mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
515
third_party/python/Lib/concurrent/futures/process.py
vendored
Normal file
515
third_party/python/Lib/concurrent/futures/process.py
vendored
Normal file
|
@ -0,0 +1,515 @@
|
|||
# Copyright 2009 Brian Quinlan. All Rights Reserved.
|
||||
# Licensed to PSF under a Contributor Agreement.
|
||||
|
||||
"""Implements ProcessPoolExecutor.
|
||||
|
||||
The follow diagram and text describe the data-flow through the system:
|
||||
|
||||
|======================= In-process =====================|== Out-of-process ==|
|
||||
|
||||
+----------+ +----------+ +--------+ +-----------+ +---------+
|
||||
| | => | Work Ids | => | | => | Call Q | => | |
|
||||
| | +----------+ | | +-----------+ | |
|
||||
| | | ... | | | | ... | | |
|
||||
| | | 6 | | | | 5, call() | | |
|
||||
| | | 7 | | | | ... | | |
|
||||
| Process | | ... | | Local | +-----------+ | Process |
|
||||
| Pool | +----------+ | Worker | | #1..n |
|
||||
| Executor | | Thread | | |
|
||||
| | +----------- + | | +-----------+ | |
|
||||
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
|
||||
| | +------------+ | | +-----------+ | |
|
||||
| | | 6: call() | | | | ... | | |
|
||||
| | | future | | | | 4, result | | |
|
||||
| | | ... | | | | 3, except | | |
|
||||
+----------+ +------------+ +--------+ +-----------+ +---------+
|
||||
|
||||
Executor.submit() called:
|
||||
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
|
||||
- adds the id of the _WorkItem to the "Work Ids" queue
|
||||
|
||||
Local worker thread:
|
||||
- reads work ids from the "Work Ids" queue and looks up the corresponding
|
||||
WorkItem from the "Work Items" dict: if the work item has been cancelled then
|
||||
it is simply removed from the dict, otherwise it is repackaged as a
|
||||
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
|
||||
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
|
||||
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
|
||||
- reads _ResultItems from "Result Q", updates the future stored in the
|
||||
"Work Items" dict and deletes the dict entry
|
||||
|
||||
Process #1..n:
|
||||
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
|
||||
_ResultItems in "Result Q"
|
||||
"""
|
||||
|
||||
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
|
||||
|
||||
import atexit
|
||||
import os
|
||||
from concurrent.futures import _base
|
||||
import queue
|
||||
from queue import Full
|
||||
import multiprocessing
|
||||
from multiprocessing import SimpleQueue
|
||||
from multiprocessing.connection import wait
|
||||
import threading
|
||||
import weakref
|
||||
from functools import partial
|
||||
import itertools
|
||||
import traceback
|
||||
|
||||
# Workers are created as daemon threads and processes. This is done to allow the
|
||||
# interpreter to exit when there are still idle processes in a
|
||||
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
|
||||
# allowing workers to die with the interpreter has two undesirable properties:
|
||||
# - The workers would still be running during interpreter shutdown,
|
||||
# meaning that they would fail in unpredictable ways.
|
||||
# - The workers could be killed while evaluating a work item, which could
|
||||
# be bad if the callable being evaluated has external side-effects e.g.
|
||||
# writing to a file.
|
||||
#
|
||||
# To work around this problem, an exit handler is installed which tells the
|
||||
# workers to exit when their work queues are empty and then waits until the
|
||||
# threads/processes finish.
|
||||
|
||||
_threads_queues = weakref.WeakKeyDictionary()
|
||||
_shutdown = False
|
||||
|
||||
def _python_exit():
|
||||
global _shutdown
|
||||
_shutdown = True
|
||||
items = list(_threads_queues.items())
|
||||
for t, q in items:
|
||||
q.put(None)
|
||||
for t, q in items:
|
||||
t.join()
|
||||
|
||||
# Controls how many more calls than processes will be queued in the call queue.
|
||||
# A smaller number will mean that processes spend more time idle waiting for
|
||||
# work while a larger number will make Future.cancel() succeed less frequently
|
||||
# (Futures in the call queue cannot be cancelled).
|
||||
EXTRA_QUEUED_CALLS = 1
|
||||
|
||||
# Hack to embed stringification of remote traceback in local traceback
|
||||
|
||||
class _RemoteTraceback(Exception):
|
||||
def __init__(self, tb):
|
||||
self.tb = tb
|
||||
def __str__(self):
|
||||
return self.tb
|
||||
|
||||
class _ExceptionWithTraceback:
|
||||
def __init__(self, exc, tb):
|
||||
tb = traceback.format_exception(type(exc), exc, tb)
|
||||
tb = ''.join(tb)
|
||||
self.exc = exc
|
||||
self.tb = '\n"""\n%s"""' % tb
|
||||
def __reduce__(self):
|
||||
return _rebuild_exc, (self.exc, self.tb)
|
||||
|
||||
def _rebuild_exc(exc, tb):
|
||||
exc.__cause__ = _RemoteTraceback(tb)
|
||||
return exc
|
||||
|
||||
class _WorkItem(object):
|
||||
def __init__(self, future, fn, args, kwargs):
|
||||
self.future = future
|
||||
self.fn = fn
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
|
||||
class _ResultItem(object):
|
||||
def __init__(self, work_id, exception=None, result=None):
|
||||
self.work_id = work_id
|
||||
self.exception = exception
|
||||
self.result = result
|
||||
|
||||
class _CallItem(object):
|
||||
def __init__(self, work_id, fn, args, kwargs):
|
||||
self.work_id = work_id
|
||||
self.fn = fn
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
|
||||
def _get_chunks(*iterables, chunksize):
|
||||
""" Iterates over zip()ed iterables in chunks. """
|
||||
it = zip(*iterables)
|
||||
while True:
|
||||
chunk = tuple(itertools.islice(it, chunksize))
|
||||
if not chunk:
|
||||
return
|
||||
yield chunk
|
||||
|
||||
def _process_chunk(fn, chunk):
|
||||
""" Processes a chunk of an iterable passed to map.
|
||||
|
||||
Runs the function passed to map() on a chunk of the
|
||||
iterable passed to map.
|
||||
|
||||
This function is run in a separate process.
|
||||
|
||||
"""
|
||||
return [fn(*args) for args in chunk]
|
||||
|
||||
def _process_worker(call_queue, result_queue):
|
||||
"""Evaluates calls from call_queue and places the results in result_queue.
|
||||
|
||||
This worker is run in a separate process.
|
||||
|
||||
Args:
|
||||
call_queue: A multiprocessing.Queue of _CallItems that will be read and
|
||||
evaluated by the worker.
|
||||
result_queue: A multiprocessing.Queue of _ResultItems that will written
|
||||
to by the worker.
|
||||
shutdown: A multiprocessing.Event that will be set as a signal to the
|
||||
worker that it should exit when call_queue is empty.
|
||||
"""
|
||||
while True:
|
||||
call_item = call_queue.get(block=True)
|
||||
if call_item is None:
|
||||
# Wake up queue management thread
|
||||
result_queue.put(os.getpid())
|
||||
return
|
||||
try:
|
||||
r = call_item.fn(*call_item.args, **call_item.kwargs)
|
||||
except BaseException as e:
|
||||
exc = _ExceptionWithTraceback(e, e.__traceback__)
|
||||
result_queue.put(_ResultItem(call_item.work_id, exception=exc))
|
||||
else:
|
||||
result_queue.put(_ResultItem(call_item.work_id,
|
||||
result=r))
|
||||
|
||||
def _add_call_item_to_queue(pending_work_items,
|
||||
work_ids,
|
||||
call_queue):
|
||||
"""Fills call_queue with _WorkItems from pending_work_items.
|
||||
|
||||
This function never blocks.
|
||||
|
||||
Args:
|
||||
pending_work_items: A dict mapping work ids to _WorkItems e.g.
|
||||
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
|
||||
work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
|
||||
are consumed and the corresponding _WorkItems from
|
||||
pending_work_items are transformed into _CallItems and put in
|
||||
call_queue.
|
||||
call_queue: A multiprocessing.Queue that will be filled with _CallItems
|
||||
derived from _WorkItems.
|
||||
"""
|
||||
while True:
|
||||
if call_queue.full():
|
||||
return
|
||||
try:
|
||||
work_id = work_ids.get(block=False)
|
||||
except queue.Empty:
|
||||
return
|
||||
else:
|
||||
work_item = pending_work_items[work_id]
|
||||
|
||||
if work_item.future.set_running_or_notify_cancel():
|
||||
call_queue.put(_CallItem(work_id,
|
||||
work_item.fn,
|
||||
work_item.args,
|
||||
work_item.kwargs),
|
||||
block=True)
|
||||
else:
|
||||
del pending_work_items[work_id]
|
||||
continue
|
||||
|
||||
def _queue_management_worker(executor_reference,
|
||||
processes,
|
||||
pending_work_items,
|
||||
work_ids_queue,
|
||||
call_queue,
|
||||
result_queue):
|
||||
"""Manages the communication between this process and the worker processes.
|
||||
|
||||
This function is run in a local thread.
|
||||
|
||||
Args:
|
||||
executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
|
||||
this thread. Used to determine if the ProcessPoolExecutor has been
|
||||
garbage collected and that this function can exit.
|
||||
process: A list of the multiprocessing.Process instances used as
|
||||
workers.
|
||||
pending_work_items: A dict mapping work ids to _WorkItems e.g.
|
||||
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
|
||||
work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
|
||||
call_queue: A multiprocessing.Queue that will be filled with _CallItems
|
||||
derived from _WorkItems for processing by the process workers.
|
||||
result_queue: A multiprocessing.Queue of _ResultItems generated by the
|
||||
process workers.
|
||||
"""
|
||||
executor = None
|
||||
|
||||
def shutting_down():
|
||||
return _shutdown or executor is None or executor._shutdown_thread
|
||||
|
||||
def shutdown_worker():
|
||||
# This is an upper bound
|
||||
nb_children_alive = sum(p.is_alive() for p in processes.values())
|
||||
for i in range(0, nb_children_alive):
|
||||
call_queue.put_nowait(None)
|
||||
# Release the queue's resources as soon as possible.
|
||||
call_queue.close()
|
||||
# If .join() is not called on the created processes then
|
||||
# some multiprocessing.Queue methods may deadlock on Mac OS X.
|
||||
for p in processes.values():
|
||||
p.join()
|
||||
|
||||
reader = result_queue._reader
|
||||
|
||||
while True:
|
||||
_add_call_item_to_queue(pending_work_items,
|
||||
work_ids_queue,
|
||||
call_queue)
|
||||
|
||||
sentinels = [p.sentinel for p in processes.values()]
|
||||
assert sentinels
|
||||
ready = wait([reader] + sentinels)
|
||||
if reader in ready:
|
||||
result_item = reader.recv()
|
||||
else:
|
||||
# Mark the process pool broken so that submits fail right now.
|
||||
executor = executor_reference()
|
||||
if executor is not None:
|
||||
executor._broken = True
|
||||
executor._shutdown_thread = True
|
||||
executor = None
|
||||
# All futures in flight must be marked failed
|
||||
for work_id, work_item in pending_work_items.items():
|
||||
work_item.future.set_exception(
|
||||
BrokenProcessPool(
|
||||
"A process in the process pool was "
|
||||
"terminated abruptly while the future was "
|
||||
"running or pending."
|
||||
))
|
||||
# Delete references to object. See issue16284
|
||||
del work_item
|
||||
pending_work_items.clear()
|
||||
# Terminate remaining workers forcibly: the queues or their
|
||||
# locks may be in a dirty state and block forever.
|
||||
for p in processes.values():
|
||||
p.terminate()
|
||||
shutdown_worker()
|
||||
return
|
||||
if isinstance(result_item, int):
|
||||
# Clean shutdown of a worker using its PID
|
||||
# (avoids marking the executor broken)
|
||||
assert shutting_down()
|
||||
p = processes.pop(result_item)
|
||||
p.join()
|
||||
if not processes:
|
||||
shutdown_worker()
|
||||
return
|
||||
elif result_item is not None:
|
||||
work_item = pending_work_items.pop(result_item.work_id, None)
|
||||
# work_item can be None if another process terminated (see above)
|
||||
if work_item is not None:
|
||||
if result_item.exception:
|
||||
work_item.future.set_exception(result_item.exception)
|
||||
else:
|
||||
work_item.future.set_result(result_item.result)
|
||||
# Delete references to object. See issue16284
|
||||
del work_item
|
||||
# Check whether we should start shutting down.
|
||||
executor = executor_reference()
|
||||
# No more work items can be added if:
|
||||
# - The interpreter is shutting down OR
|
||||
# - The executor that owns this worker has been collected OR
|
||||
# - The executor that owns this worker has been shutdown.
|
||||
if shutting_down():
|
||||
try:
|
||||
# Since no new work items can be added, it is safe to shutdown
|
||||
# this thread if there are no pending work items.
|
||||
if not pending_work_items:
|
||||
shutdown_worker()
|
||||
return
|
||||
except Full:
|
||||
# This is not a problem: we will eventually be woken up (in
|
||||
# result_queue.get()) and be able to send a sentinel again.
|
||||
pass
|
||||
executor = None
|
||||
|
||||
_system_limits_checked = False
|
||||
_system_limited = None
|
||||
def _check_system_limits():
|
||||
global _system_limits_checked, _system_limited
|
||||
if _system_limits_checked:
|
||||
if _system_limited:
|
||||
raise NotImplementedError(_system_limited)
|
||||
_system_limits_checked = True
|
||||
try:
|
||||
nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
|
||||
except (AttributeError, ValueError):
|
||||
# sysconf not available or setting not available
|
||||
return
|
||||
if nsems_max == -1:
|
||||
# indetermined limit, assume that limit is determined
|
||||
# by available memory only
|
||||
return
|
||||
if nsems_max >= 256:
|
||||
# minimum number of semaphores available
|
||||
# according to POSIX
|
||||
return
|
||||
_system_limited = "system provides too few semaphores (%d available, 256 necessary)" % nsems_max
|
||||
raise NotImplementedError(_system_limited)
|
||||
|
||||
|
||||
def _chain_from_iterable_of_lists(iterable):
|
||||
"""
|
||||
Specialized implementation of itertools.chain.from_iterable.
|
||||
Each item in *iterable* should be a list. This function is
|
||||
careful not to keep references to yielded objects.
|
||||
"""
|
||||
for element in iterable:
|
||||
element.reverse()
|
||||
while element:
|
||||
yield element.pop()
|
||||
|
||||
|
||||
class BrokenProcessPool(RuntimeError):
|
||||
"""
|
||||
Raised when a process in a ProcessPoolExecutor terminated abruptly
|
||||
while a future was in the running state.
|
||||
"""
|
||||
|
||||
|
||||
class ProcessPoolExecutor(_base.Executor):
|
||||
def __init__(self, max_workers=None):
|
||||
"""Initializes a new ProcessPoolExecutor instance.
|
||||
|
||||
Args:
|
||||
max_workers: The maximum number of processes that can be used to
|
||||
execute the given calls. If None or not given then as many
|
||||
worker processes will be created as the machine has processors.
|
||||
"""
|
||||
_check_system_limits()
|
||||
|
||||
if max_workers is None:
|
||||
self._max_workers = os.cpu_count() or 1
|
||||
else:
|
||||
if max_workers <= 0:
|
||||
raise ValueError("max_workers must be greater than 0")
|
||||
|
||||
self._max_workers = max_workers
|
||||
|
||||
# Make the call queue slightly larger than the number of processes to
|
||||
# prevent the worker processes from idling. But don't make it too big
|
||||
# because futures in the call queue cannot be cancelled.
|
||||
self._call_queue = multiprocessing.Queue(self._max_workers +
|
||||
EXTRA_QUEUED_CALLS)
|
||||
# Killed worker processes can produce spurious "broken pipe"
|
||||
# tracebacks in the queue's own worker thread. But we detect killed
|
||||
# processes anyway, so silence the tracebacks.
|
||||
self._call_queue._ignore_epipe = True
|
||||
self._result_queue = SimpleQueue()
|
||||
self._work_ids = queue.Queue()
|
||||
self._queue_management_thread = None
|
||||
# Map of pids to processes
|
||||
self._processes = {}
|
||||
|
||||
# Shutdown is a two-step process.
|
||||
self._shutdown_thread = False
|
||||
self._shutdown_lock = threading.Lock()
|
||||
self._broken = False
|
||||
self._queue_count = 0
|
||||
self._pending_work_items = {}
|
||||
|
||||
def _start_queue_management_thread(self):
|
||||
# When the executor gets lost, the weakref callback will wake up
|
||||
# the queue management thread.
|
||||
def weakref_cb(_, q=self._result_queue):
|
||||
q.put(None)
|
||||
if self._queue_management_thread is None:
|
||||
# Start the processes so that their sentinels are known.
|
||||
self._adjust_process_count()
|
||||
self._queue_management_thread = threading.Thread(
|
||||
target=_queue_management_worker,
|
||||
args=(weakref.ref(self, weakref_cb),
|
||||
self._processes,
|
||||
self._pending_work_items,
|
||||
self._work_ids,
|
||||
self._call_queue,
|
||||
self._result_queue))
|
||||
self._queue_management_thread.daemon = True
|
||||
self._queue_management_thread.start()
|
||||
_threads_queues[self._queue_management_thread] = self._result_queue
|
||||
|
||||
def _adjust_process_count(self):
|
||||
for _ in range(len(self._processes), self._max_workers):
|
||||
p = multiprocessing.Process(
|
||||
target=_process_worker,
|
||||
args=(self._call_queue,
|
||||
self._result_queue))
|
||||
p.start()
|
||||
self._processes[p.pid] = p
|
||||
|
||||
def submit(self, fn, *args, **kwargs):
|
||||
with self._shutdown_lock:
|
||||
if self._broken:
|
||||
raise BrokenProcessPool('A child process terminated '
|
||||
'abruptly, the process pool is not usable anymore')
|
||||
if self._shutdown_thread:
|
||||
raise RuntimeError('cannot schedule new futures after shutdown')
|
||||
|
||||
f = _base.Future()
|
||||
w = _WorkItem(f, fn, args, kwargs)
|
||||
|
||||
self._pending_work_items[self._queue_count] = w
|
||||
self._work_ids.put(self._queue_count)
|
||||
self._queue_count += 1
|
||||
# Wake up queue management thread
|
||||
self._result_queue.put(None)
|
||||
|
||||
self._start_queue_management_thread()
|
||||
return f
|
||||
submit.__doc__ = _base.Executor.submit.__doc__
|
||||
|
||||
def map(self, fn, *iterables, timeout=None, chunksize=1):
|
||||
"""Returns an iterator equivalent to map(fn, iter).
|
||||
|
||||
Args:
|
||||
fn: A callable that will take as many arguments as there are
|
||||
passed iterables.
|
||||
timeout: The maximum number of seconds to wait. If None, then there
|
||||
is no limit on the wait time.
|
||||
chunksize: If greater than one, the iterables will be chopped into
|
||||
chunks of size chunksize and submitted to the process pool.
|
||||
If set to one, the items in the list will be sent one at a time.
|
||||
|
||||
Returns:
|
||||
An iterator equivalent to: map(func, *iterables) but the calls may
|
||||
be evaluated out-of-order.
|
||||
|
||||
Raises:
|
||||
TimeoutError: If the entire result iterator could not be generated
|
||||
before the given timeout.
|
||||
Exception: If fn(*args) raises for any values.
|
||||
"""
|
||||
if chunksize < 1:
|
||||
raise ValueError("chunksize must be >= 1.")
|
||||
|
||||
results = super().map(partial(_process_chunk, fn),
|
||||
_get_chunks(*iterables, chunksize=chunksize),
|
||||
timeout=timeout)
|
||||
return _chain_from_iterable_of_lists(results)
|
||||
|
||||
def shutdown(self, wait=True):
|
||||
with self._shutdown_lock:
|
||||
self._shutdown_thread = True
|
||||
if self._queue_management_thread:
|
||||
# Wake up queue management thread
|
||||
self._result_queue.put(None)
|
||||
if wait:
|
||||
self._queue_management_thread.join()
|
||||
# To reduce the risk of opening too many files, remove references to
|
||||
# objects that use file descriptors.
|
||||
self._queue_management_thread = None
|
||||
self._call_queue = None
|
||||
self._result_queue = None
|
||||
self._processes = None
|
||||
shutdown.__doc__ = _base.Executor.shutdown.__doc__
|
||||
|
||||
atexit.register(_python_exit)
|
Loading…
Add table
Add a link
Reference in a new issue