].strip()
return cmd, arg, line
def onecmd(self, line):
"""Interpret the argument as though it had been typed in response
to the prompt.
This may be overridden, but should not normally need to be;
see the precmd() and postcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of
commands by the interpreter should stop.
"""
cmd, arg, line = self.parseline(line)
if not line:
return self.emptyline()
if cmd is None:
return self.default(line)
self.lastcmd = line
if line == 'EOF' :
self.lastcmd = ''
if cmd == '':
return self.default(line)
else:
try:
func = getattr(self, 'do_' + cmd)
except AttributeError:
return self.default(line)
return func(arg)
def emptyline(self):
"""Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty
command entered.
"""
if self.lastcmd:
return self.onecmd(self.lastcmd)
def default(self, line):
"""Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and
returns.
"""
self.stdout.write('*** Unknown syntax: %s\n'%line)
def completedefault(self, *ignored):
"""Method called to complete an input line when no command-specific
complete_*() method is available.
By default, it returns an empty list.
"""
return []
def completenames(self, text, *ignored):
dotext = 'do_'+text
return [a[3:] for a in self.get_names() if a.startswith(dotext)]
def complete(self, text, state):
"""Return the next possible completion for 'text'.
If a command has not been entered, then complete against command list.
Otherwise try to call complete_<command> to get list of completions.
"""
if state == 0:
import readline
origline = readline.get_line_buffer()
line = origline.lstrip()
stripped = len(origline) - len(line)
begidx = readline.get_begidx() - stripped
endidx = readline.get_endidx() - stripped
if begidx>0:
cmd, args, foo = self.parseline(line)
if cmd == '':
compfunc = self.completedefault
else:
try:
compfunc = getattr(self, 'complete_' + cmd)
except AttributeError:
compfunc = self.completedefault
else:
compfunc = self.completenames
self.completion_matches = compfunc(text, line, begidx, endidx)
try:
return self.completion_matches[state]
except IndexError:
return None
def get_names(self):
# This method used to pull in base class attributes
# at a time dir() didn't do it yet.
return dir(self.__class__)
def complete_help(self, *args):
commands = set(self.completenames(*args))
topics = set(a[5:] for a in self.get_names()
if a.startswith('help_' + args[0]))
return list(commands | topics)
def do_help(self, arg):
'List available commands with "help" or detailed help with "help cmd".'
if arg:
# XXX check arg syntax
try:
func = getattr(self, 'help_' + arg)
except AttributeError:
try:
doc=getattr(self, 'do_' + arg).__doc__
if doc:
self.stdout.write("%s\n"%str(doc))
return
except AttributeError:
pass
self.stdout.write("%s\n"%str(self.nohelp % (arg,)))
return
func()
else:
names = self.get_names()
cmds_doc = []
cmds_undoc = []
help = {}
for name in names:
if name[:5] == 'help_':
help[name[5:]]=1
names.sort()
# There can be duplicates if routines overridden
prevname = ''
for name in names:
if name[:3] == 'do_':
if name == prevname:
continue
prevname = name
cmd=name[3:]
if cmd in help:
cmds_doc.append(cmd)
del help[cmd]
elif getattr(self, name).__doc__:
cmds_doc.append(cmd)
else:
cmds_undoc.append(cmd)
self.stdout.write("%s\n"%str(self.doc_leader))
self.print_topics(self.doc_header, cmds_doc, 15,80)
self.print_topics(self.misc_header, list(help.keys()),15,80)
self.print_topics(self.undoc_header, cmds_undoc, 15,80)
def print_topics(self, header, cmds, cmdlen, maxcol):
if cmds:
self.stdout.write("%s\n"%str(header))
if self.ruler:
self.stdout.write("%s\n"%str(self.ruler * len(header)))
self.columnize(cmds, maxcol-1)
self.stdout.write("\n")
def columnize(self, list, displaywidth=80):
"""Display a list of strings as a compact set of columns.
Each column is only as wide as necessary.
Columns are separated by two spaces (one was not legible enough).
"""
if not list:
self.stdout.write("<empty>\n")
return
nonstrings = [i for i in range(len(list))
if not isinstance(list[i], str)]
if nonstrings:
raise TypeError("list[i] not a string for i in %s"
% ", ".join(map(str, nonstrings)))
size = len(list)
if size == 1:
self.stdout.write('%s\n'%str(list[0]))
return
# Try every row count from 1 upwards
for nrows in range(1, len(list)):
ncols = (size+nrows-1) // nrows
colwidths = []
totwidth = -2
for col in range(ncols):
colwidth = 0
for row in range(nrows):
i = row + nrows*col
if i >= size:
break
x = list[i]
colwidth = max(colwidth, len(x))
colwidths.append(colwidth)
totwidth += colwidth + 2
if totwidth > displaywidth:
break
if totwidth <= displaywidth:
break
else:
nrows = len(list)
ncols = 1
colwidths = [0]
for row in range(nrows):
texts = []
for col in range(ncols):
i = row + nrows*col
if i >= size:
x = ""
else:
x = list[i]
texts.append(x)
while texts and not texts[-1]:
del texts[-1]
for col in range(len(texts)):
texts[col] = texts[col].ljust(colwidths[col])
self.stdout.write("%s\n"%str(" ".join(texts)))

314
third_party/python/Lib/code.py vendored Normal file
View file

@ -0,0 +1,314 @@
"""Utilities needed to emulate Python's interactive interpreter.
"""
# Inspired by similar code by Jeff Epler and Fredrik Lundh.
import sys
import traceback
import argparse
from codeop import CommandCompiler, compile_command
__all__ = ["InteractiveInterpreter", "InteractiveConsole", "interact",
"compile_command"]
class InteractiveInterpreter:
"""Base class for InteractiveConsole.
This class deals with parsing and interpreter state (the user's
namespace); it doesn't deal with input buffering or prompting or
input file naming (the filename is always passed in explicitly).
"""
def __init__(self, locals=None):
"""Constructor.
The optional 'locals' argument specifies the dictionary in
which code will be executed; it defaults to a newly created
dictionary with key "__name__" set to "__console__" and key
"__doc__" set to None.
"""
if locals is None:
locals = {"__name__": "__console__", "__doc__": None}
self.locals = locals
self.compile = CommandCompiler()
def runsource(self, source, filename="<input>", symbol="single"):
"""Compile and run some source in the interpreter.
Arguments are as for compile_command().
One several things can happen:
1) The input is incorrect; compile_command() raised an
exception (SyntaxError or OverflowError). A syntax traceback
will be printed by calling the showsyntaxerror() method.
2) The input is incomplete, and more input is required;
compile_command() returned None. Nothing happens.
3) The input is complete; compile_command() returned a code
object. The code is executed by calling self.runcode() (which
also handles run-time exceptions, except for SystemExit).
The return value is True in case 2, False in the other cases (unless
an exception is raised). The return value can be used to
decide whether to use sys.ps1 or sys.ps2 to prompt the next
line.
"""
try:
code = self.compile(source, filename, symbol)
except (OverflowError, SyntaxError, ValueError):
# Case 1
self.showsyntaxerror(filename)
return False
if code is None:
# Case 2
return True
# Case 3
self.runcode(code)
return False
def runcode(self, code):
"""Execute a code object.
When an exception occurs, self.showtraceback() is called to
display a traceback. All exceptions are caught except
SystemExit, which is reraised.
A note about KeyboardInterrupt: this exception may occur
elsewhere in this code, and may not always be caught. The
caller should be prepared to deal with it.
"""
try:
exec(code, self.locals)
except SystemExit:
raise
except:
self.showtraceback()
def showsyntaxerror(self, filename=None):
"""Display the syntax error that just occurred.
This doesn't display a stack trace because there isn't one.
If a filename is given, it is stuffed in the exception instead
of what was there before (because Python's parser always uses
"<string>" when reading from a string).
The output is written by self.write(), below.
"""
type, value, tb = sys.exc_info()
sys.last_type = type
sys.last_value = value
sys.last_traceback = tb
if filename and type is SyntaxError:
# Work hard to stuff the correct filename in the exception
try:
msg, (dummy_filename, lineno, offset, line) = value.args
except ValueError:
# Not the format we expect; leave it alone
pass
else:
# Stuff in the right filename
value = SyntaxError(msg, (filename, lineno, offset, line))
sys.last_value = value
if sys.excepthook is sys.__excepthook__:
lines = traceback.format_exception_only(type, value)
self.write(''.join(lines))
else:
# If someone has set sys.excepthook, we let that take precedence
# over self.write
sys.excepthook(type, value, tb)
def showtraceback(self):
"""Display the exception that just occurred.
We remove the first stack item because it is our own code.
The output is written by self.write(), below.
"""
sys.last_type, sys.last_value, last_tb = ei = sys.exc_info()
sys.last_traceback = last_tb
try:
lines = traceback.format_exception(ei[0], ei[1], last_tb.tb_next)
if sys.excepthook is sys.__excepthook__:
self.write(''.join(lines))
else:
# If someone has set sys.excepthook, we let that take precedence
# over self.write
sys.excepthook(ei[0], ei[1], last_tb)
finally:
last_tb = ei = None
def write(self, data):
"""Write a string.
The base implementation writes to sys.stderr; a subclass may
replace this with a different implementation.
"""
sys.stderr.write(data)
class InteractiveConsole(InteractiveInterpreter):
"""Closely emulate the behavior of the interactive Python interpreter.
This class builds on InteractiveInterpreter and adds prompting
using the familiar sys.ps1 and sys.ps2, and input buffering.
"""
def __init__(self, locals=None, filename="<console>"):
"""Constructor.
The optional locals argument will be passed to the
InteractiveInterpreter base class.
The optional filename argument should specify the (file)name
of the input stream; it will show up in tracebacks.
"""
InteractiveInterpreter.__init__(self, locals)
self.filename = filename
self.resetbuffer()
def resetbuffer(self):
"""Reset the input buffer."""
self.buffer = []
def interact(self, banner=None, exitmsg=None):
"""Closely emulate the interactive Python console.
The optional banner argument specifies the banner to print
before the first interaction; by default it prints a banner
similar to the one printed by the real Python interpreter,
followed by the current class name in parentheses (so as not
to confuse this with the real interpreter -- since it's so
close!).
The optional exitmsg argument specifies the exit message
printed when exiting. Pass the empty string to suppress
printing an exit message. If exitmsg is not given or None,
a default message is printed.
"""
try:
sys.ps1
except AttributeError:
sys.ps1 = ">>> "
try:
sys.ps2
except AttributeError:
sys.ps2 = "... "
cprt = 'Type "help", "copyright", "credits" or "license" for more information.'
if banner is None:
self.write("Python %s on %s\n%s\n(%s)\n" %
(sys.version, sys.platform, cprt,
self.__class__.__name__))
elif banner:
self.write("%s\n" % str(banner))
more = 0
while 1:
try:
if more:
prompt = sys.ps2
else:
prompt = sys.ps1
try:
line = self.raw_input(prompt)
except EOFError:
self.write("\n")
break
else:
more = self.push(line)
except KeyboardInterrupt:
self.write("\nKeyboardInterrupt\n")
self.resetbuffer()
more = 0
if exitmsg is None:
self.write('now exiting %s...\n' % self.__class__.__name__)
elif exitmsg != '':
self.write('%s\n' % exitmsg)
def push(self, line):
"""Push a line to the interpreter.
The line should not have a trailing newline; it may have
internal newlines. The line is appended to a buffer and the
interpreter's runsource() method is called with the
concatenated contents of the buffer as source. If this
indicates that the command was executed or invalid, the buffer
is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return
value is 1 if more input is required, 0 if the line was dealt
with in some way (this is the same as runsource()).
"""
self.buffer.append(line)
source = "\n".join(self.buffer)
more = self.runsource(source, self.filename)
if not more:
self.resetbuffer()
return more
def raw_input(self, prompt=""):
"""Write a prompt and read a line.
The returned line does not include the trailing newline.
When the user enters the EOF key sequence, EOFError is raised.
The base implementation uses the built-in function
input(); a subclass may replace this with a different
implementation.
"""
return input(prompt)
def interact(banner=None, readfunc=None, local=None, exitmsg=None):
"""Closely emulate the interactive Python interpreter.
This is a backwards compatible interface to the InteractiveConsole
class. When readfunc is not specified, it attempts to import the
readline module to enable GNU readline if it is available.
Arguments (all optional, all default to None):
banner -- passed to InteractiveConsole.interact()
readfunc -- if not None, replaces InteractiveConsole.raw_input()
local -- passed to InteractiveInterpreter.__init__()
exitmsg -- passed to InteractiveConsole.interact()
"""
console = InteractiveConsole(local)
if readfunc is not None:
console.raw_input = readfunc
else:
try:
import readline
except ImportError:
pass
console.interact(banner, exitmsg)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-q', action='store_true',
help="don't print version and copyright messages")
args = parser.parse_args()
if args.q or sys.flags.quiet:
banner = ''
else:
banner = None
interact(banner)

1113
third_party/python/Lib/codecs.py vendored Normal file

File diff suppressed because it is too large Load diff

168
third_party/python/Lib/codeop.py vendored Normal file
View file

@ -0,0 +1,168 @@
r"""Utilities to compile possibly incomplete Python source code.
This module provides two interfaces, broadly similar to the builtin
function compile(), which take program text, a filename and a 'mode'
and:
- Return code object if the command is complete and valid
- Return None if the command is incomplete
- Raise SyntaxError, ValueError or OverflowError if the command is a
syntax error (OverflowError and ValueError can be produced by
malformed literals).
Approach:
First, check if the source consists entirely of blank lines and
comments; if so, replace it with 'pass', because the built-in
parser doesn't always do the right thing for these.
Compile three times: as is, with \n, and with \n\n appended. If it
compiles as is, it's complete. If it compiles with one \n appended,
we expect more. If it doesn't compile either way, we compare the
error we get when compiling with \n or \n\n appended. If the errors
are the same, the code is broken. But if the errors are different, we
expect more. Not intuitive; not even guaranteed to hold in future
releases; but this matches the compiler's behavior from Python 1.4
through 2.2, at least.
Caveat:
It is possible (but not likely) that the parser stops parsing with a
successful outcome before reaching the end of the source; in this
case, trailing symbols may be ignored instead of causing an error.
For example, a backslash followed by two newlines may be followed by
arbitrary garbage. This will be fixed once the API for the parser is
better.
The two interfaces are:
compile_command(source, filename, symbol):
Compiles a single command in the manner described above.
CommandCompiler():
Instances of this class have __call__ methods identical in
signature to compile_command; the difference is that if the
instance compiles program text containing a __future__ statement,
the instance 'remembers' and compiles all subsequent program texts
with the statement in force.
The module also provides another class:
Compile():
Instances of this class act like the built-in function compile,
but with 'memory' in the sense described above.
"""
import __future__
_features = [getattr(__future__, fname)
for fname in __future__.all_feature_names]
__all__ = ["compile_command", "Compile", "CommandCompiler"]
PyCF_DONT_IMPLY_DEDENT = 0x200 # Matches pythonrun.h
def _maybe_compile(compiler, source, filename, symbol):
# Check for source consisting of only blank lines and comments
for line in source.split("\n"):
line = line.strip()
if line and line[0] != '#':
break # Leave it alone
else:
if symbol != "eval":
source = "pass" # Replace it with a 'pass' statement
err = err1 = err2 = None
code = code1 = code2 = None
try:
code = compiler(source, filename, symbol)
except SyntaxError as err:
pass
try:
code1 = compiler(source + "\n", filename, symbol)
except SyntaxError as e:
err1 = e
try:
code2 = compiler(source + "\n\n", filename, symbol)
except SyntaxError as e:
err2 = e
if code:
return code
if not code1 and repr(err1) == repr(err2):
raise err1
def _compile(source, filename, symbol):
return compile(source, filename, symbol, PyCF_DONT_IMPLY_DEDENT)
def compile_command(source, filename="<input>", symbol="single"):
r"""Compile a command and determine whether it is incomplete.
Arguments:
source -- the source string; may contain \n characters
filename -- optional filename from which source was read; default
"<input>"
symbol -- optional grammar start symbol; "single" (default) or "eval"
Return value / exceptions raised:
- Return a code object if the command is complete and valid
- Return None if the command is incomplete
- Raise SyntaxError, ValueError or OverflowError if the command is a
syntax error (OverflowError and ValueError can be produced by
malformed literals).
"""
return _maybe_compile(_compile, source, filename, symbol)
class Compile:
"""Instances of this class behave much like the built-in compile
function, but if one is used to compile text containing a future
statement, it "remembers" and compiles all subsequent program texts
with the statement in force."""
def __init__(self):
self.flags = PyCF_DONT_IMPLY_DEDENT
def __call__(self, source, filename, symbol):
codeob = compile(source, filename, symbol, self.flags, 1)
for feature in _features:
if codeob.co_flags & feature.compiler_flag:
self.flags |= feature.compiler_flag
return codeob
class CommandCompiler:
"""Instances of this class have __call__ methods identical in
signature to compile_command; the difference is that if the
instance compiles program text containing a __future__ statement,
the instance 'remembers' and compiles all subsequent program texts
with the statement in force."""
def __init__(self,):
self.compiler = Compile()
def __call__(self, source, filename="<input>", symbol="single"):
r"""Compile a command and determine whether it is incomplete.
Arguments:
source -- the source string; may contain \n characters
filename -- optional filename from which source was read;
default "<input>"
symbol -- optional grammar start symbol; "single" (default) or
"eval"
Return value / exceptions raised:
- Return a code object if the command is complete and valid
- Return None if the command is incomplete
- Raise SyntaxError, ValueError or OverflowError if the command is a
syntax error (OverflowError and ValueError can be produced by
malformed literals).
"""
return _maybe_compile(self.compiler, source, filename, symbol)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,2 @@
from _collections_abc import *
from _collections_abc import __all__

164
third_party/python/Lib/colorsys.py vendored Normal file
View file

@ -0,0 +1,164 @@
"""Conversion functions between RGB and other color systems.
This modules provides two functions for each color system ABC:
rgb_to_abc(r, g, b) --> a, b, c
abc_to_rgb(a, b, c) --> r, g, b
All inputs and outputs are triples of floats in the range [0.0...1.0]
(with the exception of I and Q, which covers a slightly larger range).
Inputs outside the valid range may cause exceptions or invalid outputs.
Supported color systems:
RGB: Red, Green, Blue components
YIQ: Luminance, Chrominance (used by composite video signals)
HLS: Hue, Luminance, Saturation
HSV: Hue, Saturation, Value
"""
# References:
# http://en.wikipedia.org/wiki/YIQ
# http://en.wikipedia.org/wiki/HLS_color_space
# http://en.wikipedia.org/wiki/HSV_color_space
__all__ = ["rgb_to_yiq","yiq_to_rgb","rgb_to_hls","hls_to_rgb",
"rgb_to_hsv","hsv_to_rgb"]
# Some floating point constants
ONE_THIRD = 1.0/3.0
ONE_SIXTH = 1.0/6.0
TWO_THIRD = 2.0/3.0
# YIQ: used by composite video signals (linear combinations of RGB)
# Y: perceived grey level (0.0 == black, 1.0 == white)
# I, Q: color components
#
# There are a great many versions of the constants used in these formulae.
# The ones in this library uses constants from the FCC version of NTSC.
def rgb_to_yiq(r, g, b):
y = 0.30*r + 0.59*g + 0.11*b
i = 0.74*(r-y) - 0.27*(b-y)
q = 0.48*(r-y) + 0.41*(b-y)
return (y, i, q)
def yiq_to_rgb(y, i, q):
# r = y + (0.27*q + 0.41*i) / (0.74*0.41 + 0.27*0.48)
# b = y + (0.74*q - 0.48*i) / (0.74*0.41 + 0.27*0.48)
# g = y - (0.30*(r-y) + 0.11*(b-y)) / 0.59
r = y + 0.9468822170900693*i + 0.6235565819861433*q
g = y - 0.27478764629897834*i - 0.6356910791873801*q
b = y - 1.1085450346420322*i + 1.7090069284064666*q
if r < 0.0:
r = 0.0
if g < 0.0:
g = 0.0
if b < 0.0:
b = 0.0
if r > 1.0:
r = 1.0
if g > 1.0:
g = 1.0
if b > 1.0:
b = 1.0
return (r, g, b)
# HLS: Hue, Luminance, Saturation
# H: position in the spectrum
# L: color lightness
# S: color saturation
def rgb_to_hls(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
# XXX Can optimize (maxc+minc) and (maxc-minc)
l = (minc+maxc)/2.0
if minc == maxc:
return 0.0, l, 0.0
if l <= 0.5:
s = (maxc-minc) / (maxc+minc)
else:
s = (maxc-minc) / (2.0-maxc-minc)
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc:
h = bc-gc
elif g == maxc:
h = 2.0+rc-bc
else:
h = 4.0+gc-rc
h = (h/6.0) % 1.0
return h, l, s
def hls_to_rgb(h, l, s):
if s == 0.0:
return l, l, l
if l <= 0.5:
m2 = l * (1.0+s)
else:
m2 = l+s-(l*s)
m1 = 2.0*l - m2
return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD))
def _v(m1, m2, hue):
hue = hue % 1.0
if hue < ONE_SIXTH:
return m1 + (m2-m1)*hue*6.0
if hue < 0.5:
return m2
if hue < TWO_THIRD:
return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0
return m1
# HSV: Hue, Saturation, Value
# H: position in the spectrum
# S: color saturation ("purity")
# V: color brightness
def rgb_to_hsv(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
v = maxc
if minc == maxc:
return 0.0, 0.0, v
s = (maxc-minc) / maxc
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc:
h = bc-gc
elif g == maxc:
h = 2.0+rc-bc
else:
h = 4.0+gc-rc
h = (h/6.0) % 1.0
return h, s, v
def hsv_to_rgb(h, s, v):
if s == 0.0:
return v, v, v
i = int(h*6.0) # XXX assume int() truncates!
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
i = i%6
if i == 0:
return v, t, p
if i == 1:
return q, v, p
if i == 2:
return p, v, t
if i == 3:
return p, q, v
if i == 4:
return t, p, v
if i == 5:
return v, p, q
# Cannot get here

299
third_party/python/Lib/compileall.py vendored Normal file
View file

@ -0,0 +1,299 @@
"""Module/script to byte-compile all .py files to .pyc files.
When called as a script with arguments, this compiles the directories
given as arguments recursively; the -l option prevents it from
recursing into directories.
Without arguments, if compiles all modules on sys.path, without
recursing into subdirectories. (Even though it should do so for
packages -- for now, you'll have to deal with packages separately.)
See module py_compile for details of the actual byte-compilation.
"""
import os
import sys
import importlib.util
import py_compile
import struct
from functools import partial
__all__ = ["compile_dir","compile_file","compile_path"]
def _walk_dir(dir, ddir=None, maxlevels=10, quiet=0):
if quiet < 2 and isinstance(dir, os.PathLike):
dir = os.fspath(dir)
if not quiet:
print('Listing {!r}...'.format(dir))
try:
names = os.listdir(dir)
except OSError:
if quiet < 2:
print("Can't list {!r}".format(dir))
names = []
names.sort()
for name in names:
if name == '__pycache__':
continue
fullname = os.path.join(dir, name)
if ddir is not None:
dfile = os.path.join(ddir, name)
else:
dfile = None
if not os.path.isdir(fullname):
yield fullname
elif (maxlevels > 0 and name != os.curdir and name != os.pardir and
os.path.isdir(fullname) and not os.path.islink(fullname)):
yield from _walk_dir(fullname, ddir=dfile,
maxlevels=maxlevels - 1, quiet=quiet)
def compile_dir(dir, maxlevels=10, ddir=None, force=False, rx=None,
quiet=0, legacy=False, optimize=-1, workers=1):
"""Byte-compile all modules in the given directory tree.
Arguments (only dir is required):
dir: the directory to byte-compile
maxlevels: maximum recursion level (default 10)
ddir: the directory that will be prepended to the path to the
file as it is compiled into each byte-code file.
force: if True, force compilation, even if timestamps are up-to-date
quiet: full output with False or 0, errors only with 1,
no output with 2
legacy: if True, produce legacy pyc paths instead of PEP 3147 paths
optimize: optimization level or -1 for level of the interpreter
workers: maximum number of parallel workers
"""
ProcessPoolExecutor = None
if workers is not None:
if workers < 0:
raise ValueError('workers must be greater or equal to 0')
elif workers != 1:
try:
# Only import when needed, as low resource platforms may
# fail to import it
from concurrent.futures import ProcessPoolExecutor
except ImportError:
workers = 1
files = _walk_dir(dir, quiet=quiet, maxlevels=maxlevels,
ddir=ddir)
success = True
if workers is not None and workers != 1 and ProcessPoolExecutor is not None:
workers = workers or None
with ProcessPoolExecutor(max_workers=workers) as executor:
results = executor.map(partial(compile_file,
ddir=ddir, force=force,
rx=rx, quiet=quiet,
legacy=legacy,
optimize=optimize),
files)
success = min(results, default=True)
else:
for file in files:
if not compile_file(file, ddir, force, rx, quiet,
legacy, optimize):
success = False
return success
def compile_file(fullname, ddir=None, force=False, rx=None, quiet=0,
legacy=False, optimize=-1):
"""Byte-compile one file.
Arguments (only fullname is required):
fullname: the file to byte-compile
ddir: if given, the directory name compiled in to the
byte-code file.
force: if True, force compilation, even if timestamps are up-to-date
quiet: full output with False or 0, errors only with 1,
no output with 2
legacy: if True, produce legacy pyc paths instead of PEP 3147 paths
optimize: optimization level or -1 for level of the interpreter
"""
success = True
if quiet < 2 and isinstance(fullname, os.PathLike):
fullname = os.fspath(fullname)
name = os.path.basename(fullname)
if ddir is not None:
dfile = os.path.join(ddir, name)
else:
dfile = None
if rx is not None:
mo = rx.search(fullname)
if mo:
return success
if os.path.isfile(fullname):
if legacy:
cfile = fullname + 'c'
else:
if optimize >= 0:
opt = optimize if optimize >= 1 else ''
cfile = importlib.util.cache_from_source(
fullname, optimization=opt)
else:
cfile = importlib.util.cache_from_source(fullname)
cache_dir = os.path.dirname(cfile)
head, tail = name[:-3], name[-3:]
if tail == '.py':
if not force:
try:
mtime = int(os.stat(fullname).st_mtime)
expect = struct.pack('<4sl', importlib.util.MAGIC_NUMBER,
mtime)
with open(cfile, 'rb') as chandle:
actual = chandle.read(8)
if expect == actual:
return success
except OSError:
pass
if not quiet:
print('Compiling {!r}...'.format(fullname))
try:
ok = py_compile.compile(fullname, cfile, dfile, True,
optimize=optimize)
except py_compile.PyCompileError as err:
success = False
if quiet >= 2:
return success
elif quiet:
print('*** Error compiling {!r}...'.format(fullname))
else:
print('*** ', end='')
# escape non-printable characters in msg
msg = err.msg.encode(sys.stdout.encoding,
errors='backslashreplace')
msg = msg.decode(sys.stdout.encoding)
print(msg)
except (SyntaxError, UnicodeError, OSError) as e:
success = False
if quiet >= 2:
return success
elif quiet:
print('*** Error compiling {!r}...'.format(fullname))
else:
print('*** ', end='')
print(e.__class__.__name__ + ':', e)
else:
if ok == 0:
success = False
return success
def compile_path(skip_curdir=1, maxlevels=0, force=False, quiet=0,
legacy=False, optimize=-1):
"""Byte-compile all module on sys.path.
Arguments (all optional):
skip_curdir: if true, skip current directory (default True)
maxlevels: max recursion level (default 0)
force: as for compile_dir() (default False)
quiet: as for compile_dir() (default 0)
legacy: as for compile_dir() (default False)
optimize: as for compile_dir() (default -1)
"""
success = True
for dir in sys.path:
if (not dir or dir == os.curdir) and skip_curdir:
if quiet < 2:
print('Skipping current directory')
else:
success = success and compile_dir(dir, maxlevels, None,
force, quiet=quiet,
legacy=legacy, optimize=optimize)
return success
def main():
"""Script main program."""
import argparse
parser = argparse.ArgumentParser(
description='Utilities to support installing Python libraries.')
parser.add_argument('-l', action='store_const', const=0,
default=10, dest='maxlevels',
help="don't recurse into subdirectories")
parser.add_argument('-r', type=int, dest='recursion',
help=('control the maximum recursion level. '
'if `-l` and `-r` options are specified, '
'then `-r` takes precedence.'))
parser.add_argument('-f', action='store_true', dest='force',
help='force rebuild even if timestamps are up to date')
parser.add_argument('-q', action='count', dest='quiet', default=0,
help='output only error messages; -qq will suppress '
'the error messages as well.')
parser.add_argument('-b', action='store_true', dest='legacy',
help='use legacy (pre-PEP3147) compiled file locations')
parser.add_argument('-d', metavar='DESTDIR', dest='ddir', default=None,
help=('directory to prepend to file paths for use in '
'compile-time tracebacks and in runtime '
'tracebacks in cases where the source file is '
'unavailable'))
parser.add_argument('-x', metavar='REGEXP', dest='rx', default=None,
help=('skip files matching the regular expression; '
'the regexp is searched for in the full path '
'of each file considered for compilation'))
parser.add_argument('-i', metavar='FILE', dest='flist',
help=('add all the files and directories listed in '
'FILE to the list considered for compilation; '
'if "-", names are read from stdin'))
parser.add_argument('compile_dest', metavar='FILE|DIR', nargs='*',
help=('zero or more file and directory names '
'to compile; if no arguments given, defaults '
'to the equivalent of -l sys.path'))
parser.add_argument('-j', '--workers', default=1,
type=int, help='Run compileall concurrently')
args = parser.parse_args()
compile_dests = args.compile_dest
if args.rx:
import re
args.rx = re.compile(args.rx)
if args.recursion is not None:
maxlevels = args.recursion
else:
maxlevels = args.maxlevels
# if flist is provided then load it
if args.flist:
try:
with (sys.stdin if args.flist=='-' else open(args.flist)) as f:
for line in f:
compile_dests.append(line.strip())
except OSError:
if args.quiet < 2:
print("Error reading file list {}".format(args.flist))
return False
if args.workers is not None:
args.workers = args.workers or None
success = True
try:
if compile_dests:
for dest in compile_dests:
if os.path.isfile(dest):
if not compile_file(dest, args.ddir, args.force, args.rx,
args.quiet, args.legacy):
success = False
else:
if not compile_dir(dest, maxlevels, args.ddir,
args.force, args.rx, args.quiet,
args.legacy, workers=args.workers):
success = False
return success
else:
return compile_path(legacy=args.legacy, force=args.force,
quiet=args.quiet)
except KeyboardInterrupt:
if args.quiet < 2:
print("\n[interrupted]")
return False
return True
if __name__ == '__main__':
exit_status = int(not main())
sys.exit(exit_status)

View file

@ -0,0 +1 @@
# This directory is a Python package.

View file

@ -0,0 +1,18 @@
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Execute computations asynchronously using threads or processes."""
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
from concurrent.futures._base import (FIRST_COMPLETED,
FIRST_EXCEPTION,
ALL_COMPLETED,
CancelledError,
TimeoutError,
Future,
Executor,
wait,
as_completed)
from concurrent.futures.process import ProcessPoolExecutor
from concurrent.futures.thread import ThreadPoolExecutor

View file

@ -0,0 +1,612 @@
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
import collections
import logging
import threading
import time
FIRST_COMPLETED = 'FIRST_COMPLETED'
FIRST_EXCEPTION = 'FIRST_EXCEPTION'
ALL_COMPLETED = 'ALL_COMPLETED'
_AS_COMPLETED = '_AS_COMPLETED'
# Possible future states (for internal use by the futures package).
PENDING = 'PENDING'
RUNNING = 'RUNNING'
# The future was cancelled by the user...
CANCELLED = 'CANCELLED'
# ...and _Waiter.add_cancelled() was called by a worker.
CANCELLED_AND_NOTIFIED = 'CANCELLED_AND_NOTIFIED'
FINISHED = 'FINISHED'
_FUTURE_STATES = [
PENDING,
RUNNING,
CANCELLED,
CANCELLED_AND_NOTIFIED,
FINISHED
]
_STATE_TO_DESCRIPTION_MAP = {
PENDING: "pending",
RUNNING: "running",
CANCELLED: "cancelled",
CANCELLED_AND_NOTIFIED: "cancelled",
FINISHED: "finished"
}
# Logger for internal use by the futures package.
LOGGER = logging.getLogger("concurrent.futures")
class Error(Exception):
"""Base class for all future-related exceptions."""
pass
class CancelledError(Error):
"""The Future was cancelled."""
pass
class TimeoutError(Error):
"""The operation exceeded the given deadline."""
pass
class _Waiter(object):
"""Provides the event that wait() and as_completed() block on."""
def __init__(self):
self.event = threading.Event()
self.finished_futures = []
def add_result(self, future):
self.finished_futures.append(future)
def add_exception(self, future):
self.finished_futures.append(future)
def add_cancelled(self, future):
self.finished_futures.append(future)
class _AsCompletedWaiter(_Waiter):
"""Used by as_completed()."""
def __init__(self):
super(_AsCompletedWaiter, self).__init__()
self.lock = threading.Lock()
def add_result(self, future):
with self.lock:
super(_AsCompletedWaiter, self).add_result(future)
self.event.set()
def add_exception(self, future):
with self.lock:
super(_AsCompletedWaiter, self).add_exception(future)
self.event.set()
def add_cancelled(self, future):
with self.lock:
super(_AsCompletedWaiter, self).add_cancelled(future)
self.event.set()
class _FirstCompletedWaiter(_Waiter):
"""Used by wait(return_when=FIRST_COMPLETED)."""
def add_result(self, future):
super().add_result(future)
self.event.set()
def add_exception(self, future):
super().add_exception(future)
self.event.set()
def add_cancelled(self, future):
super().add_cancelled(future)
self.event.set()
class _AllCompletedWaiter(_Waiter):
"""Used by wait(return_when=FIRST_EXCEPTION and ALL_COMPLETED)."""
def __init__(self, num_pending_calls, stop_on_exception):
self.num_pending_calls = num_pending_calls
self.stop_on_exception = stop_on_exception
self.lock = threading.Lock()
super().__init__()
def _decrement_pending_calls(self):
with self.lock:
self.num_pending_calls -= 1
if not self.num_pending_calls:
self.event.set()
def add_result(self, future):
super().add_result(future)
self._decrement_pending_calls()
def add_exception(self, future):
super().add_exception(future)
if self.stop_on_exception:
self.event.set()
else:
self._decrement_pending_calls()
def add_cancelled(self, future):
super().add_cancelled(future)
self._decrement_pending_calls()
class _AcquireFutures(object):
"""A context manager that does an ordered acquire of Future conditions."""
def __init__(self, futures):
self.futures = sorted(futures, key=id)
def __enter__(self):
for future in self.futures:
future._condition.acquire()
def __exit__(self, *args):
for future in self.futures:
future._condition.release()
def _create_and_install_waiters(fs, return_when):
if return_when == _AS_COMPLETED:
waiter = _AsCompletedWaiter()
elif return_when == FIRST_COMPLETED:
waiter = _FirstCompletedWaiter()
else:
pending_count = sum(
f._state not in [CANCELLED_AND_NOTIFIED, FINISHED] for f in fs)
if return_when == FIRST_EXCEPTION:
waiter = _AllCompletedWaiter(pending_count, stop_on_exception=True)
elif return_when == ALL_COMPLETED:
waiter = _AllCompletedWaiter(pending_count, stop_on_exception=False)
else:
raise ValueError("Invalid return condition: %r" % return_when)
for f in fs:
f._waiters.append(waiter)
return waiter
def _yield_finished_futures(fs, waiter, ref_collect):
"""
Iterate on the list *fs*, yielding finished futures one by one in
reverse order.
Before yielding a future, *waiter* is removed from its waiters
and the future is removed from each set in the collection of sets
*ref_collect*.
The aim of this function is to avoid keeping stale references after
the future is yielded and before the iterator resumes.
"""
while fs:
f = fs[-1]
for futures_set in ref_collect:
futures_set.remove(f)
with f._condition:
f._waiters.remove(waiter)
del f
# Careful not to keep a reference to the popped value
yield fs.pop()
def as_completed(fs, timeout=None):
"""An iterator over the given futures that yields each as it completes.
Args:
fs: The sequence of Futures (possibly created by different Executors) to
iterate over.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time.
Returns:
An iterator that yields the given Futures as they complete (finished or
cancelled). If any given Futures are duplicated, they will be returned
once.
Raises:
TimeoutError: If the entire result iterator could not be generated
before the given timeout.
"""
if timeout is not None:
end_time = timeout + time.monotonic()
fs = set(fs)
total_futures = len(fs)
with _AcquireFutures(fs):
finished = set(
f for f in fs
if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
pending = fs - finished
waiter = _create_and_install_waiters(fs, _AS_COMPLETED)
finished = list(finished)
try:
yield from _yield_finished_futures(finished, waiter,
ref_collect=(fs,))
while pending:
if timeout is None:
wait_timeout = None
else:
wait_timeout = end_time - time.monotonic()
if wait_timeout < 0:
raise TimeoutError(
'%d (of %d) futures unfinished' % (
len(pending), total_futures))
waiter.event.wait(wait_timeout)
with waiter.lock:
finished = waiter.finished_futures
waiter.finished_futures = []
waiter.event.clear()
# reverse to keep finishing order
finished.reverse()
yield from _yield_finished_futures(finished, waiter,
ref_collect=(fs, pending))
finally:
# Remove waiter from unfinished futures
for f in fs:
with f._condition:
f._waiters.remove(waiter)
DoneAndNotDoneFutures = collections.namedtuple(
'DoneAndNotDoneFutures', 'done not_done')
def wait(fs, timeout=None, return_when=ALL_COMPLETED):
"""Wait for the futures in the given sequence to complete.
Args:
fs: The sequence of Futures (possibly created by different Executors) to
wait upon.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time.
return_when: Indicates when this function should return. The options
are:
FIRST_COMPLETED - Return when any future finishes or is
cancelled.
FIRST_EXCEPTION - Return when any future finishes by raising an
exception. If no future raises an exception
then it is equivalent to ALL_COMPLETED.
ALL_COMPLETED - Return when all futures finish or are cancelled.
Returns:
A named 2-tuple of sets. The first set, named 'done', contains the
futures that completed (is finished or cancelled) before the wait
completed. The second set, named 'not_done', contains uncompleted
futures.
"""
with _AcquireFutures(fs):
done = set(f for f in fs
if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
not_done = set(fs) - done
if (return_when == FIRST_COMPLETED) and done:
return DoneAndNotDoneFutures(done, not_done)
elif (return_when == FIRST_EXCEPTION) and done:
if any(f for f in done
if not f.cancelled() and f.exception() is not None):
return DoneAndNotDoneFutures(done, not_done)
if len(done) == len(fs):
return DoneAndNotDoneFutures(done, not_done)
waiter = _create_and_install_waiters(fs, return_when)
waiter.event.wait(timeout)
for f in fs:
with f._condition:
f._waiters.remove(waiter)
done.update(waiter.finished_futures)
return DoneAndNotDoneFutures(done, set(fs) - done)
class Future(object):
"""Represents the result of an asynchronous computation."""
def __init__(self):
"""Initializes the future. Should not be called by clients."""
self._condition = threading.Condition()
self._state = PENDING
self._result = None
self._exception = None
self._waiters = []
self._done_callbacks = []
def _invoke_callbacks(self):
for callback in self._done_callbacks:
try:
callback(self)
except Exception:
LOGGER.exception('exception calling callback for %r', self)
def __repr__(self):
with self._condition:
if self._state == FINISHED:
if self._exception:
return '<%s at %#x state=%s raised %s>' % (
self.__class__.__name__,
id(self),
_STATE_TO_DESCRIPTION_MAP[self._state],
self._exception.__class__.__name__)
else:
return '<%s at %#x state=%s returned %s>' % (
self.__class__.__name__,
id(self),
_STATE_TO_DESCRIPTION_MAP[self._state],
self._result.__class__.__name__)
return '<%s at %#x state=%s>' % (
self.__class__.__name__,
id(self),
_STATE_TO_DESCRIPTION_MAP[self._state])
def cancel(self):
"""Cancel the future if possible.
Returns True if the future was cancelled, False otherwise. A future
cannot be cancelled if it is running or has already completed.
"""
with self._condition:
if self._state in [RUNNING, FINISHED]:
return False
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
return True
self._state = CANCELLED
self._condition.notify_all()
self._invoke_callbacks()
return True
def cancelled(self):
"""Return True if the future was cancelled."""
with self._condition:
return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]
def running(self):
"""Return True if the future is currently executing."""
with self._condition:
return self._state == RUNNING
def done(self):
"""Return True of the future was cancelled or finished executing."""
with self._condition:
return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]
def __get_result(self):
if self._exception:
raise self._exception
else:
return self._result
def add_done_callback(self, fn):
"""Attaches a callable that will be called when the future finishes.
Args:
fn: A callable that will be called with this future as its only
argument when the future completes or is cancelled. The callable
will always be called by a thread in the same process in which
it was added. If the future has already completed or been
cancelled then the callable will be called immediately. These
callables are called in the order that they were added.
"""
with self._condition:
if self._state not in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]:
self._done_callbacks.append(fn)
return
fn(self)
def result(self, timeout=None):
"""Return the result of the call that the future represents.
Args:
timeout: The number of seconds to wait for the result if the future
isn't done. If None, then there is no limit on the wait time.
Returns:
The result of the call that the future represents.
Raises:
CancelledError: If the future was cancelled.
TimeoutError: If the future didn't finish executing before the given
timeout.
Exception: If the call raised then that exception will be raised.
"""
with self._condition:
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
raise CancelledError()
elif self._state == FINISHED:
return self.__get_result()
self._condition.wait(timeout)
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
raise CancelledError()
elif self._state == FINISHED:
return self.__get_result()
else:
raise TimeoutError()
def exception(self, timeout=None):
"""Return the exception raised by the call that the future represents.
Args:
timeout: The number of seconds to wait for the exception if the
future isn't done. If None, then there is no limit on the wait
time.
Returns:
The exception raised by the call that the future represents or None
if the call completed without raising.
Raises:
CancelledError: If the future was cancelled.
TimeoutError: If the future didn't finish executing before the given
timeout.
"""
with self._condition:
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
raise CancelledError()
elif self._state == FINISHED:
return self._exception
self._condition.wait(timeout)
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
raise CancelledError()
elif self._state == FINISHED:
return self._exception
else:
raise TimeoutError()
# The following methods should only be used by Executors and in tests.
def set_running_or_notify_cancel(self):
"""Mark the future as running or process any cancel notifications.
Should only be used by Executor implementations and unit tests.
If the future has been cancelled (cancel() was called and returned
True) then any threads waiting on the future completing (though calls
to as_completed() or wait()) are notified and False is returned.
If the future was not cancelled then it is put in the running state
(future calls to running() will return True) and True is returned.
This method should be called by Executor implementations before
executing the work associated with this future. If this method returns
False then the work should not be executed.
Returns:
False if the Future was cancelled, True otherwise.
Raises:
RuntimeError: if this method was already called or if set_result()
or set_exception() was called.
"""
with self._condition:
if self._state == CANCELLED:
self._state = CANCELLED_AND_NOTIFIED
for waiter in self._waiters:
waiter.add_cancelled(self)
# self._condition.notify_all() is not necessary because
# self.cancel() triggers a notification.
return False
elif self._state == PENDING:
self._state = RUNNING
return True
else:
LOGGER.critical('Future %s in unexpected state: %s',
id(self),
self._state)
raise RuntimeError('Future in unexpected state')
def set_result(self, result):
"""Sets the return value of work associated with the future.
Should only be used by Executor implementations and unit tests.
"""
with self._condition:
self._result = result
self._state = FINISHED
for waiter in self._waiters:
waiter.add_result(self)
self._condition.notify_all()
self._invoke_callbacks()
def set_exception(self, exception):
"""Sets the result of the future as being the given exception.
Should only be used by Executor implementations and unit tests.
"""
with self._condition:
self._exception = exception
self._state = FINISHED
for waiter in self._waiters:
waiter.add_exception(self)
self._condition.notify_all()
self._invoke_callbacks()
class Executor(object):
"""This is an abstract base class for concrete asynchronous executors."""
def submit(self, fn, *args, **kwargs):
"""Submits a callable to be executed with the given arguments.
Schedules the callable to be executed as fn(*args, **kwargs) and returns
a Future instance representing the execution of the callable.
Returns:
A Future representing the given call.
"""
raise NotImplementedError()
def map(self, fn, *iterables, timeout=None, chunksize=1):
"""Returns an iterator equivalent to map(fn, iter).
Args:
fn: A callable that will take as many arguments as there are
passed iterables.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time.
chunksize: The size of the chunks the iterable will be broken into
before being passed to a child process. This argument is only
used by ProcessPoolExecutor; it is ignored by
ThreadPoolExecutor.
Returns:
An iterator equivalent to: map(func, *iterables) but the calls may
be evaluated out-of-order.
Raises:
TimeoutError: If the entire result iterator could not be generated
before the given timeout.
Exception: If fn(*args) raises for any values.
"""
if timeout is not None:
end_time = timeout + time.monotonic()
fs = [self.submit(fn, *args) for args in zip(*iterables)]
# Yield must be hidden in closure so that the futures are submitted
# before the first iterator value is required.
def result_iterator():
try:
# reverse to keep finishing order
fs.reverse()
while fs:
# Careful not to keep a reference to the popped future
if timeout is None:
yield fs.pop().result()
else:
yield fs.pop().result(end_time - time.monotonic())
finally:
for future in fs:
future.cancel()
return result_iterator()
def shutdown(self, wait=True):
"""Clean-up the resources associated with the Executor.
It is safe to call this method several times. Otherwise, no other
methods can be called after this one.
Args:
wait: If True then shutdown will not return until all running
futures have finished executing and the resources used by the
executor have been reclaimed.
"""
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.shutdown(wait=True)
return False

View file

@ -0,0 +1,515 @@
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Implements ProcessPoolExecutor.
The follow diagram and text describe the data-flow through the system:
|======================= In-process =====================|== Out-of-process ==|
+----------+ +----------+ +--------+ +-----------+ +---------+
| | => | Work Ids | => | | => | Call Q | => | |
| | +----------+ | | +-----------+ | |
| | | ... | | | | ... | | |
| | | 6 | | | | 5, call() | | |
| | | 7 | | | | ... | | |
| Process | | ... | | Local | +-----------+ | Process |
| Pool | +----------+ | Worker | | #1..n |
| Executor | | Thread | | |
| | +----------- + | | +-----------+ | |
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
| | +------------+ | | +-----------+ | |
| | | 6: call() | | | | ... | | |
| | | future | | | | 4, result | | |
| | | ... | | | | 3, except | | |
+----------+ +------------+ +--------+ +-----------+ +---------+
Executor.submit() called:
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
- adds the id of the _WorkItem to the "Work Ids" queue
Local worker thread:
- reads work ids from the "Work Ids" queue and looks up the corresponding
WorkItem from the "Work Items" dict: if the work item has been cancelled then
it is simply removed from the dict, otherwise it is repackaged as a
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
- reads _ResultItems from "Result Q", updates the future stored in the
"Work Items" dict and deletes the dict entry
Process #1..n:
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
_ResultItems in "Result Q"
"""
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
import atexit
import os
from concurrent.futures import _base
import queue
from queue import Full
import multiprocessing
from multiprocessing import SimpleQueue
from multiprocessing.connection import wait
import threading
import weakref
from functools import partial
import itertools
import traceback
# Workers are created as daemon threads and processes. This is done to allow the
# interpreter to exit when there are still idle processes in a
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
# allowing workers to die with the interpreter has two undesirable properties:
# - The workers would still be running during interpreter shutdown,
# meaning that they would fail in unpredictable ways.
# - The workers could be killed while evaluating a work item, which could
# be bad if the callable being evaluated has external side-effects e.g.
# writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads/processes finish.
_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False
def _python_exit():
global _shutdown
_shutdown = True
items = list(_threads_queues.items())
for t, q in items:
q.put(None)
for t, q in items:
t.join()
# Controls how many more calls than processes will be queued in the call queue.
# A smaller number will mean that processes spend more time idle waiting for
# work while a larger number will make Future.cancel() succeed less frequently
# (Futures in the call queue cannot be cancelled).
EXTRA_QUEUED_CALLS = 1
# Hack to embed stringification of remote traceback in local traceback
class _RemoteTraceback(Exception):
def __init__(self, tb):
self.tb = tb
def __str__(self):
return self.tb
class _ExceptionWithTraceback:
def __init__(self, exc, tb):
tb = traceback.format_exception(type(exc), exc, tb)
tb = ''.join(tb)
self.exc = exc
self.tb = '\n"""\n%s"""' % tb
def __reduce__(self):
return _rebuild_exc, (self.exc, self.tb)
def _rebuild_exc(exc, tb):
exc.__cause__ = _RemoteTraceback(tb)
return exc
class _WorkItem(object):
def __init__(self, future, fn, args, kwargs):
self.future = future
self.fn = fn
self.args = args
self.kwargs = kwargs
class _ResultItem(object):
def __init__(self, work_id, exception=None, result=None):
self.work_id = work_id
self.exception = exception
self.result = result
class _CallItem(object):
def __init__(self, work_id, fn, args, kwargs):
self.work_id = work_id
self.fn = fn
self.args = args
self.kwargs = kwargs
def _get_chunks(*iterables, chunksize):
""" Iterates over zip()ed iterables in chunks. """
it = zip(*iterables)
while True:
chunk = tuple(itertools.islice(it, chunksize))
if not chunk:
return
yield chunk
def _process_chunk(fn, chunk):
""" Processes a chunk of an iterable passed to map.
Runs the function passed to map() on a chunk of the
iterable passed to map.
This function is run in a separate process.
"""
return [fn(*args) for args in chunk]
def _process_worker(call_queue, result_queue):
"""Evaluates calls from call_queue and places the results in result_queue.
This worker is run in a separate process.
Args:
call_queue: A multiprocessing.Queue of _CallItems that will be read and
evaluated by the worker.
result_queue: A multiprocessing.Queue of _ResultItems that will written
to by the worker.
shutdown: A multiprocessing.Event that will be set as a signal to the
worker that it should exit when call_queue is empty.
"""
while True:
call_item = call_queue.get(block=True)
if call_item is None:
# Wake up queue management thread
result_queue.put(os.getpid())
return
try:
r = call_item.fn(*call_item.args, **call_item.kwargs)
except BaseException as e:
exc = _ExceptionWithTraceback(e, e.__traceback__)
result_queue.put(_ResultItem(call_item.work_id, exception=exc))
else:
result_queue.put(_ResultItem(call_item.work_id,
result=r))
def _add_call_item_to_queue(pending_work_items,
work_ids,
call_queue):
"""Fills call_queue with _WorkItems from pending_work_items.
This function never blocks.
Args:
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
are consumed and the corresponding _WorkItems from
pending_work_items are transformed into _CallItems and put in
call_queue.
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems.
"""
while True:
if call_queue.full():
return
try:
work_id = work_ids.get(block=False)
except queue.Empty:
return
else:
work_item = pending_work_items[work_id]
if work_item.future.set_running_or_notify_cancel():
call_queue.put(_CallItem(work_id,
work_item.fn,
work_item.args,
work_item.kwargs),
block=True)
else:
del pending_work_items[work_id]
continue
def _queue_management_worker(executor_reference,
processes,
pending_work_items,
work_ids_queue,
call_queue,
result_queue):
"""Manages the communication between this process and the worker processes.
This function is run in a local thread.
Args:
executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
this thread. Used to determine if the ProcessPoolExecutor has been
garbage collected and that this function can exit.
process: A list of the multiprocessing.Process instances used as
workers.
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems for processing by the process workers.
result_queue: A multiprocessing.Queue of _ResultItems generated by the
process workers.
"""
executor = None
def shutting_down():
return _shutdown or executor is None or executor._shutdown_thread
def shutdown_worker():
# This is an upper bound
nb_children_alive = sum(p.is_alive() for p in processes.values())
for i in range(0, nb_children_alive):
call_queue.put_nowait(None)
# Release the queue's resources as soon as possible.
call_queue.close()
# If .join() is not called on the created processes then
# some multiprocessing.Queue methods may deadlock on Mac OS X.
for p in processes.values():
p.join()
reader = result_queue._reader
while True:
_add_call_item_to_queue(pending_work_items,
work_ids_queue,
call_queue)
sentinels = [p.sentinel for p in processes.values()]
assert sentinels
ready = wait([reader] + sentinels)
if reader in ready:
result_item = reader.recv()
else:
# Mark the process pool broken so that submits fail right now.
executor = executor_reference()
if executor is not None:
executor._broken = True
executor._shutdown_thread = True
executor = None
# All futures in flight must be marked failed
for work_id, work_item in pending_work_items.items():
work_item.future.set_exception(
BrokenProcessPool(
"A process in the process pool was "
"terminated abruptly while the future was "
"running or pending."
))
# Delete references to object. See issue16284
del work_item
pending_work_items.clear()
# Terminate remaining workers forcibly: the queues or their
# locks may be in a dirty state and block forever.
for p in processes.values():
p.terminate()
shutdown_worker()
return
if isinstance(result_item, int):
# Clean shutdown of a worker using its PID
# (avoids marking the executor broken)
assert shutting_down()
p = processes.pop(result_item)
p.join()
if not processes:
shutdown_worker()
return
elif result_item is not None:
work_item = pending_work_items.pop(result_item.work_id, None)
# work_item can be None if another process terminated (see above)
if work_item is not None:
if result_item.exception:
work_item.future.set_exception(result_item.exception)
else:
work_item.future.set_result(result_item.result)
# Delete references to object. See issue16284
del work_item
# Check whether we should start shutting down.
executor = executor_reference()
# No more work items can be added if:
# - The interpreter is shutting down OR
# - The executor that owns this worker has been collected OR
# - The executor that owns this worker has been shutdown.
if shutting_down():
try:
# Since no new work items can be added, it is safe to shutdown
# this thread if there are no pending work items.
if not pending_work_items:
shutdown_worker()
return
except Full:
# This is not a problem: we will eventually be woken up (in
# result_queue.get()) and be able to send a sentinel again.
pass
executor = None
_system_limits_checked = False
_system_limited = None
def _check_system_limits():
global _system_limits_checked, _system_limited
if _system_limits_checked:
if _system_limited:
raise NotImplementedError(_system_limited)
_system_limits_checked = True
try:
nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
except (AttributeError, ValueError):
# sysconf not available or setting not available
return
if nsems_max == -1:
# indetermined limit, assume that limit is determined
# by available memory only
return
if nsems_max >= 256:
# minimum number of semaphores available
# according to POSIX
return
_system_limited = "system provides too few semaphores (%d available, 256 necessary)" % nsems_max
raise NotImplementedError(_system_limited)
def _chain_from_iterable_of_lists(iterable):
"""
Specialized implementation of itertools.chain.from_iterable.
Each item in *iterable* should be a list. This function is
careful not to keep references to yielded objects.
"""
for element in iterable:
element.reverse()
while element:
yield element.pop()
class BrokenProcessPool(RuntimeError):
"""
Raised when a process in a ProcessPoolExecutor terminated abruptly
while a future was in the running state.
"""
class ProcessPoolExecutor(_base.Executor):
def __init__(self, max_workers=None):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
"""
_check_system_limits()
if max_workers is None:
self._max_workers = os.cpu_count() or 1
else:
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")
self._max_workers = max_workers
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
self._call_queue = multiprocessing.Queue(self._max_workers +
EXTRA_QUEUED_CALLS)
# Killed worker processes can produce spurious "broken pipe"
# tracebacks in the queue's own worker thread. But we detect killed
# processes anyway, so silence the tracebacks.
self._call_queue._ignore_epipe = True
self._result_queue = SimpleQueue()
self._work_ids = queue.Queue()
self._queue_management_thread = None
# Map of pids to processes
self._processes = {}
# Shutdown is a two-step process.
self._shutdown_thread = False
self._shutdown_lock = threading.Lock()
self._broken = False
self._queue_count = 0
self._pending_work_items = {}
def _start_queue_management_thread(self):
# When the executor gets lost, the weakref callback will wake up
# the queue management thread.
def weakref_cb(_, q=self._result_queue):
q.put(None)
if self._queue_management_thread is None:
# Start the processes so that their sentinels are known.
self._adjust_process_count()
self._queue_management_thread = threading.Thread(
target=_queue_management_worker,
args=(weakref.ref(self, weakref_cb),
self._processes,
self._pending_work_items,
self._work_ids,
self._call_queue,
self._result_queue))
self._queue_management_thread.daemon = True
self._queue_management_thread.start()
_threads_queues[self._queue_management_thread] = self._result_queue
def _adjust_process_count(self):
for _ in range(len(self._processes), self._max_workers):
p = multiprocessing.Process(
target=_process_worker,
args=(self._call_queue,
self._result_queue))
p.start()
self._processes[p.pid] = p
def submit(self, fn, *args, **kwargs):
with self._shutdown_lock:
if self._broken:
raise BrokenProcessPool('A child process terminated '
'abruptly, the process pool is not usable anymore')
if self._shutdown_thread:
raise RuntimeError('cannot schedule new futures after shutdown')
f = _base.Future()
w = _WorkItem(f, fn, args, kwargs)
self._pending_work_items[self._queue_count] = w
self._work_ids.put(self._queue_count)
self._queue_count += 1
# Wake up queue management thread
self._result_queue.put(None)
self._start_queue_management_thread()
return f
submit.__doc__ = _base.Executor.submit.__doc__
def map(self, fn, *iterables, timeout=None, chunksize=1):
"""Returns an iterator equivalent to map(fn, iter).
Args:
fn: A callable that will take as many arguments as there are
passed iterables.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time.
chunksize: If greater than one, the iterables will be chopped into
chunks of size chunksize and submitted to the process pool.
If set to one, the items in the list will be sent one at a time.
Returns:
An iterator equivalent to: map(func, *iterables) but the calls may
be evaluated out-of-order.
Raises:
TimeoutError: If the entire result iterator could not be generated
before the given timeout.
Exception: If fn(*args) raises for any values.
"""
if chunksize < 1:
raise ValueError("chunksize must be >= 1.")
results = super().map(partial(_process_chunk, fn),
_get_chunks(*iterables, chunksize=chunksize),
timeout=timeout)
return _chain_from_iterable_of_lists(results)
def shutdown(self, wait=True):
with self._shutdown_lock:
self._shutdown_thread = True
if self._queue_management_thread:
# Wake up queue management thread
self._result_queue.put(None)
if wait:
self._queue_management_thread.join()
# To reduce the risk of opening too many files, remove references to
# objects that use file descriptors.
self._queue_management_thread = None
self._call_queue = None
self._result_queue = None
self._processes = None
shutdown.__doc__ = _base.Executor.shutdown.__doc__
atexit.register(_python_exit)

View file

@ -0,0 +1,153 @@
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Implements ThreadPoolExecutor."""
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
import atexit
from concurrent.futures import _base
import itertools
import queue
import threading
import weakref
import os
# Workers are created as daemon threads. This is done to allow the interpreter
# to exit when there are still idle threads in a ThreadPoolExecutor's thread
# pool (i.e. shutdown() was not called). However, allowing workers to die with
# the interpreter has two undesirable properties:
# - The workers would still be running during interpreter shutdown,
# meaning that they would fail in unpredictable ways.
# - The workers could be killed while evaluating a work item, which could
# be bad if the callable being evaluated has external side-effects e.g.
# writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads finish.
_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False
def _python_exit():
global _shutdown
_shutdown = True
items = list(_threads_queues.items())
for t, q in items:
q.put(None)
for t, q in items:
t.join()
atexit.register(_python_exit)
class _WorkItem(object):
def __init__(self, future, fn, args, kwargs):
self.future = future
self.fn = fn
self.args = args
self.kwargs = kwargs
def run(self):
if not self.future.set_running_or_notify_cancel():
return
try:
result = self.fn(*self.args, **self.kwargs)
except BaseException as exc:
self.future.set_exception(exc)
# Break a reference cycle with the exception 'exc'
self = None
else:
self.future.set_result(result)
def _worker(executor_reference, work_queue):
try:
while True:
work_item = work_queue.get(block=True)
if work_item is not None:
work_item.run()
# Delete references to object. See issue16284
del work_item
continue
executor = executor_reference()
# Exit if:
# - The interpreter is shutting down OR
# - The executor that owns the worker has been collected OR
# - The executor that owns the worker has been shutdown.
if _shutdown or executor is None or executor._shutdown:
# Notice other workers
work_queue.put(None)
return
del executor
except BaseException:
_base.LOGGER.critical('Exception in worker', exc_info=True)
class ThreadPoolExecutor(_base.Executor):
# Used to assign unique thread names when thread_name_prefix is not supplied.
_counter = itertools.count().__next__
def __init__(self, max_workers=None, thread_name_prefix=''):
"""Initializes a new ThreadPoolExecutor instance.
Args:
max_workers: The maximum number of threads that can be used to
execute the given calls.
thread_name_prefix: An optional name prefix to give our threads.
"""
if max_workers is None:
# Use this number because ThreadPoolExecutor is often
# used to overlap I/O instead of CPU work.
max_workers = (os.cpu_count() or 1) * 5
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")
self._max_workers = max_workers
self._work_queue = queue.Queue()
self._threads = set()
self._shutdown = False
self._shutdown_lock = threading.Lock()
self._thread_name_prefix = (thread_name_prefix or
("ThreadPoolExecutor-%d" % self._counter()))
def submit(self, fn, *args, **kwargs):
with self._shutdown_lock:
if self._shutdown:
raise RuntimeError('cannot schedule new futures after shutdown')
f = _base.Future()
w = _WorkItem(f, fn, args, kwargs)
self._work_queue.put(w)
self._adjust_thread_count()
return f
submit.__doc__ = _base.Executor.submit.__doc__
def _adjust_thread_count(self):
# When the executor gets lost, the weakref callback will wake up
# the worker threads.
def weakref_cb(_, q=self._work_queue):
q.put(None)
# TODO(bquinlan): Should avoid creating new threads if there are more
# idle threads than items in the work queue.
num_threads = len(self._threads)
if num_threads < self._max_workers:
thread_name = '%s_%d' % (self._thread_name_prefix or self,
num_threads)
t = threading.Thread(name=thread_name, target=_worker,
args=(weakref.ref(self, weakref_cb),
self._work_queue))
t.daemon = True
t.start()
self._threads.add(t)
_threads_queues[t] = self._work_queue
def shutdown(self, wait=True):
with self._shutdown_lock:
self._shutdown = True
self._work_queue.put(None)
if wait:
for t in self._threads:
t.join()
shutdown.__doc__ = _base.Executor.shutdown.__doc__

1342
third_party/python/Lib/configparser.py vendored Normal file

File diff suppressed because it is too large Load diff

384
third_party/python/Lib/contextlib.py vendored Normal file
View file

@ -0,0 +1,384 @@
"""Utilities for with-statement contexts. See PEP 343."""
import abc
import sys
import _collections_abc
from collections import deque
from functools import wraps
__all__ = ["contextmanager", "closing", "AbstractContextManager",
"ContextDecorator", "ExitStack", "redirect_stdout",
"redirect_stderr", "suppress"]
class AbstractContextManager(abc.ABC):
"""An abstract base class for context managers."""
def __enter__(self):
"""Return `self` upon entering the runtime context."""
return self
@abc.abstractmethod
def __exit__(self, exc_type, exc_value, traceback):
"""Raise any exception triggered within the runtime context."""
return None
@classmethod
def __subclasshook__(cls, C):
if cls is AbstractContextManager:
return _collections_abc._check_methods(C, "__enter__", "__exit__")
return NotImplemented
class ContextDecorator(object):
"A base class or mixin that enables context managers to work as decorators."
def _recreate_cm(self):
"""Return a recreated instance of self.
Allows an otherwise one-shot context manager like
_GeneratorContextManager to support use as
a decorator via implicit recreation.
This is a private interface just for _GeneratorContextManager.
See issue #11647 for details.
"""
return self
def __call__(self, func):
@wraps(func)
def inner(*args, **kwds):
with self._recreate_cm():
return func(*args, **kwds)
return inner
class _GeneratorContextManager(ContextDecorator, AbstractContextManager):
"""Helper for @contextmanager decorator."""
def __init__(self, func, args, kwds):
self.gen = func(*args, **kwds)
self.func, self.args, self.kwds = func, args, kwds
# Issue 19330: ensure context manager instances have good docstrings
doc = getattr(func, "__doc__", None)
if doc is None:
doc = type(self).__doc__
self.__doc__ = doc
# Unfortunately, this still doesn't provide good help output when
# inspecting the created context manager instances, since pydoc
# currently bypasses the instance docstring and shows the docstring
# for the class instead.
# See http://bugs.python.org/issue19404 for more details.
def _recreate_cm(self):
# _GCM instances are one-shot context managers, so the
# CM must be recreated each time a decorated function is
# called
return self.__class__(self.func, self.args, self.kwds)
def __enter__(self):
try:
return next(self.gen)
except StopIteration:
raise RuntimeError("generator didn't yield") from None
def __exit__(self, type, value, traceback):
if type is None:
try:
next(self.gen)
except StopIteration:
return False
else:
raise RuntimeError("generator didn't stop")
else:
if value is None:
# Need to force instantiation so we can reliably
# tell if we get the same exception back
value = type()
try:
self.gen.throw(type, value, traceback)
except StopIteration as exc:
# Suppress StopIteration *unless* it's the same exception that
# was passed to throw(). This prevents a StopIteration
# raised inside the "with" statement from being suppressed.
return exc is not value
except RuntimeError as exc:
# Don't re-raise the passed in exception. (issue27122)
if exc is value:
return False
# Likewise, avoid suppressing if a StopIteration exception
# was passed to throw() and later wrapped into a RuntimeError
# (see PEP 479).
if type is StopIteration and exc.__cause__ is value:
return False
raise
except:
# only re-raise if it's *not* the exception that was
# passed to throw(), because __exit__() must not raise
# an exception unless __exit__() itself failed. But throw()
# has to raise the exception to signal propagation, so this
# fixes the impedance mismatch between the throw() protocol
# and the __exit__() protocol.
#
if sys.exc_info()[1] is value:
return False
raise
raise RuntimeError("generator didn't stop after throw()")
def contextmanager(func):
"""@contextmanager decorator.
Typical usage:
@contextmanager
def some_generator(<arguments>):
<setup>
try:
yield <value>
finally:
<cleanup>
This makes this:
with some_generator(<arguments>) as <variable>:
<body>
equivalent to this:
<setup>
try:
<variable> = <value>
<body>
finally:
<cleanup>
"""
@wraps(func)
def helper(*args, **kwds):
return _GeneratorContextManager(func, args, kwds)
return helper
class closing(AbstractContextManager):
"""Context to automatically close something at the end of a block.
Code like this:
with closing(<module>.open(<arguments>)) as f:
<block>
is equivalent to this:
f = <module>.open(<arguments>)
try:
<block>
finally:
f.close()
"""
def __init__(self, thing):
self.thing = thing
def __enter__(self):
return self.thing
def __exit__(self, *exc_info):
self.thing.close()
class _RedirectStream(AbstractContextManager):
_stream = None
def __init__(self, new_target):
self._new_target = new_target
# We use a list of old targets to make this CM re-entrant
self._old_targets = []
def __enter__(self):
self._old_targets.append(getattr(sys, self._stream))
setattr(sys, self._stream, self._new_target)
return self._new_target
def __exit__(self, exctype, excinst, exctb):
setattr(sys, self._stream, self._old_targets.pop())
class redirect_stdout(_RedirectStream):
"""Context manager for temporarily redirecting stdout to another file.
# How to send help() to stderr
with redirect_stdout(sys.stderr):
help(dir)
# How to write help() to a file
with open('help.txt', 'w') as f:
with redirect_stdout(f):
help(pow)
"""
_stream = "stdout"
class redirect_stderr(_RedirectStream):
"""Context manager for temporarily redirecting stderr to another file."""
_stream = "stderr"
class suppress(AbstractContextManager):
"""Context manager to suppress specified exceptions
After the exception is suppressed, execution proceeds with the next
statement following the with statement.
with suppress(FileNotFoundError):
os.remove(somefile)
# Execution still resumes here if the file was already removed
"""
def __init__(self, *exceptions):
self._exceptions = exceptions
def __enter__(self):
pass
def __exit__(self, exctype, excinst, exctb):
# Unlike isinstance and issubclass, CPython exception handling
# currently only looks at the concrete type hierarchy (ignoring
# the instance and subclass checking hooks). While Guido considers
# that a bug rather than a feature, it's a fairly hard one to fix
# due to various internal implementation details. suppress provides
# the simpler issubclass based semantics, rather than trying to
# exactly reproduce the limitations of the CPython interpreter.
#
# See http://bugs.python.org/issue12029 for more details
return exctype is not None and issubclass(exctype, self._exceptions)
# Inspired by discussions on http://bugs.python.org/issue13585
class ExitStack(AbstractContextManager):
"""Context manager for dynamic management of a stack of exit callbacks
For example:
with ExitStack() as stack:
files = [stack.enter_context(open(fname)) for fname in filenames]
# All opened files will automatically be closed at the end of
# the with statement, even if attempts to open files later
# in the list raise an exception
"""
def __init__(self):
self._exit_callbacks = deque()
def pop_all(self):
"""Preserve the context stack by transferring it to a new instance"""
new_stack = type(self)()
new_stack._exit_callbacks = self._exit_callbacks
self._exit_callbacks = deque()
return new_stack
def _push_cm_exit(self, cm, cm_exit):
"""Helper to correctly register callbacks to __exit__ methods"""
def _exit_wrapper(*exc_details):
return cm_exit(cm, *exc_details)
_exit_wrapper.__self__ = cm
self.push(_exit_wrapper)
def push(self, exit):
"""Registers a callback with the standard __exit__ method signature
Can suppress exceptions the same way __exit__ methods can.
Also accepts any object with an __exit__ method (registering a call
to the method instead of the object itself)
"""
# We use an unbound method rather than a bound method to follow
# the standard lookup behaviour for special methods
_cb_type = type(exit)
try:
exit_method = _cb_type.__exit__
except AttributeError:
# Not a context manager, so assume its a callable
self._exit_callbacks.append(exit)
else:
self._push_cm_exit(exit, exit_method)
return exit # Allow use as a decorator
def callback(self, callback, *args, **kwds):
"""Registers an arbitrary callback and arguments.
Cannot suppress exceptions.
"""
def _exit_wrapper(exc_type, exc, tb):
callback(*args, **kwds)
# We changed the signature, so using @wraps is not appropriate, but
# setting __wrapped__ may still help with introspection
_exit_wrapper.__wrapped__ = callback
self.push(_exit_wrapper)
return callback # Allow use as a decorator
def enter_context(self, cm):
"""Enters the supplied context manager
If successful, also pushes its __exit__ method as a callback and
returns the result of the __enter__ method.
"""
# We look up the special methods on the type to match the with statement
_cm_type = type(cm)
_exit = _cm_type.__exit__
result = _cm_type.__enter__(cm)
self._push_cm_exit(cm, _exit)
return result
def close(self):
"""Immediately unwind the context stack"""
self.__exit__(None, None, None)
def __exit__(self, *exc_details):
received_exc = exc_details[0] is not None
# We manipulate the exception state so it behaves as though
# we were actually nesting multiple with statements
frame_exc = sys.exc_info()[1]
def _fix_exception_context(new_exc, old_exc):
# Context may not be correct, so find the end of the chain
while 1:
exc_context = new_exc.__context__
if exc_context is old_exc:
# Context is already set correctly (see issue 20317)
return
if exc_context is None or exc_context is frame_exc:
break
new_exc = exc_context
# Change the end of the chain to point to the exception
# we expect it to reference
new_exc.__context__ = old_exc
# Callbacks are invoked in LIFO order to match the behaviour of
# nested context managers
suppressed_exc = False
pending_raise = False
while self._exit_callbacks:
cb = self._exit_callbacks.pop()
try:
if cb(*exc_details):
suppressed_exc = True
pending_raise = False
exc_details = (None, None, None)
except:
new_exc_details = sys.exc_info()
# simulate the stack of exceptions by setting the context
_fix_exception_context(new_exc_details[1], exc_details[1])
pending_raise = True
exc_details = new_exc_details
if pending_raise:
try:
# bare "raise exc_details[1]" replaces our carefully
# set-up context
fixed_ctx = exc_details[1].__context__
raise exc_details[1]
except BaseException:
exc_details[1].__context__ = fixed_ctx
raise
return received_exc and suppressed_exc

313
third_party/python/Lib/copy.py vendored Normal file
View file

@ -0,0 +1,313 @@
"""Generic (shallow and deep) copying operations.
Interface summary:
import copy
x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y
For module specific errors, copy.Error is raised.
The difference between shallow and deep copying is only relevant for
compound objects (objects that contain other objects, like lists or
class instances).
- A shallow copy constructs a new compound object and then (to the
extent possible) inserts *the same objects* into it that the
original contains.
- A deep copy constructs a new compound object and then, recursively,
inserts *copies* into it of the objects found in the original.
Two problems often exist with deep copy operations that don't exist
with shallow copy operations:
a) recursive objects (compound objects that, directly or indirectly,
contain a reference to themselves) may cause a recursive loop
b) because deep copy copies *everything* it may copy too much, e.g.
administrative data structures that should be shared even between
copies
Python's deep copy operation avoids these problems by:
a) keeping a table of objects already copied during the current
copying pass
b) letting user-defined classes override the copying operation or the
set of components copied
This version does not copy types like module, class, function, method,
nor stack trace, stack frame, nor file, socket, window, nor array, nor
any similar types.
Classes can use the same interfaces to control copying that they use
to control pickling: they can define methods called __getinitargs__(),
__getstate__() and __setstate__(). See the documentation for module
"pickle" for information on these methods.
"""
import types
import weakref
from copyreg import dispatch_table
class Error(Exception):
pass
error = Error # backward compatibility
try:
from org.python.core import PyStringMap
except ImportError:
PyStringMap = None
__all__ = ["Error", "copy", "deepcopy"]
def copy(x):
"""Shallow copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
cls = type(x)
copier = _copy_dispatch.get(cls)
if copier:
return copier(x)
try:
issc = issubclass(cls, type)
except TypeError: # cls is not a class
issc = False
if issc:
# treat it as a regular class:
return _copy_immutable(x)
copier = getattr(cls, "__copy__", None)
if copier:
return copier(x)
reductor = dispatch_table.get(cls)
if reductor:
rv = reductor(x)
else:
reductor = getattr(x, "__reduce_ex__", None)
if reductor:
rv = reductor(4)
else:
reductor = getattr(x, "__reduce__", None)
if reductor:
rv = reductor()
else:
raise Error("un(shallow)copyable object of type %s" % cls)
if isinstance(rv, str):
return x
return _reconstruct(x, None, *rv)
_copy_dispatch = d = {}
def _copy_immutable(x):
return x
for t in (type(None), int, float, bool, complex, str, tuple,
bytes, frozenset, type, range, slice,
types.BuiltinFunctionType, type(Ellipsis), type(NotImplemented),
types.FunctionType, weakref.ref):
d[t] = _copy_immutable
t = getattr(types, "CodeType", None)
if t is not None:
d[t] = _copy_immutable
d[list] = list.copy
d[dict] = dict.copy
d[set] = set.copy
d[bytearray] = bytearray.copy
if PyStringMap is not None:
d[PyStringMap] = PyStringMap.copy
del d, t
def deepcopy(x, memo=None, _nil=[]):
"""Deep copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
if memo is None:
memo = {}
d = id(x)
y = memo.get(d, _nil)
if y is not _nil:
return y
cls = type(x)
copier = _deepcopy_dispatch.get(cls)
if copier:
y = copier(x, memo)
else:
try:
issc = issubclass(cls, type)
except TypeError: # cls is not a class (old Boost; see SF #502085)
issc = 0
if issc:
y = _deepcopy_atomic(x, memo)
else:
copier = getattr(x, "__deepcopy__", None)
if copier:
y = copier(memo)
else:
reductor = dispatch_table.get(cls)
if reductor:
rv = reductor(x)
else:
reductor = getattr(x, "__reduce_ex__", None)
if reductor:
rv = reductor(4)
else:
reductor = getattr(x, "__reduce__", None)
if reductor:
rv = reductor()
else:
raise Error(
"un(deep)copyable object of type %s" % cls)
if isinstance(rv, str):
y = x
else:
y = _reconstruct(x, memo, *rv)
# If is its own copy, don't memoize.
if y is not x:
memo[d] = y
_keep_alive(x, memo) # Make sure x lives at least as long as d
return y
_deepcopy_dispatch = d = {}
def _deepcopy_atomic(x, memo):
return x
d[type(None)] = _deepcopy_atomic
d[type(Ellipsis)] = _deepcopy_atomic
d[type(NotImplemented)] = _deepcopy_atomic
d[int] = _deepcopy_atomic
d[float] = _deepcopy_atomic
d[bool] = _deepcopy_atomic
d[complex] = _deepcopy_atomic
d[bytes] = _deepcopy_atomic
d[str] = _deepcopy_atomic
try:
d[types.CodeType] = _deepcopy_atomic
except AttributeError:
pass
d[type] = _deepcopy_atomic
d[types.BuiltinFunctionType] = _deepcopy_atomic
d[types.FunctionType] = _deepcopy_atomic
d[weakref.ref] = _deepcopy_atomic
def _deepcopy_list(x, memo, deepcopy=deepcopy):
y = []
memo[id(x)] = y
append = y.append
for a in x:
append(deepcopy(a, memo))
return y
d[list] = _deepcopy_list
def _deepcopy_tuple(x, memo, deepcopy=deepcopy):
y = [deepcopy(a, memo) for a in x]
# We're not going to put the tuple in the memo, but it's still important we
# check for it, in case the tuple contains recursive mutable structures.
try:
return memo[id(x)]
except KeyError:
pass
for k, j in zip(x, y):
if k is not j:
y = tuple(y)
break
else:
y = x
return y
d[tuple] = _deepcopy_tuple
def _deepcopy_dict(x, memo, deepcopy=deepcopy):
y = {}
memo[id(x)] = y
for key, value in x.items():
y[deepcopy(key, memo)] = deepcopy(value, memo)
return y
d[dict] = _deepcopy_dict
if PyStringMap is not None:
d[PyStringMap] = _deepcopy_dict
def _deepcopy_method(x, memo): # Copy instance methods
return type(x)(x.__func__, deepcopy(x.__self__, memo))
d[types.MethodType] = _deepcopy_method
del d
def _keep_alive(x, memo):
"""Keeps a reference to the object x in the memo.
Because we remember objects by their id, we have
to assure that possibly temporary objects are kept
alive by referencing them.
We store a reference at the id of the memo, which should
normally not be used unless someone tries to deepcopy
the memo itself...
"""
try:
memo[id(memo)].append(x)
except KeyError:
# aha, this is the first one :-)
memo[id(memo)]=[x]
def _reconstruct(x, memo, func, args,
state=None, listiter=None, dictiter=None,
deepcopy=deepcopy):
deep = memo is not None
if deep and args:
args = (deepcopy(arg, memo) for arg in args)
y = func(*args)
if deep:
memo[id(x)] = y
if state is not None:
if deep:
state = deepcopy(state, memo)
if hasattr(y, '__setstate__'):
y.__setstate__(state)
else:
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
else:
slotstate = None
if state is not None:
y.__dict__.update(state)
if slotstate is not None:
for key, value in slotstate.items():
setattr(y, key, value)
if listiter is not None:
if deep:
for item in listiter:
item = deepcopy(item, memo)
y.append(item)
else:
for item in listiter:
y.append(item)
if dictiter is not None:
if deep:
for key, value in dictiter:
key = deepcopy(key, memo)
value = deepcopy(value, memo)
y[key] = value
else:
for key, value in dictiter:
y[key] = value
return y
del types, weakref, PyStringMap

206
third_party/python/Lib/copyreg.py vendored Normal file
View file

@ -0,0 +1,206 @@
"""Helper to provide extensibility for pickle.
This is only useful to add pickle support for extension types defined in
C, not for instances of user-defined classes.
"""
__all__ = ["pickle", "constructor",
"add_extension", "remove_extension", "clear_extension_cache"]
dispatch_table = {}
def pickle(ob_type, pickle_function, constructor_ob=None):
if not callable(pickle_function):
raise TypeError("reduction functions must be callable")
dispatch_table[ob_type] = pickle_function
# The constructor_ob function is a vestige of safe for unpickling.
# There is no reason for the caller to pass it anymore.
if constructor_ob is not None:
constructor(constructor_ob)
def constructor(object):
if not callable(object):
raise TypeError("constructors must be callable")
# Example: provide pickling support for complex numbers.
try:
complex
except NameError:
pass
else:
def pickle_complex(c):
return complex, (c.real, c.imag)
pickle(complex, pickle_complex, complex)
# Support for pickling new-style objects
def _reconstructor(cls, base, state):
if base is object:
obj = object.__new__(cls)
else:
obj = base.__new__(cls, state)
if base.__init__ != object.__init__:
base.__init__(obj, state)
return obj
_HEAPTYPE = 1<<9
# Python code for object.__reduce_ex__ for protocols 0 and 1
def _reduce_ex(self, proto):
assert proto < 2
for base in self.__class__.__mro__:
if hasattr(base, '__flags__') and not base.__flags__ & _HEAPTYPE:
break
else:
base = object # not really reachable
if base is object:
state = None
else:
if base is self.__class__:
raise TypeError("can't pickle %s objects" % base.__name__)
state = base(self)
args = (self.__class__, base, state)
try:
getstate = self.__getstate__
except AttributeError:
if getattr(self, "__slots__", None):
raise TypeError("a class that defines __slots__ without "
"defining __getstate__ cannot be pickled")
try:
dict = self.__dict__
except AttributeError:
dict = None
else:
dict = getstate()
if dict:
return _reconstructor, args, dict
else:
return _reconstructor, args
# Helper for __reduce_ex__ protocol 2
def __newobj__(cls, *args):
return cls.__new__(cls, *args)
def __newobj_ex__(cls, args, kwargs):
"""Used by pickle protocol 4, instead of __newobj__ to allow classes with
keyword-only arguments to be pickled correctly.
"""
return cls.__new__(cls, *args, **kwargs)
def _slotnames(cls):
"""Return a list of slot names for a given class.
This needs to find slots defined by the class and its bases, so we
can't simply return the __slots__ attribute. We must walk down
the Method Resolution Order and concatenate the __slots__ of each
class found there. (This assumes classes don't modify their
__slots__ attribute to misrepresent their slots after the class is
defined.)
"""
# Get the value from a cache in the class if possible
names = cls.__dict__.get("__slotnames__")
if names is not None:
return names
# Not cached -- calculate the value
names = []
if not hasattr(cls, "__slots__"):
# This class has no slots
pass
else:
# Slots found -- gather slot names from all base classes
for c in cls.__mro__:
if "__slots__" in c.__dict__:
slots = c.__dict__['__slots__']
# if class has a single slot, it can be given as a string
if isinstance(slots, str):
slots = (slots,)
for name in slots:
# special descriptors
if name in ("__dict__", "__weakref__"):
continue
# mangled names
elif name.startswith('__') and not name.endswith('__'):
stripped = c.__name__.lstrip('_')
if stripped:
names.append('_%s%s' % (stripped, name))
else:
names.append(name)
else:
names.append(name)
# Cache the outcome in the class if at all possible
try:
cls.__slotnames__ = names
except:
pass # But don't die if we can't
return names
# A registry of extension codes. This is an ad-hoc compression
# mechanism. Whenever a global reference to <module>, <name> is about
# to be pickled, the (<module>, <name>) tuple is looked up here to see
# if it is a registered extension code for it. Extension codes are
# universal, so that the meaning of a pickle does not depend on
# context. (There are also some codes reserved for local use that
# don't have this restriction.) Codes are positive ints; 0 is
# reserved.
_extension_registry = {} # key -> code
_inverted_registry = {} # code -> key
_extension_cache = {} # code -> object
# Don't ever rebind those names: pickling grabs a reference to them when
# it's initialized, and won't see a rebinding.
def add_extension(module, name, code):
"""Register an extension code."""
code = int(code)
if not 1 <= code <= 0x7fffffff:
raise ValueError("code out of range")
key = (module, name)
if (_extension_registry.get(key) == code and
_inverted_registry.get(code) == key):
return # Redundant registrations are benign
if key in _extension_registry:
raise ValueError("key %s is already registered with code %s" %
(key, _extension_registry[key]))
if code in _inverted_registry:
raise ValueError("code %s is already in use for key %s" %
(code, _inverted_registry[code]))
_extension_registry[key] = code
_inverted_registry[code] = key
def remove_extension(module, name, code):
"""Unregister an extension code. For testing only."""
key = (module, name)
if (_extension_registry.get(key) != code or
_inverted_registry.get(code) != key):
raise ValueError("key %s is not registered with code %s" %
(key, code))
del _extension_registry[key]
del _inverted_registry[code]
if code in _extension_cache:
del _extension_cache[code]
def clear_extension_cache():
_extension_cache.clear()
# Standard extension code assignments
# Reserved ranges
# First Last Count Purpose
# 1 127 127 Reserved for Python standard library
# 128 191 64 Reserved for Zope
# 192 239 48 Reserved for 3rd parties
# 240 255 16 Reserved for private use (will never be assigned)
# 256 Inf Inf Reserved for future assignment
# Extension codes are assigned by the Python Software Foundation.

61
third_party/python/Lib/crypt.py vendored Normal file
View file

@ -0,0 +1,61 @@
"""Wrapper to the POSIX crypt library call and associated functionality."""
import _crypt
import string as _string
from random import SystemRandom as _SystemRandom
from collections import namedtuple as _namedtuple
_saltchars = _string.ascii_letters + _string.digits + './'
_sr = _SystemRandom()
class _Method(_namedtuple('_Method', 'name ident salt_chars total_size')):
"""Class representing a salt method per the Modular Crypt Format or the
legacy 2-character crypt method."""
def __repr__(self):
return '<crypt.METHOD_{}>'.format(self.name)
def mksalt(method=None):
"""Generate a salt for the specified method.
If not specified, the strongest available method will be used.
"""
if method is None:
method = methods[0]
s = '${}$'.format(method.ident) if method.ident else ''
s += ''.join(_sr.choice(_saltchars) for char in range(method.salt_chars))
return s
def crypt(word, salt=None):
"""Return a string representing the one-way hash of a password, with a salt
prepended.
If ``salt`` is not specified or is ``None``, the strongest
available method will be selected and a salt generated. Otherwise,
``salt`` may be one of the ``crypt.METHOD_*`` values, or a string as
returned by ``crypt.mksalt()``.
"""
if salt is None or isinstance(salt, _Method):
salt = mksalt(salt)
return _crypt.crypt(word, salt)
# available salting/crypto methods
METHOD_CRYPT = _Method('CRYPT', None, 2, 13)
METHOD_MD5 = _Method('MD5', '1', 8, 34)
METHOD_SHA256 = _Method('SHA256', '5', 16, 63)
METHOD_SHA512 = _Method('SHA512', '6', 16, 106)
methods = []
for _method in (METHOD_SHA512, METHOD_SHA256, METHOD_MD5, METHOD_CRYPT):
_result = crypt('', _method)
if _result and len(_result) == _method.total_size:
methods.append(_method)
del _result, _method

449
third_party/python/Lib/csv.py vendored Normal file
View file

@ -0,0 +1,449 @@
"""
csv.py - read/write/investigate CSV files
"""
import re
from _csv import Error, __version__, writer, reader, register_dialect, \
unregister_dialect, get_dialect, list_dialects, \
field_size_limit, \
QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
__doc__
from _csv import Dialect as _Dialect
from collections import OrderedDict
from io import StringIO
__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
"Error", "Dialect", "__doc__", "excel", "excel_tab",
"field_size_limit", "reader", "writer",
"register_dialect", "get_dialect", "list_dialects", "Sniffer",
"unregister_dialect", "__version__", "DictReader", "DictWriter",
"unix_dialect"]
class Dialect:
"""Describe a CSV dialect.
This must be subclassed (see csv.excel). Valid attributes are:
delimiter, quotechar, escapechar, doublequote, skipinitialspace,
lineterminator, quoting.
"""
_name = ""
_valid = False
# placeholders
delimiter = None
quotechar = None
escapechar = None
doublequote = None
skipinitialspace = None
lineterminator = None
quoting = None
def __init__(self):
if self.__class__ != Dialect:
self._valid = True
self._validate()
def _validate(self):
try:
_Dialect(self)
except TypeError as e:
# We do this for compatibility with py2.3
raise Error(str(e))
class excel(Dialect):
"""Describe the usual properties of Excel-generated CSV files."""
delimiter = ','
quotechar = '"'
doublequote = True
skipinitialspace = False
lineterminator = '\r\n'
quoting = QUOTE_MINIMAL
register_dialect("excel", excel)
class excel_tab(excel):
"""Describe the usual properties of Excel-generated TAB-delimited files."""
delimiter = '\t'
register_dialect("excel-tab", excel_tab)
class unix_dialect(Dialect):
"""Describe the usual properties of Unix-generated CSV files."""
delimiter = ','
quotechar = '"'
doublequote = True
skipinitialspace = False
lineterminator = '\n'
quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)
class DictReader:
def __init__(self, f, fieldnames=None, restkey=None, restval=None,
dialect="excel", *args, **kwds):
self._fieldnames = fieldnames # list of keys for the dict
self.restkey = restkey # key to catch long rows
self.restval = restval # default value for short rows
self.reader = reader(f, dialect, *args, **kwds)
self.dialect = dialect
self.line_num = 0
def __iter__(self):
return self
@property
def fieldnames(self):
if self._fieldnames is None:
try:
self._fieldnames = next(self.reader)
except StopIteration:
pass
self.line_num = self.reader.line_num
return self._fieldnames
@fieldnames.setter
def fieldnames(self, value):
self._fieldnames = value
def __next__(self):
if self.line_num == 0:
# Used only for its side effect.
self.fieldnames
row = next(self.reader)
self.line_num = self.reader.line_num
# unlike the basic reader, we prefer not to return blanks,
# because we will typically wind up with a dict full of None
# values
while row == []:
row = next(self.reader)
d = OrderedDict(zip(self.fieldnames, row))
lf = len(self.fieldnames)
lr = len(row)
if lf < lr:
d[self.restkey] = row[lf:]
elif lf > lr:
for key in self.fieldnames[lr:]:
d[key] = self.restval
return d
class DictWriter:
def __init__(self, f, fieldnames, restval="", extrasaction="raise",
dialect="excel", *args, **kwds):
self.fieldnames = fieldnames # list of keys for the dict
self.restval = restval # for writing short dicts
if extrasaction.lower() not in ("raise", "ignore"):
raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
% extrasaction)
self.extrasaction = extrasaction
self.writer = writer(f, dialect, *args, **kwds)
def writeheader(self):
header = dict(zip(self.fieldnames, self.fieldnames))
self.writerow(header)
def _dict_to_list(self, rowdict):
if self.extrasaction == "raise":
wrong_fields = rowdict.keys() - self.fieldnames
if wrong_fields:
raise ValueError("dict contains fields not in fieldnames: "
+ ", ".join([repr(x) for x in wrong_fields]))
return (rowdict.get(key, self.restval) for key in self.fieldnames)
def writerow(self, rowdict):
return self.writer.writerow(self._dict_to_list(rowdict))
def writerows(self, rowdicts):
return self.writer.writerows(map(self._dict_to_list, rowdicts))
# Guard Sniffer's type checking against builds that exclude complex()
try:
complex
except NameError:
complex = float
class Sniffer:
'''
"Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
Returns a Dialect object.
'''
def __init__(self):
# in case there is more than one possible delimiter
self.preferred = [',', '\t', ';', ' ', ':']
def sniff(self, sample, delimiters=None):
"""
Returns a dialect (or None) corresponding to the sample
"""
quotechar, doublequote, delimiter, skipinitialspace = \
self._guess_quote_and_delimiter(sample, delimiters)
if not delimiter:
delimiter, skipinitialspace = self._guess_delimiter(sample,
delimiters)
if not delimiter:
raise Error("Could not determine delimiter")
class dialect(Dialect):
_name = "sniffed"
lineterminator = '\r\n'
quoting = QUOTE_MINIMAL
# escapechar = ''
dialect.doublequote = doublequote
dialect.delimiter = delimiter
# _csv.reader won't accept a quotechar of ''
dialect.quotechar = quotechar or '"'
dialect.skipinitialspace = skipinitialspace
return dialect
def _guess_quote_and_delimiter(self, data, delimiters):
"""
Looks for text enclosed between two identical quotes
(the probable quotechar) which are preceded and followed
by the same character (the probable delimiter).
For example:
,'some text',
The quote with the most wins, same with the delimiter.
If there is no quotechar the delimiter can't be determined
this way.
"""
matches = []
for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
matches = regexp.findall(data)
if matches:
break
if not matches:
# (quotechar, doublequote, delimiter, skipinitialspace)
return ('', False, None, 0)
quotes = {}
delims = {}
spaces = 0
groupindex = regexp.groupindex
for m in matches:
n = groupindex['quote'] - 1
key = m[n]
if key:
quotes[key] = quotes.get(key, 0) + 1
try:
n = groupindex['delim'] - 1
key = m[n]
except KeyError:
continue
if key and (delimiters is None or key in delimiters):
delims[key] = delims.get(key, 0) + 1
try:
n = groupindex['space'] - 1
except KeyError:
continue
if m[n]:
spaces += 1
quotechar = max(quotes, key=quotes.get)
if delims:
delim = max(delims, key=delims.get)
skipinitialspace = delims[delim] == spaces
if delim == '\n': # most likely a file with a single column
delim = ''
else:
# there is *no* delimiter, it's a single column of quoted data
delim = ''
skipinitialspace = 0
# if we see an extra quote between delimiters, we've got a
# double quoted format
dq_regexp = re.compile(
r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
{'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)
if dq_regexp.search(data):
doublequote = True
else:
doublequote = False
return (quotechar, doublequote, delim, skipinitialspace)
def _guess_delimiter(self, data, delimiters):
"""
The delimiter /should/ occur the same number of times on
each row. However, due to malformed data, it may not. We don't want
an all or nothing approach, so we allow for small variations in this
number.
1) build a table of the frequency of each character on every line.
2) build a table of frequencies of this frequency (meta-frequency?),
e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
7 times in 2 rows'
3) use the mode of the meta-frequency to determine the /expected/
frequency for that character
4) find out how often the character actually meets that goal
5) the character that best meets its goal is the delimiter
For performance reasons, the data is evaluated in chunks, so it can
try and evaluate the smallest portion of the data possible, evaluating
additional chunks as necessary.
"""
data = list(filter(None, data.split('\n')))
ascii = [chr(c) for c in range(127)] # 7-bit ASCII
# build frequency tables
chunkLength = min(10, len(data))
iteration = 0
charFrequency = {}
modes = {}
delims = {}
start, end = 0, min(chunkLength, len(data))
while start < len(data):
iteration += 1
for line in data[start:end]:
for char in ascii:
metaFrequency = charFrequency.get(char, {})
# must count even if frequency is 0
freq = line.count(char)
# value is the mode
metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
charFrequency[char] = metaFrequency
for char in charFrequency.keys():
items = list(charFrequency[char].items())
if len(items) == 1 and items[0][0] == 0:
continue
# get the mode of the frequencies
if len(items) > 1:
modes[char] = max(items, key=lambda x: x[1])
# adjust the mode - subtract the sum of all
# other frequencies
items.remove(modes[char])
modes[char] = (modes[char][0], modes[char][1]
- sum(item[1] for item in items))
else:
modes[char] = items[0]
# build a list of possible delimiters
modeList = modes.items()
total = float(chunkLength * iteration)
# (rows of consistent data) / (number of rows) = 100%
consistency = 1.0
# minimum consistency threshold
threshold = 0.9
while len(delims) == 0 and consistency >= threshold:
for k, v in modeList:
if v[0] > 0 and v[1] > 0:
if ((v[1]/total) >= consistency and
(delimiters is None or k in delimiters)):
delims[k] = v
consistency -= 0.01
if len(delims) == 1:
delim = list(delims.keys())[0]
skipinitialspace = (data[0].count(delim) ==
data[0].count("%c " % delim))
return (delim, skipinitialspace)
# analyze another chunkLength lines
start = end
end += chunkLength
if not delims:
return ('', 0)
# if there's more than one, fall back to a 'preferred' list
if len(delims) > 1:
for d in self.preferred:
if d in delims.keys():
skipinitialspace = (data[0].count(d) ==
data[0].count("%c " % d))
return (d, skipinitialspace)
# nothing else indicates a preference, pick the character that
# dominates(?)
items = [(v,k) for (k,v) in delims.items()]
items.sort()
delim = items[-1][1]
skipinitialspace = (data[0].count(delim) ==
data[0].count("%c " % delim))
return (delim, skipinitialspace)
def has_header(self, sample):
# Creates a dictionary of types of data in each column. If any
# column is of a single type (say, integers), *except* for the first
# row, then the first row is presumed to be labels. If the type
# can't be determined, it is assumed to be a string in which case
# the length of the string is the determining factor: if all of the
# rows except for the first are the same length, it's a header.
# Finally, a 'vote' is taken at the end for each column, adding or
# subtracting from the likelihood of the first row being a header.
rdr = reader(StringIO(sample), self.sniff(sample))
header = next(rdr) # assume first row is header
columns = len(header)
columnTypes = {}
for i in range(columns): columnTypes[i] = None
checked = 0
for row in rdr:
# arbitrary number of rows to check, to keep it sane
if checked > 20:
break
checked += 1
if len(row) != columns:
continue # skip rows that have irregular number of columns
for col in list(columnTypes.keys()):
for thisType in [int, float, complex]:
try:
thisType(row[col])
break
except (ValueError, OverflowError):
pass
else:
# fallback to length of string
thisType = len(row[col])
if thisType != columnTypes[col]:
if columnTypes[col] is None: # add new column type
columnTypes[col] = thisType
else:
# type is inconsistent, remove column from
# consideration
del columnTypes[col]
# finally, compare results against first row and "vote"
# on whether it's a header
hasHeader = 0
for col, colType in columnTypes.items():
if type(colType) == type(0): # it's a length
if len(header[col]) != colType:
hasHeader += 1
else:
hasHeader -= 1
else: # attempt typecast
try:
colType(header[col])
except (ValueError, TypeError):
hasHeader += 1
else:
hasHeader -= 1
return hasHeader > 0

View file

@ -0,0 +1,538 @@
"""create and manipulate C data types in Python"""
import os as _os, sys as _sys
__version__ = "1.1.0"
from _ctypes import Union, Structure, Array
from _ctypes import _Pointer
from _ctypes import CFuncPtr as _CFuncPtr
from _ctypes import __version__ as _ctypes_version
from _ctypes import RTLD_LOCAL, RTLD_GLOBAL
from _ctypes import ArgumentError
from struct import calcsize as _calcsize
if __version__ != _ctypes_version:
raise Exception("Version number mismatch", __version__, _ctypes_version)
if _os.name == "nt":
from _ctypes import FormatError
DEFAULT_MODE = RTLD_LOCAL
if _os.name == "posix" and _sys.platform == "darwin":
# On OS X 10.3, we use RTLD_GLOBAL as default mode
# because RTLD_LOCAL does not work at least on some
# libraries. OS X 10.3 is Darwin 7, so we check for
# that.
if int(_os.uname().release.split('.')[0]) < 8:
DEFAULT_MODE = RTLD_GLOBAL
from _ctypes import FUNCFLAG_CDECL as _FUNCFLAG_CDECL, \
FUNCFLAG_PYTHONAPI as _FUNCFLAG_PYTHONAPI, \
FUNCFLAG_USE_ERRNO as _FUNCFLAG_USE_ERRNO, \
FUNCFLAG_USE_LASTERROR as _FUNCFLAG_USE_LASTERROR
# WINOLEAPI -> HRESULT
# WINOLEAPI_(type)
#
# STDMETHODCALLTYPE
#
# STDMETHOD(name)
# STDMETHOD_(type, name)
#
# STDAPICALLTYPE
def create_string_buffer(init, size=None):
"""create_string_buffer(aBytes) -> character array
create_string_buffer(anInteger) -> character array
create_string_buffer(aBytes, anInteger) -> character array
"""
if isinstance(init, bytes):
if size is None:
size = len(init)+1
buftype = c_char * size
buf = buftype()
buf.value = init
return buf
elif isinstance(init, int):
buftype = c_char * init
buf = buftype()
return buf
raise TypeError(init)
def c_buffer(init, size=None):
## "deprecated, use create_string_buffer instead"
## import warnings
## warnings.warn("c_buffer is deprecated, use create_string_buffer instead",
## DeprecationWarning, stacklevel=2)
return create_string_buffer(init, size)
_c_functype_cache = {}
def CFUNCTYPE(restype, *argtypes, **kw):
"""CFUNCTYPE(restype, *argtypes,
use_errno=False, use_last_error=False) -> function prototype.
restype: the result type
argtypes: a sequence specifying the argument types
The function prototype can be called in different ways to create a
callable object:
prototype(integer address) -> foreign function
prototype(callable) -> create and return a C callable function from callable
prototype(integer index, method name[, paramflags]) -> foreign function calling a COM method
prototype((ordinal number, dll object)[, paramflags]) -> foreign function exported by ordinal
prototype((function name, dll object)[, paramflags]) -> foreign function exported by name
"""
flags = _FUNCFLAG_CDECL
if kw.pop("use_errno", False):
flags |= _FUNCFLAG_USE_ERRNO
if kw.pop("use_last_error", False):
flags |= _FUNCFLAG_USE_LASTERROR
if kw:
raise ValueError("unexpected keyword argument(s) %s" % kw.keys())
try:
return _c_functype_cache[(restype, argtypes, flags)]
except KeyError:
class CFunctionType(_CFuncPtr):
_argtypes_ = argtypes
_restype_ = restype
_flags_ = flags
_c_functype_cache[(restype, argtypes, flags)] = CFunctionType
return CFunctionType
if _os.name == "nt":
from _ctypes import LoadLibrary as _dlopen
from _ctypes import FUNCFLAG_STDCALL as _FUNCFLAG_STDCALL
_win_functype_cache = {}
def WINFUNCTYPE(restype, *argtypes, **kw):
# docstring set later (very similar to CFUNCTYPE.__doc__)
flags = _FUNCFLAG_STDCALL
if kw.pop("use_errno", False):
flags |= _FUNCFLAG_USE_ERRNO
if kw.pop("use_last_error", False):
flags |= _FUNCFLAG_USE_LASTERROR
if kw:
raise ValueError("unexpected keyword argument(s) %s" % kw.keys())
try:
return _win_functype_cache[(restype, argtypes, flags)]
except KeyError:
class WinFunctionType(_CFuncPtr):
_argtypes_ = argtypes
_restype_ = restype
_flags_ = flags
_win_functype_cache[(restype, argtypes, flags)] = WinFunctionType
return WinFunctionType
if WINFUNCTYPE.__doc__:
WINFUNCTYPE.__doc__ = CFUNCTYPE.__doc__.replace("CFUNCTYPE", "WINFUNCTYPE")
elif _os.name == "posix":
from _ctypes import dlopen as _dlopen
from _ctypes import sizeof, byref, addressof, alignment, resize
from _ctypes import get_errno, set_errno
from _ctypes import _SimpleCData
def _check_size(typ, typecode=None):
# Check if sizeof(ctypes_type) against struct.calcsize. This
# should protect somewhat against a misconfigured libffi.
from struct import calcsize
if typecode is None:
# Most _type_ codes are the same as used in struct
typecode = typ._type_
actual, required = sizeof(typ), calcsize(typecode)
if actual != required:
raise SystemError("sizeof(%s) wrong: %d instead of %d" % \
(typ, actual, required))
class py_object(_SimpleCData):
_type_ = "O"
def __repr__(self):
try:
return super().__repr__()
except ValueError:
return "%s(<NULL>)" % type(self).__name__
_check_size(py_object, "P")
class c_short(_SimpleCData):
_type_ = "h"
_check_size(c_short)
class c_ushort(_SimpleCData):
_type_ = "H"
_check_size(c_ushort)
class c_long(_SimpleCData):
_type_ = "l"
_check_size(c_long)
class c_ulong(_SimpleCData):
_type_ = "L"
_check_size(c_ulong)
if _calcsize("i") == _calcsize("l"):
# if int and long have the same size, make c_int an alias for c_long
c_int = c_long
c_uint = c_ulong
else:
class c_int(_SimpleCData):
_type_ = "i"
_check_size(c_int)
class c_uint(_SimpleCData):
_type_ = "I"
_check_size(c_uint)
class c_float(_SimpleCData):
_type_ = "f"
_check_size(c_float)
class c_double(_SimpleCData):
_type_ = "d"
_check_size(c_double)
class c_longdouble(_SimpleCData):
_type_ = "g"
if sizeof(c_longdouble) == sizeof(c_double):
c_longdouble = c_double
if _calcsize("l") == _calcsize("q"):
# if long and long long have the same size, make c_longlong an alias for c_long
c_longlong = c_long
c_ulonglong = c_ulong
else:
class c_longlong(_SimpleCData):
_type_ = "q"
_check_size(c_longlong)
class c_ulonglong(_SimpleCData):
_type_ = "Q"
## def from_param(cls, val):
## return ('d', float(val), val)
## from_param = classmethod(from_param)
_check_size(c_ulonglong)
class c_ubyte(_SimpleCData):
_type_ = "B"
c_ubyte.__ctype_le__ = c_ubyte.__ctype_be__ = c_ubyte
# backward compatibility:
##c_uchar = c_ubyte
_check_size(c_ubyte)
class c_byte(_SimpleCData):
_type_ = "b"
c_byte.__ctype_le__ = c_byte.__ctype_be__ = c_byte
_check_size(c_byte)
class c_char(_SimpleCData):
_type_ = "c"
c_char.__ctype_le__ = c_char.__ctype_be__ = c_char
_check_size(c_char)
class c_char_p(_SimpleCData):
_type_ = "z"
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__, c_void_p.from_buffer(self).value)
_check_size(c_char_p, "P")
class c_void_p(_SimpleCData):
_type_ = "P"
c_voidp = c_void_p # backwards compatibility (to a bug)
_check_size(c_void_p)
class c_bool(_SimpleCData):
_type_ = "?"
from _ctypes import POINTER, pointer, _pointer_type_cache
class c_wchar_p(_SimpleCData):
_type_ = "Z"
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__, c_void_p.from_buffer(self).value)
class c_wchar(_SimpleCData):
_type_ = "u"
def _reset_cache():
_pointer_type_cache.clear()
_c_functype_cache.clear()
if _os.name == "nt":
_win_functype_cache.clear()
# _SimpleCData.c_wchar_p_from_param
POINTER(c_wchar).from_param = c_wchar_p.from_param
# _SimpleCData.c_char_p_from_param
POINTER(c_char).from_param = c_char_p.from_param
_pointer_type_cache[None] = c_void_p
# XXX for whatever reasons, creating the first instance of a callback
# function is needed for the unittests on Win64 to succeed. This MAY
# be a compiler bug, since the problem occurs only when _ctypes is
# compiled with the MS SDK compiler. Or an uninitialized variable?
CFUNCTYPE(c_int)(lambda: None)
def create_unicode_buffer(init, size=None):
"""create_unicode_buffer(aString) -> character array
create_unicode_buffer(anInteger) -> character array
create_unicode_buffer(aString, anInteger) -> character array
"""
if isinstance(init, str):
if size is None:
size = len(init)+1
buftype = c_wchar * size
buf = buftype()
buf.value = init
return buf
elif isinstance(init, int):
buftype = c_wchar * init
buf = buftype()
return buf
raise TypeError(init)
# XXX Deprecated
def SetPointerType(pointer, cls):
if _pointer_type_cache.get(cls, None) is not None:
raise RuntimeError("This type already exists in the cache")
if id(pointer) not in _pointer_type_cache:
raise RuntimeError("What's this???")
pointer.set_type(cls)
_pointer_type_cache[cls] = pointer
del _pointer_type_cache[id(pointer)]
# XXX Deprecated
def ARRAY(typ, len):
return typ * len
################################################################
class CDLL(object):
"""An instance of this class represents a loaded dll/shared
library, exporting functions using the standard C calling
convention (named 'cdecl' on Windows).
The exported functions can be accessed as attributes, or by
indexing with the function name. Examples:
<obj>.qsort -> callable object
<obj>['qsort'] -> callable object
Calling the functions releases the Python GIL during the call and
reacquires it afterwards.
"""
_func_flags_ = _FUNCFLAG_CDECL
_func_restype_ = c_int
# default values for repr
_name = '<uninitialized>'
_handle = 0
_FuncPtr = None
def __init__(self, name, mode=DEFAULT_MODE, handle=None,
use_errno=False,
use_last_error=False):
self._name = name
flags = self._func_flags_
if use_errno:
flags |= _FUNCFLAG_USE_ERRNO
if use_last_error:
flags |= _FUNCFLAG_USE_LASTERROR
class _FuncPtr(_CFuncPtr):
_flags_ = flags
_restype_ = self._func_restype_
self._FuncPtr = _FuncPtr
if handle is None:
self._handle = _dlopen(self._name, mode)
else:
self._handle = handle
def __repr__(self):
return "<%s '%s', handle %x at %#x>" % \
(self.__class__.__name__, self._name,
(self._handle & (_sys.maxsize*2 + 1)),
id(self) & (_sys.maxsize*2 + 1))
def __getattr__(self, name):
if name.startswith('__') and name.endswith('__'):
raise AttributeError(name)
func = self.__getitem__(name)
setattr(self, name, func)
return func
def __getitem__(self, name_or_ordinal):
func = self._FuncPtr((name_or_ordinal, self))
if not isinstance(name_or_ordinal, int):
func.__name__ = name_or_ordinal
return func
class PyDLL(CDLL):
"""This class represents the Python library itself. It allows
accessing Python API functions. The GIL is not released, and
Python exceptions are handled correctly.
"""
_func_flags_ = _FUNCFLAG_CDECL | _FUNCFLAG_PYTHONAPI
if _os.name == "nt":
class WinDLL(CDLL):
"""This class represents a dll exporting functions using the
Windows stdcall calling convention.
"""
_func_flags_ = _FUNCFLAG_STDCALL
# XXX Hm, what about HRESULT as normal parameter?
# Mustn't it derive from c_long then?
from _ctypes import _check_HRESULT, _SimpleCData
class HRESULT(_SimpleCData):
_type_ = "l"
# _check_retval_ is called with the function's result when it
# is used as restype. It checks for the FAILED bit, and
# raises an OSError if it is set.
#
# The _check_retval_ method is implemented in C, so that the
# method definition itself is not included in the traceback
# when it raises an error - that is what we want (and Python
# doesn't have a way to raise an exception in the caller's
# frame).
_check_retval_ = _check_HRESULT
class OleDLL(CDLL):
"""This class represents a dll exporting functions using the
Windows stdcall calling convention, and returning HRESULT.
HRESULT error values are automatically raised as OSError
exceptions.
"""
_func_flags_ = _FUNCFLAG_STDCALL
_func_restype_ = HRESULT
class LibraryLoader(object):
def __init__(self, dlltype):
self._dlltype = dlltype
def __getattr__(self, name):
if name[0] == '_':
raise AttributeError(name)
dll = self._dlltype(name)
setattr(self, name, dll)
return dll
def __getitem__(self, name):
return getattr(self, name)
def LoadLibrary(self, name):
return self._dlltype(name)
cdll = LibraryLoader(CDLL)
pydll = LibraryLoader(PyDLL)
if _os.name == "nt":
pythonapi = PyDLL("python dll", None, _sys.dllhandle)
elif _sys.platform == "cygwin":
pythonapi = PyDLL("libpython%d.%d.dll" % _sys.version_info[:2])
else:
pythonapi = PyDLL(None)
if _os.name == "nt":
windll = LibraryLoader(WinDLL)
oledll = LibraryLoader(OleDLL)
if _os.name == "nt":
GetLastError = windll.kernel32.GetLastError
else:
GetLastError = windll.coredll.GetLastError
from _ctypes import get_last_error, set_last_error
def WinError(code=None, descr=None):
if code is None:
code = GetLastError()
if descr is None:
descr = FormatError(code).strip()
return OSError(None, descr, None, code)
if sizeof(c_uint) == sizeof(c_void_p):
c_size_t = c_uint
c_ssize_t = c_int
elif sizeof(c_ulong) == sizeof(c_void_p):
c_size_t = c_ulong
c_ssize_t = c_long
elif sizeof(c_ulonglong) == sizeof(c_void_p):
c_size_t = c_ulonglong
c_ssize_t = c_longlong
# functions
from _ctypes import _memmove_addr, _memset_addr, _string_at_addr, _cast_addr
## void *memmove(void *, const void *, size_t);
memmove = CFUNCTYPE(c_void_p, c_void_p, c_void_p, c_size_t)(_memmove_addr)
## void *memset(void *, int, size_t)
memset = CFUNCTYPE(c_void_p, c_void_p, c_int, c_size_t)(_memset_addr)
def PYFUNCTYPE(restype, *argtypes):
class CFunctionType(_CFuncPtr):
_argtypes_ = argtypes
_restype_ = restype
_flags_ = _FUNCFLAG_CDECL | _FUNCFLAG_PYTHONAPI
return CFunctionType
_cast = PYFUNCTYPE(py_object, c_void_p, py_object, py_object)(_cast_addr)
def cast(obj, typ):
return _cast(obj, obj, typ)
_string_at = PYFUNCTYPE(py_object, c_void_p, c_int)(_string_at_addr)
def string_at(ptr, size=-1):
"""string_at(addr[, size]) -> string
Return the string at addr."""
return _string_at(ptr, size)
try:
from _ctypes import _wstring_at_addr
except ImportError:
pass
else:
_wstring_at = PYFUNCTYPE(py_object, c_void_p, c_int)(_wstring_at_addr)
def wstring_at(ptr, size=-1):
"""wstring_at(addr[, size]) -> string
Return the string at addr."""
return _wstring_at(ptr, size)
if _os.name == "nt": # COM stuff
def DllGetClassObject(rclsid, riid, ppv):
try:
ccom = __import__("comtypes.server.inprocserver", globals(), locals(), ['*'])
except ImportError:
return -2147221231 # CLASS_E_CLASSNOTAVAILABLE
else:
return ccom.DllGetClassObject(rclsid, riid, ppv)
def DllCanUnloadNow():
try:
ccom = __import__("comtypes.server.inprocserver", globals(), locals(), ['*'])
except ImportError:
return 0 # S_OK
return ccom.DllCanUnloadNow()
from ctypes._endian import BigEndianStructure, LittleEndianStructure
# Fill in specifically-sized types
c_int8 = c_byte
c_uint8 = c_ubyte
for kind in [c_short, c_int, c_long, c_longlong]:
if sizeof(kind) == 2: c_int16 = kind
elif sizeof(kind) == 4: c_int32 = kind
elif sizeof(kind) == 8: c_int64 = kind
for kind in [c_ushort, c_uint, c_ulong, c_ulonglong]:
if sizeof(kind) == 2: c_uint16 = kind
elif sizeof(kind) == 4: c_uint32 = kind
elif sizeof(kind) == 8: c_uint64 = kind
del(kind)
_reset_cache()

View file

@ -0,0 +1,61 @@
import sys
from ctypes import *
_array_type = type(Array)
def _other_endian(typ):
"""Return the type with the 'other' byte order. Simple types like
c_int and so on already have __ctype_be__ and __ctype_le__
attributes which contain the types, for more complicated types
arrays and structures are supported.
"""
# check _OTHER_ENDIAN attribute (present if typ is primitive type)
if hasattr(typ, _OTHER_ENDIAN):
return getattr(typ, _OTHER_ENDIAN)
# if typ is array
if isinstance(typ, _array_type):
return _other_endian(typ._type_) * typ._length_
# if typ is structure
if issubclass(typ, Structure):
return typ
raise TypeError("This type does not support other endian: %s" % typ)
class _swapped_meta(type(Structure)):
def __setattr__(self, attrname, value):
if attrname == "_fields_":
fields = []
for desc in value:
name = desc[0]
typ = desc[1]
rest = desc[2:]
fields.append((name, _other_endian(typ)) + rest)
value = fields
super().__setattr__(attrname, value)
################################################################
# Note: The Structure metaclass checks for the *presence* (not the
# value!) of a _swapped_bytes_ attribute to determine the bit order in
# structures containing bit fields.
if sys.byteorder == "little":
_OTHER_ENDIAN = "__ctype_be__"
LittleEndianStructure = Structure
class BigEndianStructure(Structure, metaclass=_swapped_meta):
"""Structure with big endian byte order"""
__slots__ = ()
_swappedbytes_ = None
elif sys.byteorder == "big":
_OTHER_ENDIAN = "__ctype_le__"
BigEndianStructure = Structure
class LittleEndianStructure(Structure, metaclass=_swapped_meta):
"""Structure with little endian byte order"""
__slots__ = ()
_swappedbytes_ = None
else:
raise RuntimeError("Invalid byteorder")

View file

@ -0,0 +1,7 @@
Files in this directory come from Bob Ippolito's py2app.
License: Any components of the py2app suite may be distributed under
the MIT or PSF open source licenses.
This is version 1.0, SVN revision 789, from 2006/01/25.
The main repository is http://svn.red-bean.com/bob/macholib/trunk/macholib/

View file

@ -0,0 +1,9 @@
"""
Enough Mach-O to make your head spin.
See the relevant header files in /usr/include/mach-o
And also Apple's documentation.
"""
__version__ = '1.0'

View file

@ -0,0 +1,159 @@
"""
dyld emulation
"""
import os
from ctypes.macholib.framework import framework_info
from ctypes.macholib.dylib import dylib_info
from itertools import *
__all__ = [
'dyld_find', 'framework_find',
'framework_info', 'dylib_info',
]
# These are the defaults as per man dyld(1)
#
DEFAULT_FRAMEWORK_FALLBACK = [
os.path.expanduser("~/Library/Frameworks"),
"/Library/Frameworks",
"/Network/Library/Frameworks",
"/System/Library/Frameworks",
]
DEFAULT_LIBRARY_FALLBACK = [
os.path.expanduser("~/lib"),
"/usr/local/lib",
"/lib",
"/usr/lib",
]
def dyld_env(env, var):
if env is None:
env = os.environ
rval = env.get(var)
if rval is None:
return []
return rval.split(':')
def dyld_image_suffix(env=None):
if env is None:
env = os.environ
return env.get('DYLD_IMAGE_SUFFIX')
def dyld_framework_path(env=None):
return dyld_env(env, 'DYLD_FRAMEWORK_PATH')
def dyld_library_path(env=None):
return dyld_env(env, 'DYLD_LIBRARY_PATH')
def dyld_fallback_framework_path(env=None):
return dyld_env(env, 'DYLD_FALLBACK_FRAMEWORK_PATH')
def dyld_fallback_library_path(env=None):
return dyld_env(env, 'DYLD_FALLBACK_LIBRARY_PATH')
def dyld_image_suffix_search(iterator, env=None):
"""For a potential path iterator, add DYLD_IMAGE_SUFFIX semantics"""
suffix = dyld_image_suffix(env)
if suffix is None:
return iterator
def _inject(iterator=iterator, suffix=suffix):
for path in iterator:
if path.endswith('.dylib'):
yield path[:-len('.dylib')] + suffix + '.dylib'
else:
yield path + suffix
yield path
return _inject()
def dyld_override_search(name, env=None):
# If DYLD_FRAMEWORK_PATH is set and this dylib_name is a
# framework name, use the first file that exists in the framework
# path if any. If there is none go on to search the DYLD_LIBRARY_PATH
# if any.
framework = framework_info(name)
if framework is not None:
for path in dyld_framework_path(env):
yield os.path.join(path, framework['name'])
# If DYLD_LIBRARY_PATH is set then use the first file that exists
# in the path. If none use the original name.
for path in dyld_library_path(env):
yield os.path.join(path, os.path.basename(name))
def dyld_executable_path_search(name, executable_path=None):
# If we haven't done any searching and found a library and the
# dylib_name starts with "@executable_path/" then construct the
# library name.
if name.startswith('@executable_path/') and executable_path is not None:
yield os.path.join(executable_path, name[len('@executable_path/'):])
def dyld_default_search(name, env=None):
yield name
framework = framework_info(name)
if framework is not None:
fallback_framework_path = dyld_fallback_framework_path(env)
for path in fallback_framework_path:
yield os.path.join(path, framework['name'])
fallback_library_path = dyld_fallback_library_path(env)
for path in fallback_library_path:
yield os.path.join(path, os.path.basename(name))
if framework is not None and not fallback_framework_path:
for path in DEFAULT_FRAMEWORK_FALLBACK:
yield os.path.join(path, framework['name'])
if not fallback_library_path:
for path in DEFAULT_LIBRARY_FALLBACK:
yield os.path.join(path, os.path.basename(name))
def dyld_find(name, executable_path=None, env=None):
"""
Find a library or framework using dyld semantics
"""
for path in dyld_image_suffix_search(chain(
dyld_override_search(name, env),
dyld_executable_path_search(name, executable_path),
dyld_default_search(name, env),
), env):
if os.path.isfile(path):
return path
raise ValueError("dylib %s could not be found" % (name,))
def framework_find(fn, executable_path=None, env=None):
"""
Find a framework using dyld semantics in a very loose manner.
Will take input such as:
Python
Python.framework
Python.framework/Versions/Current
"""
error = None
try:
return dyld_find(fn, executable_path=executable_path, env=env)
except ValueError as e:
error = e
fmwk_index = fn.rfind('.framework')
if fmwk_index == -1:
fmwk_index = len(fn)
fn += '.framework'
fn = os.path.join(fn, os.path.basename(fn[:fmwk_index]))
try:
return dyld_find(fn, executable_path=executable_path, env=env)
except ValueError:
raise error
def test_dyld_find():
env = {}
assert dyld_find('libSystem.dylib') == '/usr/lib/libSystem.dylib'
assert dyld_find('System.framework/System') == '/System/Library/Frameworks/System.framework/System'
if __name__ == '__main__':
test_dyld_find()

View file

@ -0,0 +1,63 @@
"""
Generic dylib path manipulation
"""
import re
__all__ = ['dylib_info']
DYLIB_RE = re.compile(r"""(?x)
(?P<location>^.*)(?:^|/)
(?P<name>
(?P<shortname>\w+?)
(?:\.(?P<version>[^._]+))?
(?:_(?P<suffix>[^._]+))?
\.dylib$
)
""")
def dylib_info(filename):
"""
A dylib name can take one of the following four forms:
Location/Name.SomeVersion_Suffix.dylib
Location/Name.SomeVersion.dylib
Location/Name_Suffix.dylib
Location/Name.dylib
returns None if not found or a mapping equivalent to:
dict(
location='Location',
name='Name.SomeVersion_Suffix.dylib',
shortname='Name',
version='SomeVersion',
suffix='Suffix',
)
Note that SomeVersion and Suffix are optional and may be None
if not present.
"""
is_dylib = DYLIB_RE.match(filename)
if not is_dylib:
return None
return is_dylib.groupdict()
def test_dylib_info():
def d(location=None, name=None, shortname=None, version=None, suffix=None):
return dict(
location=location,
name=name,
shortname=shortname,
version=version,
suffix=suffix
)
assert dylib_info('completely/invalid') is None
assert dylib_info('completely/invalide_debug') is None
assert dylib_info('P/Foo.dylib') == d('P', 'Foo.dylib', 'Foo')
assert dylib_info('P/Foo_debug.dylib') == d('P', 'Foo_debug.dylib', 'Foo', suffix='debug')
assert dylib_info('P/Foo.A.dylib') == d('P', 'Foo.A.dylib', 'Foo', 'A')
assert dylib_info('P/Foo_debug.A.dylib') == d('P', 'Foo_debug.A.dylib', 'Foo_debug', 'A')
assert dylib_info('P/Foo.A_debug.dylib') == d('P', 'Foo.A_debug.dylib', 'Foo', 'A', 'debug')
if __name__ == '__main__':
test_dylib_info()

View file

@ -0,0 +1,2 @@
#!/bin/sh
svn export --force http://svn.red-bean.com/bob/macholib/trunk/macholib/ .

View file

@ -0,0 +1 @@
svn export --force http://svn.red-bean.com/bob/macholib/trunk/macholib/ .

View file

@ -0,0 +1,65 @@
"""
Generic framework path manipulation
"""
import re
__all__ = ['framework_info']
STRICT_FRAMEWORK_RE = re.compile(r"""(?x)
(?P<location>^.*)(?:^|/)
(?P<name>
(?P<shortname>\w+).framework/
(?:Versions/(?P<version>[^/]+)/)?
(?P=shortname)
(?:_(?P<suffix>[^_]+))?
)$
""")
def framework_info(filename):
"""
A framework name can take one of the following four forms:
Location/Name.framework/Versions/SomeVersion/Name_Suffix
Location/Name.framework/Versions/SomeVersion/Name
Location/Name.framework/Name_Suffix
Location/Name.framework/Name
returns None if not found, or a mapping equivalent to:
dict(
location='Location',
name='Name.framework/Versions/SomeVersion/Name_Suffix',
shortname='Name',
version='SomeVersion',
suffix='Suffix',
)
Note that SomeVersion and Suffix are optional and may be None
if not present
"""
is_framework = STRICT_FRAMEWORK_RE.match(filename)
if not is_framework:
return None
return is_framework.groupdict()
def test_framework_info():
def d(location=None, name=None, shortname=None, version=None, suffix=None):
return dict(
location=location,
name=name,
shortname=shortname,
version=version,
suffix=suffix
)
assert framework_info('completely/invalid') is None
assert framework_info('completely/invalid/_debug') is None
assert framework_info('P/F.framework') is None
assert framework_info('P/F.framework/_debug') is None
assert framework_info('P/F.framework/F') == d('P', 'F.framework/F', 'F')
assert framework_info('P/F.framework/F_debug') == d('P', 'F.framework/F_debug', 'F', suffix='debug')
assert framework_info('P/F.framework/Versions') is None
assert framework_info('P/F.framework/Versions/A') is None
assert framework_info('P/F.framework/Versions/A/F') == d('P', 'F.framework/Versions/A/F', 'F', 'A')
assert framework_info('P/F.framework/Versions/A/F_debug') == d('P', 'F.framework/Versions/A/F_debug', 'F', 'A', 'debug')
if __name__ == '__main__':
test_framework_info()

View file

@ -0,0 +1,14 @@
import os
import unittest
from test import support
# skip tests if _ctypes was not built
ctypes = support.import_module('ctypes')
ctypes_symbols = dir(ctypes)
def need_symbol(name):
return unittest.skipUnless(name in ctypes_symbols,
'{!r} is required'.format(name))
def load_tests(*args):
return support.load_package_tests(os.path.dirname(__file__), *args)

View file

@ -0,0 +1,4 @@
from ctypes.test import load_tests
import unittest
unittest.main()

View file

@ -0,0 +1,73 @@
import unittest
import test.support
from ctypes import *
class AnonTest(unittest.TestCase):
def test_anon(self):
class ANON(Union):
_fields_ = [("a", c_int),
("b", c_int)]
class Y(Structure):
_fields_ = [("x", c_int),
("_", ANON),
("y", c_int)]
_anonymous_ = ["_"]
self.assertEqual(Y.a.offset, sizeof(c_int))
self.assertEqual(Y.b.offset, sizeof(c_int))
self.assertEqual(ANON.a.offset, 0)
self.assertEqual(ANON.b.offset, 0)
def test_anon_nonseq(self):
# TypeError: _anonymous_ must be a sequence
self.assertRaises(TypeError,
lambda: type(Structure)("Name",
(Structure,),
{"_fields_": [], "_anonymous_": 42}))
def test_anon_nonmember(self):
# AttributeError: type object 'Name' has no attribute 'x'
self.assertRaises(AttributeError,
lambda: type(Structure)("Name",
(Structure,),
{"_fields_": [],
"_anonymous_": ["x"]}))
@test.support.cpython_only
def test_issue31490(self):
# There shouldn't be an assertion failure in case the class has an
# attribute whose name is specified in _anonymous_ but not in _fields_.
# AttributeError: 'x' is specified in _anonymous_ but not in _fields_
with self.assertRaises(AttributeError):
class Name(Structure):
_fields_ = []
_anonymous_ = ["x"]
x = 42
def test_nested(self):
class ANON_S(Structure):
_fields_ = [("a", c_int)]
class ANON_U(Union):
_fields_ = [("_", ANON_S),
("b", c_int)]
_anonymous_ = ["_"]
class Y(Structure):
_fields_ = [("x", c_int),
("_", ANON_U),
("y", c_int)]
_anonymous_ = ["_"]
self.assertEqual(Y.x.offset, 0)
self.assertEqual(Y.a.offset, sizeof(c_int))
self.assertEqual(Y.b.offset, sizeof(c_int))
self.assertEqual(Y._.offset, sizeof(c_int))
self.assertEqual(Y.y.offset, sizeof(c_int) * 2)
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,64 @@
import unittest
from ctypes import *
from binascii import hexlify
import re
def dump(obj):
# helper function to dump memory contents in hex, with a hyphen
# between the bytes.
h = hexlify(memoryview(obj)).decode()
return re.sub(r"(..)", r"\1-", h)[:-1]
class Value(Structure):
_fields_ = [("val", c_byte)]
class Container(Structure):
_fields_ = [("pvalues", POINTER(Value))]
class Test(unittest.TestCase):
def test(self):
# create an array of 4 values
val_array = (Value * 4)()
# create a container, which holds a pointer to the pvalues array.
c = Container()
c.pvalues = val_array
# memory contains 4 NUL bytes now, that's correct
self.assertEqual("00-00-00-00", dump(val_array))
# set the values of the array through the pointer:
for i in range(4):
c.pvalues[i].val = i + 1
values = [c.pvalues[i].val for i in range(4)]
# These are the expected results: here s the bug!
self.assertEqual(
(values, dump(val_array)),
([1, 2, 3, 4], "01-02-03-04")
)
def test_2(self):
val_array = (Value * 4)()
# memory contains 4 NUL bytes now, that's correct
self.assertEqual("00-00-00-00", dump(val_array))
ptr = cast(val_array, POINTER(Value))
# set the values of the array through the pointer:
for i in range(4):
ptr[i].val = i + 1
values = [ptr[i].val for i in range(4)]
# These are the expected results: here s the bug!
self.assertEqual(
(values, dump(val_array)),
([1, 2, 3, 4], "01-02-03-04")
)
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,192 @@
import unittest
from test.support import bigmemtest, _2G
import sys
from ctypes import *
from ctypes.test import need_symbol
formats = "bBhHiIlLqQfd"
formats = c_byte, c_ubyte, c_short, c_ushort, c_int, c_uint, \
c_long, c_ulonglong, c_float, c_double, c_longdouble
class ArrayTestCase(unittest.TestCase):
def test_simple(self):
# create classes holding simple numeric types, and check
# various properties.
init = list(range(15, 25))
for fmt in formats:
alen = len(init)
int_array = ARRAY(fmt, alen)
ia = int_array(*init)
# length of instance ok?
self.assertEqual(len(ia), alen)
# slot values ok?
values = [ia[i] for i in range(alen)]
self.assertEqual(values, init)
# out-of-bounds accesses should be caught
with self.assertRaises(IndexError): ia[alen]
with self.assertRaises(IndexError): ia[-alen-1]
# change the items
from operator import setitem
new_values = list(range(42, 42+alen))
[setitem(ia, n, new_values[n]) for n in range(alen)]
values = [ia[i] for i in range(alen)]
self.assertEqual(values, new_values)
# are the items initialized to 0?
ia = int_array()
values = [ia[i] for i in range(alen)]
self.assertEqual(values, [0] * alen)
# Too many initializers should be caught
self.assertRaises(IndexError, int_array, *range(alen*2))
CharArray = ARRAY(c_char, 3)
ca = CharArray(b"a", b"b", b"c")
# Should this work? It doesn't:
# CharArray("abc")
self.assertRaises(TypeError, CharArray, "abc")
self.assertEqual(ca[0], b"a")
self.assertEqual(ca[1], b"b")
self.assertEqual(ca[2], b"c")
self.assertEqual(ca[-3], b"a")
self.assertEqual(ca[-2], b"b")
self.assertEqual(ca[-1], b"c")
self.assertEqual(len(ca), 3)
# cannot delete items
from operator import delitem
self.assertRaises(TypeError, delitem, ca, 0)
def test_numeric_arrays(self):
alen = 5
numarray = ARRAY(c_int, alen)
na = numarray()
values = [na[i] for i in range(alen)]
self.assertEqual(values, [0] * alen)
na = numarray(*[c_int()] * alen)
values = [na[i] for i in range(alen)]
self.assertEqual(values, [0]*alen)
na = numarray(1, 2, 3, 4, 5)
values = [i for i in na]
self.assertEqual(values, [1, 2, 3, 4, 5])
na = numarray(*map(c_int, (1, 2, 3, 4, 5)))
values = [i for i in na]
self.assertEqual(values, [1, 2, 3, 4, 5])
def test_classcache(self):
self.assertIsNot(ARRAY(c_int, 3), ARRAY(c_int, 4))
self.assertIs(ARRAY(c_int, 3), ARRAY(c_int, 3))
def test_from_address(self):
# Failed with 0.9.8, reported by JUrner
p = create_string_buffer(b"foo")
sz = (c_char * 3).from_address(addressof(p))
self.assertEqual(sz[:], b"foo")
self.assertEqual(sz[::], b"foo")
self.assertEqual(sz[::-1], b"oof")
self.assertEqual(sz[::3], b"f")
self.assertEqual(sz[1:4:2], b"o")
self.assertEqual(sz.value, b"foo")
@need_symbol('create_unicode_buffer')
def test_from_addressW(self):
p = create_unicode_buffer("foo")
sz = (c_wchar * 3).from_address(addressof(p))
self.assertEqual(sz[:], "foo")
self.assertEqual(sz[::], "foo")
self.assertEqual(sz[::-1], "oof")
self.assertEqual(sz[::3], "f")
self.assertEqual(sz[1:4:2], "o")
self.assertEqual(sz.value, "foo")
def test_cache(self):
# Array types are cached internally in the _ctypes extension,
# in a WeakValueDictionary. Make sure the array type is
# removed from the cache when the itemtype goes away. This
# test will not fail, but will show a leak in the testsuite.
# Create a new type:
class my_int(c_int):
pass
# Create a new array type based on it:
t1 = my_int * 1
t2 = my_int * 1
self.assertIs(t1, t2)
def test_subclass(self):
class T(Array):
_type_ = c_int
_length_ = 13
class U(T):
pass
class V(U):
pass
class W(V):
pass
class X(T):
_type_ = c_short
class Y(T):
_length_ = 187
for c in [T, U, V, W]:
self.assertEqual(c._type_, c_int)
self.assertEqual(c._length_, 13)
self.assertEqual(c()._type_, c_int)
self.assertEqual(c()._length_, 13)
self.assertEqual(X._type_, c_short)
self.assertEqual(X._length_, 13)
self.assertEqual(X()._type_, c_short)
self.assertEqual(X()._length_, 13)
self.assertEqual(Y._type_, c_int)
self.assertEqual(Y._length_, 187)
self.assertEqual(Y()._type_, c_int)
self.assertEqual(Y()._length_, 187)
def test_bad_subclass(self):
import sys
with self.assertRaises(AttributeError):
class T(Array):
pass
with self.assertRaises(AttributeError):
class T(Array):
_type_ = c_int
with self.assertRaises(AttributeError):
class T(Array):
_length_ = 13
with self.assertRaises(OverflowError):
class T(Array):
_type_ = c_int
_length_ = sys.maxsize * 2
with self.assertRaises(AttributeError):
class T(Array):
_type_ = c_int
_length_ = 1.87
@unittest.skipUnless(sys.maxsize > 2**32, 'requires 64bit platform')
@bigmemtest(size=_2G, memuse=1, dry_run=False)
def test_large_array(self, size):
c_char * size
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,230 @@
import unittest
from ctypes import *
from ctypes.test import need_symbol
import _ctypes_test
dll = CDLL(_ctypes_test.__file__)
try:
CALLBACK_FUNCTYPE = WINFUNCTYPE
except NameError:
# fake to enable this test on Linux
CALLBACK_FUNCTYPE = CFUNCTYPE
class POINT(Structure):
_fields_ = [("x", c_int), ("y", c_int)]
class BasicWrapTestCase(unittest.TestCase):
def wrap(self, param):
return param
@need_symbol('c_wchar')
def test_wchar_parm(self):
f = dll._testfunc_i_bhilfd
f.argtypes = [c_byte, c_wchar, c_int, c_long, c_float, c_double]
result = f(self.wrap(1), self.wrap("x"), self.wrap(3), self.wrap(4), self.wrap(5.0), self.wrap(6.0))
self.assertEqual(result, 139)
self.assertIs(type(result), int)
def test_pointers(self):
f = dll._testfunc_p_p
f.restype = POINTER(c_int)
f.argtypes = [POINTER(c_int)]
# This only works if the value c_int(42) passed to the
# function is still alive while the pointer (the result) is
# used.
v = c_int(42)
self.assertEqual(pointer(v).contents.value, 42)
result = f(self.wrap(pointer(v)))
self.assertEqual(type(result), POINTER(c_int))
self.assertEqual(result.contents.value, 42)
# This on works...
result = f(self.wrap(pointer(v)))
self.assertEqual(result.contents.value, v.value)
p = pointer(c_int(99))
result = f(self.wrap(p))
self.assertEqual(result.contents.value, 99)
def test_shorts(self):
f = dll._testfunc_callback_i_if
args = []
expected = [262144, 131072, 65536, 32768, 16384, 8192, 4096, 2048,
1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
def callback(v):
args.append(v)
return v
CallBack = CFUNCTYPE(c_int, c_int)
cb = CallBack(callback)
f(self.wrap(2**18), self.wrap(cb))
self.assertEqual(args, expected)
################################################################
def test_callbacks(self):
f = dll._testfunc_callback_i_if
f.restype = c_int
f.argtypes = None
MyCallback = CFUNCTYPE(c_int, c_int)
def callback(value):
#print "called back with", value
return value
cb = MyCallback(callback)
result = f(self.wrap(-10), self.wrap(cb))
self.assertEqual(result, -18)
# test with prototype
f.argtypes = [c_int, MyCallback]
cb = MyCallback(callback)
result = f(self.wrap(-10), self.wrap(cb))
self.assertEqual(result, -18)
result = f(self.wrap(-10), self.wrap(cb))
self.assertEqual(result, -18)
AnotherCallback = CALLBACK_FUNCTYPE(c_int, c_int, c_int, c_int, c_int)
# check that the prototype works: we call f with wrong
# argument types
cb = AnotherCallback(callback)
self.assertRaises(ArgumentError, f, self.wrap(-10), self.wrap(cb))
def test_callbacks_2(self):
# Can also use simple datatypes as argument type specifiers
# for the callback function.
# In this case the call receives an instance of that type
f = dll._testfunc_callback_i_if
f.restype = c_int
MyCallback = CFUNCTYPE(c_int, c_int)
f.argtypes = [c_int, MyCallback]
def callback(value):
#print "called back with", value
self.assertEqual(type(value), int)
return value
cb = MyCallback(callback)
result = f(self.wrap(-10), self.wrap(cb))
self.assertEqual(result, -18)
def test_longlong_callbacks(self):
f = dll._testfunc_callback_q_qf
f.restype = c_longlong
MyCallback = CFUNCTYPE(c_longlong, c_longlong)
f.argtypes = [c_longlong, MyCallback]
def callback(value):
self.assertIsInstance(value, int)
return value & 0x7FFFFFFF
cb = MyCallback(callback)
self.assertEqual(13577625587, int(f(self.wrap(1000000000000), self.wrap(cb))))
def test_byval(self):
# without prototype
ptin = POINT(1, 2)
ptout = POINT()
# EXPORT int _testfunc_byval(point in, point *pout)
result = dll._testfunc_byval(ptin, byref(ptout))
got = result, ptout.x, ptout.y
expected = 3, 1, 2
self.assertEqual(got, expected)
# with prototype
ptin = POINT(101, 102)
ptout = POINT()
dll._testfunc_byval.argtypes = (POINT, POINTER(POINT))
dll._testfunc_byval.restype = c_int
result = dll._testfunc_byval(self.wrap(ptin), byref(ptout))
got = result, ptout.x, ptout.y
expected = 203, 101, 102
self.assertEqual(got, expected)
def test_struct_return_2H(self):
class S2H(Structure):
_fields_ = [("x", c_short),
("y", c_short)]
dll.ret_2h_func.restype = S2H
dll.ret_2h_func.argtypes = [S2H]
inp = S2H(99, 88)
s2h = dll.ret_2h_func(self.wrap(inp))
self.assertEqual((s2h.x, s2h.y), (99*2, 88*3))
# Test also that the original struct was unmodified (i.e. was passed by
# value)
self.assertEqual((inp.x, inp.y), (99, 88))
def test_struct_return_8H(self):
class S8I(Structure):
_fields_ = [("a", c_int),
("b", c_int),
("c", c_int),
("d", c_int),
("e", c_int),
("f", c_int),
("g", c_int),
("h", c_int)]
dll.ret_8i_func.restype = S8I
dll.ret_8i_func.argtypes = [S8I]
inp = S8I(9, 8, 7, 6, 5, 4, 3, 2)
s8i = dll.ret_8i_func(self.wrap(inp))
self.assertEqual((s8i.a, s8i.b, s8i.c, s8i.d, s8i.e, s8i.f, s8i.g, s8i.h),
(9*2, 8*3, 7*4, 6*5, 5*6, 4*7, 3*8, 2*9))
def test_recursive_as_param(self):
from ctypes import c_int
class A(object):
pass
a = A()
a._as_parameter_ = a
with self.assertRaises(RecursionError):
c_int.from_param(a)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class AsParamWrapper(object):
def __init__(self, param):
self._as_parameter_ = param
class AsParamWrapperTestCase(BasicWrapTestCase):
wrap = AsParamWrapper
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class AsParamPropertyWrapper(object):
def __init__(self, param):
self._param = param
def getParameter(self):
return self._param
_as_parameter_ = property(getParameter)
class AsParamPropertyWrapperTestCase(BasicWrapTestCase):
wrap = AsParamPropertyWrapper
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,290 @@
from ctypes import *
from ctypes.test import need_symbol
import unittest
import os
import _ctypes_test
class BITS(Structure):
_fields_ = [("A", c_int, 1),
("B", c_int, 2),
("C", c_int, 3),
("D", c_int, 4),
("E", c_int, 5),
("F", c_int, 6),
("G", c_int, 7),
("H", c_int, 8),
("I", c_int, 9),
("M", c_short, 1),
("N", c_short, 2),
("O", c_short, 3),
("P", c_short, 4),
("Q", c_short, 5),
("R", c_short, 6),
("S", c_short, 7)]
func = CDLL(_ctypes_test.__file__).unpack_bitfields
func.argtypes = POINTER(BITS), c_char
##for n in "ABCDEFGHIMNOPQRS":
## print n, hex(getattr(BITS, n).size), getattr(BITS, n).offset
class C_Test(unittest.TestCase):
def test_ints(self):
for i in range(512):
for name in "ABCDEFGHI":
b = BITS()
setattr(b, name, i)
self.assertEqual(getattr(b, name), func(byref(b), name.encode('ascii')))
def test_shorts(self):
for i in range(256):
for name in "MNOPQRS":
b = BITS()
setattr(b, name, i)
self.assertEqual(getattr(b, name), func(byref(b), name.encode('ascii')))
signed_int_types = (c_byte, c_short, c_int, c_long, c_longlong)
unsigned_int_types = (c_ubyte, c_ushort, c_uint, c_ulong, c_ulonglong)
int_types = unsigned_int_types + signed_int_types
class BitFieldTest(unittest.TestCase):
def test_longlong(self):
class X(Structure):
_fields_ = [("a", c_longlong, 1),
("b", c_longlong, 62),
("c", c_longlong, 1)]
self.assertEqual(sizeof(X), sizeof(c_longlong))
x = X()
x.a, x.b, x.c = -1, 7, -1
self.assertEqual((x.a, x.b, x.c), (-1, 7, -1))
def test_ulonglong(self):
class X(Structure):
_fields_ = [("a", c_ulonglong, 1),
("b", c_ulonglong, 62),
("c", c_ulonglong, 1)]
self.assertEqual(sizeof(X), sizeof(c_longlong))
x = X()
self.assertEqual((x.a, x.b, x.c), (0, 0, 0))
x.a, x.b, x.c = 7, 7, 7
self.assertEqual((x.a, x.b, x.c), (1, 7, 1))
def test_signed(self):
for c_typ in signed_int_types:
class X(Structure):
_fields_ = [("dummy", c_typ),
("a", c_typ, 3),
("b", c_typ, 3),
("c", c_typ, 1)]
self.assertEqual(sizeof(X), sizeof(c_typ)*2)
x = X()
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, 0, 0, 0))
x.a = -1
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, -1, 0, 0))
x.a, x.b = 0, -1
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, 0, -1, 0))
def test_unsigned(self):
for c_typ in unsigned_int_types:
class X(Structure):
_fields_ = [("a", c_typ, 3),
("b", c_typ, 3),
("c", c_typ, 1)]
self.assertEqual(sizeof(X), sizeof(c_typ))
x = X()
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, 0, 0, 0))
x.a = -1
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, 7, 0, 0))
x.a, x.b = 0, -1
self.assertEqual((c_typ, x.a, x.b, x.c), (c_typ, 0, 7, 0))
def fail_fields(self, *fields):
return self.get_except(type(Structure), "X", (),
{"_fields_": fields})
def test_nonint_types(self):
# bit fields are not allowed on non-integer types.
result = self.fail_fields(("a", c_char_p, 1))
self.assertEqual(result, (TypeError, 'bit fields not allowed for type c_char_p'))
result = self.fail_fields(("a", c_void_p, 1))
self.assertEqual(result, (TypeError, 'bit fields not allowed for type c_void_p'))
if c_int != c_long:
result = self.fail_fields(("a", POINTER(c_int), 1))
self.assertEqual(result, (TypeError, 'bit fields not allowed for type LP_c_int'))
result = self.fail_fields(("a", c_char, 1))
self.assertEqual(result, (TypeError, 'bit fields not allowed for type c_char'))
class Dummy(Structure):
_fields_ = []
result = self.fail_fields(("a", Dummy, 1))
self.assertEqual(result, (TypeError, 'bit fields not allowed for type Dummy'))
@need_symbol('c_wchar')
def test_c_wchar(self):
result = self.fail_fields(("a", c_wchar, 1))
self.assertEqual(result,
(TypeError, 'bit fields not allowed for type c_wchar'))
def test_single_bitfield_size(self):
for c_typ in int_types:
result = self.fail_fields(("a", c_typ, -1))
self.assertEqual(result, (ValueError, 'number of bits invalid for bit field'))
result = self.fail_fields(("a", c_typ, 0))
self.assertEqual(result, (ValueError, 'number of bits invalid for bit field'))
class X(Structure):
_fields_ = [("a", c_typ, 1)]
self.assertEqual(sizeof(X), sizeof(c_typ))
class X(Structure):
_fields_ = [("a", c_typ, sizeof(c_typ)*8)]
self.assertEqual(sizeof(X), sizeof(c_typ))
result = self.fail_fields(("a", c_typ, sizeof(c_typ)*8 + 1))
self.assertEqual(result, (ValueError, 'number of bits invalid for bit field'))
def test_multi_bitfields_size(self):
class X(Structure):
_fields_ = [("a", c_short, 1),
("b", c_short, 14),
("c", c_short, 1)]
self.assertEqual(sizeof(X), sizeof(c_short))
class X(Structure):
_fields_ = [("a", c_short, 1),
("a1", c_short),
("b", c_short, 14),
("c", c_short, 1)]
self.assertEqual(sizeof(X), sizeof(c_short)*3)
self.assertEqual(X.a.offset, 0)
self.assertEqual(X.a1.offset, sizeof(c_short))
self.assertEqual(X.b.offset, sizeof(c_short)*2)
self.assertEqual(X.c.offset, sizeof(c_short)*2)
class X(Structure):
_fields_ = [("a", c_short, 3),
("b", c_short, 14),
("c", c_short, 14)]
self.assertEqual(sizeof(X), sizeof(c_short)*3)
self.assertEqual(X.a.offset, sizeof(c_short)*0)
self.assertEqual(X.b.offset, sizeof(c_short)*1)
self.assertEqual(X.c.offset, sizeof(c_short)*2)
def get_except(self, func, *args, **kw):
try:
func(*args, **kw)
except Exception as detail:
return detail.__class__, str(detail)
def test_mixed_1(self):
class X(Structure):
_fields_ = [("a", c_byte, 4),
("b", c_int, 4)]
if os.name == "nt":
self.assertEqual(sizeof(X), sizeof(c_int)*2)
else:
self.assertEqual(sizeof(X), sizeof(c_int))
def test_mixed_2(self):
class X(Structure):
_fields_ = [("a", c_byte, 4),
("b", c_int, 32)]
self.assertEqual(sizeof(X), alignment(c_int)+sizeof(c_int))
def test_mixed_3(self):
class X(Structure):
_fields_ = [("a", c_byte, 4),
("b", c_ubyte, 4)]
self.assertEqual(sizeof(X), sizeof(c_byte))
def test_mixed_4(self):
class X(Structure):
_fields_ = [("a", c_short, 4),
("b", c_short, 4),
("c", c_int, 24),
("d", c_short, 4),
("e", c_short, 4),
("f", c_int, 24)]
# MSVC does NOT combine c_short and c_int into one field, GCC
# does (unless GCC is run with '-mms-bitfields' which
# produces code compatible with MSVC).
if os.name == "nt":
self.assertEqual(sizeof(X), sizeof(c_int) * 4)
else:
self.assertEqual(sizeof(X), sizeof(c_int) * 2)
def test_anon_bitfields(self):
# anonymous bit-fields gave a strange error message
class X(Structure):
_fields_ = [("a", c_byte, 4),
("b", c_ubyte, 4)]
class Y(Structure):
_anonymous_ = ["_"]
_fields_ = [("_", X)]
@need_symbol('c_uint32')
def test_uint32(self):
class X(Structure):
_fields_ = [("a", c_uint32, 32)]
x = X()
x.a = 10
self.assertEqual(x.a, 10)
x.a = 0xFDCBA987
self.assertEqual(x.a, 0xFDCBA987)
@need_symbol('c_uint64')
def test_uint64(self):
class X(Structure):
_fields_ = [("a", c_uint64, 64)]
x = X()
x.a = 10
self.assertEqual(x.a, 10)
x.a = 0xFEDCBA9876543211
self.assertEqual(x.a, 0xFEDCBA9876543211)
@need_symbol('c_uint32')
def test_uint32_swap_little_endian(self):
# Issue #23319
class Little(LittleEndianStructure):
_fields_ = [("a", c_uint32, 24),
("b", c_uint32, 4),
("c", c_uint32, 4)]
b = bytearray(4)
x = Little.from_buffer(b)
x.a = 0xabcdef
x.b = 1
x.c = 2
self.assertEqual(b, b'\xef\xcd\xab\x21')
@need_symbol('c_uint32')
def test_uint32_swap_big_endian(self):
# Issue #23319
class Big(BigEndianStructure):
_fields_ = [("a", c_uint32, 24),
("b", c_uint32, 4),
("c", c_uint32, 4)]
b = bytearray(4)
x = Big.from_buffer(b)
x.a = 0xabcdef
x.b = 1
x.c = 2
self.assertEqual(b, b'\xab\xcd\xef\x12')
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,64 @@
from ctypes import *
from ctypes.test import need_symbol
import unittest
class StringBufferTestCase(unittest.TestCase):
def test_buffer(self):
b = create_string_buffer(32)
self.assertEqual(len(b), 32)
self.assertEqual(sizeof(b), 32 * sizeof(c_char))
self.assertIs(type(b[0]), bytes)
b = create_string_buffer(b"abc")
self.assertEqual(len(b), 4) # trailing nul char
self.assertEqual(sizeof(b), 4 * sizeof(c_char))
self.assertIs(type(b[0]), bytes)
self.assertEqual(b[0], b"a")
self.assertEqual(b[:], b"abc\0")
self.assertEqual(b[::], b"abc\0")
self.assertEqual(b[::-1], b"\0cba")
self.assertEqual(b[::2], b"ac")
self.assertEqual(b[::5], b"a")
self.assertRaises(TypeError, create_string_buffer, "abc")
def test_buffer_interface(self):
self.assertEqual(len(bytearray(create_string_buffer(0))), 0)
self.assertEqual(len(bytearray(create_string_buffer(1))), 1)
@need_symbol('c_wchar')
def test_unicode_buffer(self):
b = create_unicode_buffer(32)
self.assertEqual(len(b), 32)
self.assertEqual(sizeof(b), 32 * sizeof(c_wchar))
self.assertIs(type(b[0]), str)
b = create_unicode_buffer("abc")
self.assertEqual(len(b), 4) # trailing nul char
self.assertEqual(sizeof(b), 4 * sizeof(c_wchar))
self.assertIs(type(b[0]), str)
self.assertEqual(b[0], "a")
self.assertEqual(b[:], "abc\0")
self.assertEqual(b[::], "abc\0")
self.assertEqual(b[::-1], "\0cba")
self.assertEqual(b[::2], "ac")
self.assertEqual(b[::5], "a")
self.assertRaises(TypeError, create_unicode_buffer, b"abc")
@need_symbol('c_wchar')
def test_unicode_conversion(self):
b = create_unicode_buffer("abc")
self.assertEqual(len(b), 4) # trailing nul char
self.assertEqual(sizeof(b), 4 * sizeof(c_wchar))
self.assertIs(type(b[0]), str)
self.assertEqual(b[0], "a")
self.assertEqual(b[:], "abc\0")
self.assertEqual(b[::], "abc\0")
self.assertEqual(b[::-1], "\0cba")
self.assertEqual(b[::2], "ac")
self.assertEqual(b[::5], "a")
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,66 @@
"""Test where byte objects are accepted"""
import unittest
import sys
from ctypes import *
class BytesTest(unittest.TestCase):
def test_c_char(self):
x = c_char(b"x")
self.assertRaises(TypeError, c_char, "x")
x.value = b"y"
with self.assertRaises(TypeError):
x.value = "y"
c_char.from_param(b"x")
self.assertRaises(TypeError, c_char.from_param, "x")
self.assertIn('xbd', repr(c_char.from_param(b"\xbd")))
(c_char * 3)(b"a", b"b", b"c")
self.assertRaises(TypeError, c_char * 3, "a", "b", "c")
def test_c_wchar(self):
x = c_wchar("x")
self.assertRaises(TypeError, c_wchar, b"x")
x.value = "y"
with self.assertRaises(TypeError):
x.value = b"y"
c_wchar.from_param("x")
self.assertRaises(TypeError, c_wchar.from_param, b"x")
(c_wchar * 3)("a", "b", "c")
self.assertRaises(TypeError, c_wchar * 3, b"a", b"b", b"c")
def test_c_char_p(self):
c_char_p(b"foo bar")
self.assertRaises(TypeError, c_char_p, "foo bar")
def test_c_wchar_p(self):
c_wchar_p("foo bar")
self.assertRaises(TypeError, c_wchar_p, b"foo bar")
def test_struct(self):
class X(Structure):
_fields_ = [("a", c_char * 3)]
x = X(b"abc")
self.assertRaises(TypeError, X, "abc")
self.assertEqual(x.a, b"abc")
self.assertEqual(type(x.a), bytes)
def test_struct_W(self):
class X(Structure):
_fields_ = [("a", c_wchar * 3)]
x = X("abc")
self.assertRaises(TypeError, X, b"abc")
self.assertEqual(x.a, "abc")
self.assertEqual(type(x.a), str)
@unittest.skipUnless(sys.platform == "win32", 'Windows-specific test')
def test_BSTR(self):
from _ctypes import _SimpleCData
class BSTR(_SimpleCData):
_type_ = "X"
BSTR("abc")
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,315 @@
import sys, unittest, struct, math, ctypes
from binascii import hexlify
from ctypes import *
def bin(s):
return hexlify(memoryview(s)).decode().upper()
# Each *simple* type that supports different byte orders has an
# __ctype_be__ attribute that specifies the same type in BIG ENDIAN
# byte order, and a __ctype_le__ attribute that is the same type in
# LITTLE ENDIAN byte order.
#
# For Structures and Unions, these types are created on demand.
class Test(unittest.TestCase):
@unittest.skip('test disabled')
def test_X(self):
print(sys.byteorder, file=sys.stderr)
for i in range(32):
bits = BITS()
setattr(bits, "i%s" % i, 1)
dump(bits)
def test_slots(self):
class BigPoint(BigEndianStructure):
__slots__ = ()
_fields_ = [("x", c_int), ("y", c_int)]
class LowPoint(LittleEndianStructure):
__slots__ = ()
_fields_ = [("x", c_int), ("y", c_int)]
big = BigPoint()
little = LowPoint()
big.x = 4
big.y = 2
little.x = 2
little.y = 4
with self.assertRaises(AttributeError):
big.z = 42
with self.assertRaises(AttributeError):
little.z = 24
def test_endian_short(self):
if sys.byteorder == "little":
self.assertIs(c_short.__ctype_le__, c_short)
self.assertIs(c_short.__ctype_be__.__ctype_le__, c_short)
else:
self.assertIs(c_short.__ctype_be__, c_short)
self.assertIs(c_short.__ctype_le__.__ctype_be__, c_short)
s = c_short.__ctype_be__(0x1234)
self.assertEqual(bin(struct.pack(">h", 0x1234)), "1234")
self.assertEqual(bin(s), "1234")
self.assertEqual(s.value, 0x1234)
s = c_short.__ctype_le__(0x1234)
self.assertEqual(bin(struct.pack("<h", 0x1234)), "3412")
self.assertEqual(bin(s), "3412")
self.assertEqual(s.value, 0x1234)
s = c_ushort.__ctype_be__(0x1234)
self.assertEqual(bin(struct.pack(">h", 0x1234)), "1234")
self.assertEqual(bin(s), "1234")
self.assertEqual(s.value, 0x1234)
s = c_ushort.__ctype_le__(0x1234)
self.assertEqual(bin(struct.pack("<h", 0x1234)), "3412")
self.assertEqual(bin(s), "3412")
self.assertEqual(s.value, 0x1234)
def test_endian_int(self):
if sys.byteorder == "little":
self.assertIs(c_int.__ctype_le__, c_int)
self.assertIs(c_int.__ctype_be__.__ctype_le__, c_int)
else:
self.assertIs(c_int.__ctype_be__, c_int)
self.assertIs(c_int.__ctype_le__.__ctype_be__, c_int)
s = c_int.__ctype_be__(0x12345678)
self.assertEqual(bin(struct.pack(">i", 0x12345678)), "12345678")
self.assertEqual(bin(s), "12345678")
self.assertEqual(s.value, 0x12345678)
s = c_int.__ctype_le__(0x12345678)
self.assertEqual(bin(struct.pack("<i", 0x12345678)), "78563412")
self.assertEqual(bin(s), "78563412")
self.assertEqual(s.value, 0x12345678)
s = c_uint.__ctype_be__(0x12345678)
self.assertEqual(bin(struct.pack(">I", 0x12345678)), "12345678")
self.assertEqual(bin(s), "12345678")
self.assertEqual(s.value, 0x12345678)
s = c_uint.__ctype_le__(0x12345678)
self.assertEqual(bin(struct.pack("<I", 0x12345678)), "78563412")
self.assertEqual(bin(s), "78563412")
self.assertEqual(s.value, 0x12345678)
def test_endian_longlong(self):
if sys.byteorder == "little":
self.assertIs(c_longlong.__ctype_le__, c_longlong)
self.assertIs(c_longlong.__ctype_be__.__ctype_le__, c_longlong)
else:
self.assertIs(c_longlong.__ctype_be__, c_longlong)
self.assertIs(c_longlong.__ctype_le__.__ctype_be__, c_longlong)
s = c_longlong.__ctype_be__(0x1234567890ABCDEF)
self.assertEqual(bin(struct.pack(">q", 0x1234567890ABCDEF)), "1234567890ABCDEF")
self.assertEqual(bin(s), "1234567890ABCDEF")
self.assertEqual(s.value, 0x1234567890ABCDEF)
s = c_longlong.__ctype_le__(0x1234567890ABCDEF)
self.assertEqual(bin(struct.pack("<q", 0x1234567890ABCDEF)), "EFCDAB9078563412")
self.assertEqual(bin(s), "EFCDAB9078563412")
self.assertEqual(s.value, 0x1234567890ABCDEF)
s = c_ulonglong.__ctype_be__(0x1234567890ABCDEF)
self.assertEqual(bin(struct.pack(">Q", 0x1234567890ABCDEF)), "1234567890ABCDEF")
self.assertEqual(bin(s), "1234567890ABCDEF")
self.assertEqual(s.value, 0x1234567890ABCDEF)
s = c_ulonglong.__ctype_le__(0x1234567890ABCDEF)
self.assertEqual(bin(struct.pack("<Q", 0x1234567890ABCDEF)), "EFCDAB9078563412")
self.assertEqual(bin(s), "EFCDAB9078563412")
self.assertEqual(s.value, 0x1234567890ABCDEF)
def test_endian_float(self):
if sys.byteorder == "little":
self.assertIs(c_float.__ctype_le__, c_float)
self.assertIs(c_float.__ctype_be__.__ctype_le__, c_float)
else:
self.assertIs(c_float.__ctype_be__, c_float)
self.assertIs(c_float.__ctype_le__.__ctype_be__, c_float)
s = c_float(math.pi)
self.assertEqual(bin(struct.pack("f", math.pi)), bin(s))
# Hm, what's the precision of a float compared to a double?
self.assertAlmostEqual(s.value, math.pi, places=6)
s = c_float.__ctype_le__(math.pi)
self.assertAlmostEqual(s.value, math.pi, places=6)
self.assertEqual(bin(struct.pack("<f", math.pi)), bin(s))
s = c_float.__ctype_be__(math.pi)
self.assertAlmostEqual(s.value, math.pi, places=6)
self.assertEqual(bin(struct.pack(">f", math.pi)), bin(s))
def test_endian_double(self):
if sys.byteorder == "little":
self.assertIs(c_double.__ctype_le__, c_double)
self.assertIs(c_double.__ctype_be__.__ctype_le__, c_double)
else:
self.assertIs(c_double.__ctype_be__, c_double)
self.assertIs(c_double.__ctype_le__.__ctype_be__, c_double)
s = c_double(math.pi)
self.assertEqual(s.value, math.pi)
self.assertEqual(bin(struct.pack("d", math.pi)), bin(s))
s = c_double.__ctype_le__(math.pi)
self.assertEqual(s.value, math.pi)
self.assertEqual(bin(struct.pack("<d", math.pi)), bin(s))
s = c_double.__ctype_be__(math.pi)
self.assertEqual(s.value, math.pi)
self.assertEqual(bin(struct.pack(">d", math.pi)), bin(s))
def test_endian_other(self):
self.assertIs(c_byte.__ctype_le__, c_byte)
self.assertIs(c_byte.__ctype_be__, c_byte)
self.assertIs(c_ubyte.__ctype_le__, c_ubyte)
self.assertIs(c_ubyte.__ctype_be__, c_ubyte)
self.assertIs(c_char.__ctype_le__, c_char)
self.assertIs(c_char.__ctype_be__, c_char)
def test_struct_fields_1(self):
if sys.byteorder == "little":
base = BigEndianStructure
else:
base = LittleEndianStructure
class T(base):
pass
_fields_ = [("a", c_ubyte),
("b", c_byte),
("c", c_short),
("d", c_ushort),
("e", c_int),
("f", c_uint),
("g", c_long),
("h", c_ulong),
("i", c_longlong),
("k", c_ulonglong),
("l", c_float),
("m", c_double),
("n", c_char),
("b1", c_byte, 3),
("b2", c_byte, 3),
("b3", c_byte, 2),
("a", c_int * 3 * 3 * 3)]
T._fields_ = _fields_
# these fields do not support different byte order:
for typ in c_wchar, c_void_p, POINTER(c_int):
_fields_.append(("x", typ))
class T(base):
pass
self.assertRaises(TypeError, setattr, T, "_fields_", [("x", typ)])
def test_struct_struct(self):
# nested structures with different byteorders
# create nested structures with given byteorders and set memory to data
for nested, data in (
(BigEndianStructure, b'\0\0\0\1\0\0\0\2'),
(LittleEndianStructure, b'\1\0\0\0\2\0\0\0'),
):
for parent in (
BigEndianStructure,
LittleEndianStructure,
Structure,
):
class NestedStructure(nested):
_fields_ = [("x", c_uint32),
("y", c_uint32)]
class TestStructure(parent):
_fields_ = [("point", NestedStructure)]
self.assertEqual(len(data), sizeof(TestStructure))
ptr = POINTER(TestStructure)
s = cast(data, ptr)[0]
del ctypes._pointer_type_cache[TestStructure]
self.assertEqual(s.point.x, 1)
self.assertEqual(s.point.y, 2)
def test_struct_fields_2(self):
# standard packing in struct uses no alignment.
# So, we have to align using pad bytes.
#
# Unaligned accesses will crash Python (on those platforms that
# don't allow it, like sparc solaris).
if sys.byteorder == "little":
base = BigEndianStructure
fmt = ">bxhid"
else:
base = LittleEndianStructure
fmt = "<bxhid"
class S(base):
_fields_ = [("b", c_byte),
("h", c_short),
("i", c_int),
("d", c_double)]
s1 = S(0x12, 0x1234, 0x12345678, 3.14)
s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14)
self.assertEqual(bin(s1), bin(s2))
def test_unaligned_nonnative_struct_fields(self):
if sys.byteorder == "little":
base = BigEndianStructure
fmt = ">b h xi xd"
else:
base = LittleEndianStructure
fmt = "<b h xi xd"
class S(base):
_pack_ = 1
_fields_ = [("b", c_byte),
("h", c_short),
("_1", c_byte),
("i", c_int),
("_2", c_byte),
("d", c_double)]
s1 = S()
s1.b = 0x12
s1.h = 0x1234
s1.i = 0x12345678
s1.d = 3.14
s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14)
self.assertEqual(bin(s1), bin(s2))
def test_unaligned_native_struct_fields(self):
if sys.byteorder == "little":
fmt = "<b h xi xd"
else:
base = LittleEndianStructure
fmt = ">b h xi xd"
class S(Structure):
_pack_ = 1
_fields_ = [("b", c_byte),
("h", c_short),
("_1", c_byte),
("i", c_int),
("_2", c_byte),
("d", c_double)]
s1 = S()
s1.b = 0x12
s1.h = 0x1234
s1.i = 0x12345678
s1.d = 3.14
s2 = struct.pack(fmt, 0x12, 0x1234, 0x12345678, 3.14)
self.assertEqual(bin(s1), bin(s2))
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,293 @@
import functools
import unittest
from ctypes import *
from ctypes.test import need_symbol
import _ctypes_test
class Callbacks(unittest.TestCase):
functype = CFUNCTYPE
## def tearDown(self):
## import gc
## gc.collect()
def callback(self, *args):
self.got_args = args
return args[-1]
def check_type(self, typ, arg):
PROTO = self.functype.__func__(typ, typ)
result = PROTO(self.callback)(arg)
if typ == c_float:
self.assertAlmostEqual(result, arg, places=5)
else:
self.assertEqual(self.got_args, (arg,))
self.assertEqual(result, arg)
PROTO = self.functype.__func__(typ, c_byte, typ)
result = PROTO(self.callback)(-3, arg)
if typ == c_float:
self.assertAlmostEqual(result, arg, places=5)
else:
self.assertEqual(self.got_args, (-3, arg))
self.assertEqual(result, arg)
################
def test_byte(self):
self.check_type(c_byte, 42)
self.check_type(c_byte, -42)
def test_ubyte(self):
self.check_type(c_ubyte, 42)
def test_short(self):
self.check_type(c_short, 42)
self.check_type(c_short, -42)
def test_ushort(self):
self.check_type(c_ushort, 42)
def test_int(self):
self.check_type(c_int, 42)
self.check_type(c_int, -42)
def test_uint(self):
self.check_type(c_uint, 42)
def test_long(self):
self.check_type(c_long, 42)
self.check_type(c_long, -42)
def test_ulong(self):
self.check_type(c_ulong, 42)
def test_longlong(self):
self.check_type(c_longlong, 42)
self.check_type(c_longlong, -42)
def test_ulonglong(self):
self.check_type(c_ulonglong, 42)
def test_float(self):
# only almost equal: double -> float -> double
import math
self.check_type(c_float, math.e)
self.check_type(c_float, -math.e)
def test_double(self):
self.check_type(c_double, 3.14)
self.check_type(c_double, -3.14)
def test_longdouble(self):
self.check_type(c_longdouble, 3.14)
self.check_type(c_longdouble, -3.14)
def test_char(self):
self.check_type(c_char, b"x")
self.check_type(c_char, b"a")
# disabled: would now (correctly) raise a RuntimeWarning about
# a memory leak. A callback function cannot return a non-integral
# C type without causing a memory leak.
@unittest.skip('test disabled')
def test_char_p(self):
self.check_type(c_char_p, "abc")
self.check_type(c_char_p, "def")
def test_pyobject(self):
o = ()
from sys import getrefcount as grc
for o in (), [], object():
initial = grc(o)
# This call leaks a reference to 'o'...
self.check_type(py_object, o)
before = grc(o)
# ...but this call doesn't leak any more. Where is the refcount?
self.check_type(py_object, o)
after = grc(o)
self.assertEqual((after, o), (before, o))
def test_unsupported_restype_1(self):
# Only "fundamental" result types are supported for callback
# functions, the type must have a non-NULL stgdict->setfunc.
# POINTER(c_double), for example, is not supported.
prototype = self.functype.__func__(POINTER(c_double))
# The type is checked when the prototype is called
self.assertRaises(TypeError, prototype, lambda: None)
def test_unsupported_restype_2(self):
prototype = self.functype.__func__(object)
self.assertRaises(TypeError, prototype, lambda: None)
def test_issue_7959(self):
proto = self.functype.__func__(None)
class X(object):
def func(self): pass
def __init__(self):
self.v = proto(self.func)
import gc
for i in range(32):
X()
gc.collect()
live = [x for x in gc.get_objects()
if isinstance(x, X)]
self.assertEqual(len(live), 0)
def test_issue12483(self):
import gc
class Nasty:
def __del__(self):
gc.collect()
CFUNCTYPE(None)(lambda x=Nasty(): None)
@need_symbol('WINFUNCTYPE')
class StdcallCallbacks(Callbacks):
try:
functype = WINFUNCTYPE
except NameError:
pass
################################################################
class SampleCallbacksTestCase(unittest.TestCase):
def test_integrate(self):
# Derived from some then non-working code, posted by David Foster
dll = CDLL(_ctypes_test.__file__)
# The function prototype called by 'integrate': double func(double);
CALLBACK = CFUNCTYPE(c_double, c_double)
# The integrate function itself, exposed from the _ctypes_test dll
integrate = dll.integrate
integrate.argtypes = (c_double, c_double, CALLBACK, c_long)
integrate.restype = c_double
def func(x):
return x**2
result = integrate(0.0, 1.0, CALLBACK(func), 10)
diff = abs(result - 1./3.)
self.assertLess(diff, 0.01, "%s not less than 0.01" % diff)
def test_issue_8959_a(self):
from ctypes.util import find_library
libc_path = find_library("c")
if not libc_path:
self.skipTest('could not find libc')
libc = CDLL(libc_path)
@CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
def cmp_func(a, b):
return a[0] - b[0]
array = (c_int * 5)(5, 1, 99, 7, 33)
libc.qsort(array, len(array), sizeof(c_int), cmp_func)
self.assertEqual(array[:], [1, 5, 7, 33, 99])
@need_symbol('WINFUNCTYPE')
def test_issue_8959_b(self):
from ctypes.wintypes import BOOL, HWND, LPARAM
global windowCount
windowCount = 0
@WINFUNCTYPE(BOOL, HWND, LPARAM)
def EnumWindowsCallbackFunc(hwnd, lParam):
global windowCount
windowCount += 1
return True #Allow windows to keep enumerating
windll.user32.EnumWindows(EnumWindowsCallbackFunc, 0)
def test_callback_register_int(self):
# Issue #8275: buggy handling of callback args under Win64
# NOTE: should be run on release builds as well
dll = CDLL(_ctypes_test.__file__)
CALLBACK = CFUNCTYPE(c_int, c_int, c_int, c_int, c_int, c_int)
# All this function does is call the callback with its args squared
func = dll._testfunc_cbk_reg_int
func.argtypes = (c_int, c_int, c_int, c_int, c_int, CALLBACK)
func.restype = c_int
def callback(a, b, c, d, e):
return a + b + c + d + e
result = func(2, 3, 4, 5, 6, CALLBACK(callback))
self.assertEqual(result, callback(2*2, 3*3, 4*4, 5*5, 6*6))
def test_callback_register_double(self):
# Issue #8275: buggy handling of callback args under Win64
# NOTE: should be run on release builds as well
dll = CDLL(_ctypes_test.__file__)
CALLBACK = CFUNCTYPE(c_double, c_double, c_double, c_double,
c_double, c_double)
# All this function does is call the callback with its args squared
func = dll._testfunc_cbk_reg_double
func.argtypes = (c_double, c_double, c_double,
c_double, c_double, CALLBACK)
func.restype = c_double
def callback(a, b, c, d, e):
return a + b + c + d + e
result = func(1.1, 2.2, 3.3, 4.4, 5.5, CALLBACK(callback))
self.assertEqual(result,
callback(1.1*1.1, 2.2*2.2, 3.3*3.3, 4.4*4.4, 5.5*5.5))
def test_callback_large_struct(self):
class Check: pass
# This should mirror the structure in Modules/_ctypes/_ctypes_test.c
class X(Structure):
_fields_ = [
('first', c_ulong),
('second', c_ulong),
('third', c_ulong),
]
def callback(check, s):
check.first = s.first
check.second = s.second
check.third = s.third
# See issue #29565.
# The structure should be passed by value, so
# any changes to it should not be reflected in
# the value passed
s.first = s.second = s.third = 0x0badf00d
check = Check()
s = X()
s.first = 0xdeadbeef
s.second = 0xcafebabe
s.third = 0x0bad1dea
CALLBACK = CFUNCTYPE(None, X)
dll = CDLL(_ctypes_test.__file__)
func = dll._testfunc_cbk_large_struct
func.argtypes = (X, CALLBACK)
func.restype = None
# the function just calls the callback with the passed structure
func(s, CALLBACK(functools.partial(callback, check)))
self.assertEqual(check.first, s.first)
self.assertEqual(check.second, s.second)
self.assertEqual(check.third, s.third)
self.assertEqual(check.first, 0xdeadbeef)
self.assertEqual(check.second, 0xcafebabe)
self.assertEqual(check.third, 0x0bad1dea)
# See issue #29565.
# Ensure that the original struct is unchanged.
self.assertEqual(s.first, check.first)
self.assertEqual(s.second, check.second)
self.assertEqual(s.third, check.third)
################################################################
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,99 @@
from ctypes import *
from ctypes.test import need_symbol
import unittest
import sys
class Test(unittest.TestCase):
def test_array2pointer(self):
array = (c_int * 3)(42, 17, 2)
# casting an array to a pointer works.
ptr = cast(array, POINTER(c_int))
self.assertEqual([ptr[i] for i in range(3)], [42, 17, 2])
if 2*sizeof(c_short) == sizeof(c_int):
ptr = cast(array, POINTER(c_short))
if sys.byteorder == "little":
self.assertEqual([ptr[i] for i in range(6)],
[42, 0, 17, 0, 2, 0])
else:
self.assertEqual([ptr[i] for i in range(6)],
[0, 42, 0, 17, 0, 2])
def test_address2pointer(self):
array = (c_int * 3)(42, 17, 2)
address = addressof(array)
ptr = cast(c_void_p(address), POINTER(c_int))
self.assertEqual([ptr[i] for i in range(3)], [42, 17, 2])
ptr = cast(address, POINTER(c_int))
self.assertEqual([ptr[i] for i in range(3)], [42, 17, 2])
def test_p2a_objects(self):
array = (c_char_p * 5)()
self.assertEqual(array._objects, None)
array[0] = b"foo bar"
self.assertEqual(array._objects, {'0': b"foo bar"})
p = cast(array, POINTER(c_char_p))
# array and p share a common _objects attribute
self.assertIs(p._objects, array._objects)
self.assertEqual(array._objects, {'0': b"foo bar", id(array): array})
p[0] = b"spam spam"
self.assertEqual(p._objects, {'0': b"spam spam", id(array): array})
self.assertIs(array._objects, p._objects)
p[1] = b"foo bar"
self.assertEqual(p._objects, {'1': b'foo bar', '0': b"spam spam", id(array): array})
self.assertIs(array._objects, p._objects)
def test_other(self):
p = cast((c_int * 4)(1, 2, 3, 4), POINTER(c_int))
self.assertEqual(p[:4], [1,2, 3, 4])
self.assertEqual(p[:4:], [1, 2, 3, 4])
self.assertEqual(p[3:-1:-1], [4, 3, 2, 1])
self.assertEqual(p[:4:3], [1, 4])
c_int()
self.assertEqual(p[:4], [1, 2, 3, 4])
self.assertEqual(p[:4:], [1, 2, 3, 4])
self.assertEqual(p[3:-1:-1], [4, 3, 2, 1])
self.assertEqual(p[:4:3], [1, 4])
p[2] = 96
self.assertEqual(p[:4], [1, 2, 96, 4])
self.assertEqual(p[:4:], [1, 2, 96, 4])
self.assertEqual(p[3:-1:-1], [4, 96, 2, 1])
self.assertEqual(p[:4:3], [1, 4])
c_int()
self.assertEqual(p[:4], [1, 2, 96, 4])
self.assertEqual(p[:4:], [1, 2, 96, 4])
self.assertEqual(p[3:-1:-1], [4, 96, 2, 1])
self.assertEqual(p[:4:3], [1, 4])
def test_char_p(self):
# This didn't work: bad argument to internal function
s = c_char_p(b"hiho")
self.assertEqual(cast(cast(s, c_void_p), c_char_p).value,
b"hiho")
@need_symbol('c_wchar_p')
def test_wchar_p(self):
s = c_wchar_p("hiho")
self.assertEqual(cast(cast(s, c_void_p), c_wchar_p).value,
"hiho")
def test_bad_type_arg(self):
# The type argument must be a ctypes pointer type.
array_type = c_byte * sizeof(c_int)
array = array_type()
self.assertRaises(TypeError, cast, array, None)
self.assertRaises(TypeError, cast, array, array_type)
class Struct(Structure):
_fields_ = [("a", c_int)]
self.assertRaises(TypeError, cast, array, Struct)
class MyUnion(Union):
_fields_ = [("a", c_int)]
self.assertRaises(TypeError, cast, array, MyUnion)
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,212 @@
# A lot of failures in these tests on Mac OS X.
# Byte order related?
import unittest
from ctypes import *
from ctypes.test import need_symbol
import _ctypes_test
class CFunctions(unittest.TestCase):
_dll = CDLL(_ctypes_test.__file__)
def S(self):
return c_longlong.in_dll(self._dll, "last_tf_arg_s").value
def U(self):
return c_ulonglong.in_dll(self._dll, "last_tf_arg_u").value
def test_byte(self):
self._dll.tf_b.restype = c_byte
self._dll.tf_b.argtypes = (c_byte,)
self.assertEqual(self._dll.tf_b(-126), -42)
self.assertEqual(self.S(), -126)
def test_byte_plus(self):
self._dll.tf_bb.restype = c_byte
self._dll.tf_bb.argtypes = (c_byte, c_byte)
self.assertEqual(self._dll.tf_bb(0, -126), -42)
self.assertEqual(self.S(), -126)
def test_ubyte(self):
self._dll.tf_B.restype = c_ubyte
self._dll.tf_B.argtypes = (c_ubyte,)
self.assertEqual(self._dll.tf_B(255), 85)
self.assertEqual(self.U(), 255)
def test_ubyte_plus(self):
self._dll.tf_bB.restype = c_ubyte
self._dll.tf_bB.argtypes = (c_byte, c_ubyte)
self.assertEqual(self._dll.tf_bB(0, 255), 85)
self.assertEqual(self.U(), 255)
def test_short(self):
self._dll.tf_h.restype = c_short
self._dll.tf_h.argtypes = (c_short,)
self.assertEqual(self._dll.tf_h(-32766), -10922)
self.assertEqual(self.S(), -32766)
def test_short_plus(self):
self._dll.tf_bh.restype = c_short
self._dll.tf_bh.argtypes = (c_byte, c_short)
self.assertEqual(self._dll.tf_bh(0, -32766), -10922)
self.assertEqual(self.S(), -32766)
def test_ushort(self):
self._dll.tf_H.restype = c_ushort
self._dll.tf_H.argtypes = (c_ushort,)
self.assertEqual(self._dll.tf_H(65535), 21845)
self.assertEqual(self.U(), 65535)
def test_ushort_plus(self):
self._dll.tf_bH.restype = c_ushort
self._dll.tf_bH.argtypes = (c_byte, c_ushort)
self.assertEqual(self._dll.tf_bH(0, 65535), 21845)
self.assertEqual(self.U(), 65535)
def test_int(self):
self._dll.tf_i.restype = c_int
self._dll.tf_i.argtypes = (c_int,)
self.assertEqual(self._dll.tf_i(-2147483646), -715827882)
self.assertEqual(self.S(), -2147483646)
def test_int_plus(self):
self._dll.tf_bi.restype = c_int
self._dll.tf_bi.argtypes = (c_byte, c_int)
self.assertEqual(self._dll.tf_bi(0, -2147483646), -715827882)
self.assertEqual(self.S(), -2147483646)
def test_uint(self):
self._dll.tf_I.restype = c_uint
self._dll.tf_I.argtypes = (c_uint,)
self.assertEqual(self._dll.tf_I(4294967295), 1431655765)
self.assertEqual(self.U(), 4294967295)
def test_uint_plus(self):
self._dll.tf_bI.restype = c_uint
self._dll.tf_bI.argtypes = (c_byte, c_uint)
self.assertEqual(self._dll.tf_bI(0, 4294967295), 1431655765)
self.assertEqual(self.U(), 4294967295)
def test_long(self):
self._dll.tf_l.restype = c_long
self._dll.tf_l.argtypes = (c_long,)
self.assertEqual(self._dll.tf_l(-2147483646), -715827882)
self.assertEqual(self.S(), -2147483646)
def test_long_plus(self):
self._dll.tf_bl.restype = c_long
self._dll.tf_bl.argtypes = (c_byte, c_long)
self.assertEqual(self._dll.tf_bl(0, -2147483646), -715827882)
self.assertEqual(self.S(), -2147483646)
def test_ulong(self):
self._dll.tf_L.restype = c_ulong
self._dll.tf_L.argtypes = (c_ulong,)
self.assertEqual(self._dll.tf_L(4294967295), 1431655765)
self.assertEqual(self.U(), 4294967295)
def test_ulong_plus(self):
self._dll.tf_bL.restype = c_ulong
self._dll.tf_bL.argtypes = (c_char, c_ulong)
self.assertEqual(self._dll.tf_bL(b' ', 4294967295), 1431655765)
self.assertEqual(self.U(), 4294967295)
def test_longlong(self):
self._dll.tf_q.restype = c_longlong
self._dll.tf_q.argtypes = (c_longlong, )
self.assertEqual(self._dll.tf_q(-9223372036854775806), -3074457345618258602)
self.assertEqual(self.S(), -9223372036854775806)
def test_longlong_plus(self):
self._dll.tf_bq.restype = c_longlong
self._dll.tf_bq.argtypes = (c_byte, c_longlong)
self.assertEqual(self._dll.tf_bq(0, -9223372036854775806), -3074457345618258602)
self.assertEqual(self.S(), -9223372036854775806)
def test_ulonglong(self):
self._dll.tf_Q.restype = c_ulonglong
self._dll.tf_Q.argtypes = (c_ulonglong, )
self.assertEqual(self._dll.tf_Q(18446744073709551615), 6148914691236517205)
self.assertEqual(self.U(), 18446744073709551615)
def test_ulonglong_plus(self):
self._dll.tf_bQ.restype = c_ulonglong
self._dll.tf_bQ.argtypes = (c_byte, c_ulonglong)
self.assertEqual(self._dll.tf_bQ(0, 18446744073709551615), 6148914691236517205)
self.assertEqual(self.U(), 18446744073709551615)
def test_float(self):
self._dll.tf_f.restype = c_float
self._dll.tf_f.argtypes = (c_float,)
self.assertEqual(self._dll.tf_f(-42.), -14.)
self.assertEqual(self.S(), -42)
def test_float_plus(self):
self._dll.tf_bf.restype = c_float
self._dll.tf_bf.argtypes = (c_byte, c_float)
self.assertEqual(self._dll.tf_bf(0, -42.), -14.)
self.assertEqual(self.S(), -42)
def test_double(self):
self._dll.tf_d.restype = c_double
self._dll.tf_d.argtypes = (c_double,)
self.assertEqual(self._dll.tf_d(42.), 14.)
self.assertEqual(self.S(), 42)
def test_double_plus(self):
self._dll.tf_bd.restype = c_double
self._dll.tf_bd.argtypes = (c_byte, c_double)
self.assertEqual(self._dll.tf_bd(0, 42.), 14.)
self.assertEqual(self.S(), 42)
def test_longdouble(self):
self._dll.tf_D.restype = c_longdouble
self._dll.tf_D.argtypes = (c_longdouble,)
self.assertEqual(self._dll.tf_D(42.), 14.)
self.assertEqual(self.S(), 42)
def test_longdouble_plus(self):
self._dll.tf_bD.restype = c_longdouble
self._dll.tf_bD.argtypes = (c_byte, c_longdouble)
self.assertEqual(self._dll.tf_bD(0, 42.), 14.)
self.assertEqual(self.S(), 42)
def test_callwithresult(self):
def process_result(result):
return result * 2
self._dll.tf_i.restype = process_result
self._dll.tf_i.argtypes = (c_int,)
self.assertEqual(self._dll.tf_i(42), 28)
self.assertEqual(self.S(), 42)
self.assertEqual(self._dll.tf_i(-42), -28)
self.assertEqual(self.S(), -42)
def test_void(self):
self._dll.tv_i.restype = None
self._dll.tv_i.argtypes = (c_int,)
self.assertEqual(self._dll.tv_i(42), None)
self.assertEqual(self.S(), 42)
self.assertEqual(self._dll.tv_i(-42), None)
self.assertEqual(self.S(), -42)
# The following repeats the above tests with stdcall functions (where
# they are available)
try:
WinDLL
except NameError:
def stdcall_dll(*_): pass
else:
class stdcall_dll(WinDLL):
def __getattr__(self, name):
if name[:2] == '__' and name[-2:] == '__':
raise AttributeError(name)
func = self._FuncPtr(("s_" + name, self))
setattr(self, name, func)
return func
@need_symbol('WinDLL')
class stdcallCFunctions(CFunctions):
_dll = stdcall_dll(_ctypes_test.__file__)
if __name__ == '__main__':
unittest.main()

View file

@ -0,0 +1,36 @@
import unittest
from ctypes import *
from ctypes.test import need_symbol
class CHECKED(c_int):
def _check_retval_(value):
# Receives a CHECKED instance.
return str(value.value)
_check_retval_ = staticmethod(_check_retval_)
class Test(unittest.TestCase):
def test_checkretval(self):
import _ctypes_test
dll = CDLL(_ctypes_test.__file__)
self.assertEqual(42, dll._testfunc_p_p(42))
dll._testfunc_p_p.restype = CHECKED
self.assertEqual("42", dll._testfunc_p_p(42))
dll._testfunc_p_p.restype = None
self.assertEqual(None, dll._testfunc_p_p(42))
del dll._testfunc_p_p.restype
self.assertEqual(42, dll._testfunc_p_p(42))
@need_symbol('oledll')
def test_oledll(self):
self.assertRaises(OSError,
oledll.oleaut32.CreateTypeLib2,
0, None, None)
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,21 @@
import unittest
from ctypes import *
class X(Structure):
_fields_ = [("foo", c_int)]
class TestCase(unittest.TestCase):
def test_simple(self):
self.assertRaises(TypeError,
delattr, c_int(42), "value")
def test_chararray(self):
self.assertRaises(TypeError,
delattr, (c_char * 5)(), "value")
def test_struct(self):
self.assertRaises(TypeError,
delattr, X(), "foo")
if __name__ == "__main__":
unittest.main()

Some files were not shown because too many files have changed in this diff Show more