mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
449
third_party/python/Lib/csv.py
vendored
Normal file
449
third_party/python/Lib/csv.py
vendored
Normal file
|
@ -0,0 +1,449 @@
|
|||
|
||||
"""
|
||||
csv.py - read/write/investigate CSV files
|
||||
"""
|
||||
|
||||
import re
|
||||
from _csv import Error, __version__, writer, reader, register_dialect, \
|
||||
unregister_dialect, get_dialect, list_dialects, \
|
||||
field_size_limit, \
|
||||
QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
|
||||
__doc__
|
||||
from _csv import Dialect as _Dialect
|
||||
|
||||
from collections import OrderedDict
|
||||
from io import StringIO
|
||||
|
||||
__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
|
||||
"Error", "Dialect", "__doc__", "excel", "excel_tab",
|
||||
"field_size_limit", "reader", "writer",
|
||||
"register_dialect", "get_dialect", "list_dialects", "Sniffer",
|
||||
"unregister_dialect", "__version__", "DictReader", "DictWriter",
|
||||
"unix_dialect"]
|
||||
|
||||
class Dialect:
|
||||
"""Describe a CSV dialect.
|
||||
|
||||
This must be subclassed (see csv.excel). Valid attributes are:
|
||||
delimiter, quotechar, escapechar, doublequote, skipinitialspace,
|
||||
lineterminator, quoting.
|
||||
|
||||
"""
|
||||
_name = ""
|
||||
_valid = False
|
||||
# placeholders
|
||||
delimiter = None
|
||||
quotechar = None
|
||||
escapechar = None
|
||||
doublequote = None
|
||||
skipinitialspace = None
|
||||
lineterminator = None
|
||||
quoting = None
|
||||
|
||||
def __init__(self):
|
||||
if self.__class__ != Dialect:
|
||||
self._valid = True
|
||||
self._validate()
|
||||
|
||||
def _validate(self):
|
||||
try:
|
||||
_Dialect(self)
|
||||
except TypeError as e:
|
||||
# We do this for compatibility with py2.3
|
||||
raise Error(str(e))
|
||||
|
||||
class excel(Dialect):
|
||||
"""Describe the usual properties of Excel-generated CSV files."""
|
||||
delimiter = ','
|
||||
quotechar = '"'
|
||||
doublequote = True
|
||||
skipinitialspace = False
|
||||
lineterminator = '\r\n'
|
||||
quoting = QUOTE_MINIMAL
|
||||
register_dialect("excel", excel)
|
||||
|
||||
class excel_tab(excel):
|
||||
"""Describe the usual properties of Excel-generated TAB-delimited files."""
|
||||
delimiter = '\t'
|
||||
register_dialect("excel-tab", excel_tab)
|
||||
|
||||
class unix_dialect(Dialect):
|
||||
"""Describe the usual properties of Unix-generated CSV files."""
|
||||
delimiter = ','
|
||||
quotechar = '"'
|
||||
doublequote = True
|
||||
skipinitialspace = False
|
||||
lineterminator = '\n'
|
||||
quoting = QUOTE_ALL
|
||||
register_dialect("unix", unix_dialect)
|
||||
|
||||
|
||||
class DictReader:
|
||||
def __init__(self, f, fieldnames=None, restkey=None, restval=None,
|
||||
dialect="excel", *args, **kwds):
|
||||
self._fieldnames = fieldnames # list of keys for the dict
|
||||
self.restkey = restkey # key to catch long rows
|
||||
self.restval = restval # default value for short rows
|
||||
self.reader = reader(f, dialect, *args, **kwds)
|
||||
self.dialect = dialect
|
||||
self.line_num = 0
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
@property
|
||||
def fieldnames(self):
|
||||
if self._fieldnames is None:
|
||||
try:
|
||||
self._fieldnames = next(self.reader)
|
||||
except StopIteration:
|
||||
pass
|
||||
self.line_num = self.reader.line_num
|
||||
return self._fieldnames
|
||||
|
||||
@fieldnames.setter
|
||||
def fieldnames(self, value):
|
||||
self._fieldnames = value
|
||||
|
||||
def __next__(self):
|
||||
if self.line_num == 0:
|
||||
# Used only for its side effect.
|
||||
self.fieldnames
|
||||
row = next(self.reader)
|
||||
self.line_num = self.reader.line_num
|
||||
|
||||
# unlike the basic reader, we prefer not to return blanks,
|
||||
# because we will typically wind up with a dict full of None
|
||||
# values
|
||||
while row == []:
|
||||
row = next(self.reader)
|
||||
d = OrderedDict(zip(self.fieldnames, row))
|
||||
lf = len(self.fieldnames)
|
||||
lr = len(row)
|
||||
if lf < lr:
|
||||
d[self.restkey] = row[lf:]
|
||||
elif lf > lr:
|
||||
for key in self.fieldnames[lr:]:
|
||||
d[key] = self.restval
|
||||
return d
|
||||
|
||||
|
||||
class DictWriter:
|
||||
def __init__(self, f, fieldnames, restval="", extrasaction="raise",
|
||||
dialect="excel", *args, **kwds):
|
||||
self.fieldnames = fieldnames # list of keys for the dict
|
||||
self.restval = restval # for writing short dicts
|
||||
if extrasaction.lower() not in ("raise", "ignore"):
|
||||
raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
|
||||
% extrasaction)
|
||||
self.extrasaction = extrasaction
|
||||
self.writer = writer(f, dialect, *args, **kwds)
|
||||
|
||||
def writeheader(self):
|
||||
header = dict(zip(self.fieldnames, self.fieldnames))
|
||||
self.writerow(header)
|
||||
|
||||
def _dict_to_list(self, rowdict):
|
||||
if self.extrasaction == "raise":
|
||||
wrong_fields = rowdict.keys() - self.fieldnames
|
||||
if wrong_fields:
|
||||
raise ValueError("dict contains fields not in fieldnames: "
|
||||
+ ", ".join([repr(x) for x in wrong_fields]))
|
||||
return (rowdict.get(key, self.restval) for key in self.fieldnames)
|
||||
|
||||
def writerow(self, rowdict):
|
||||
return self.writer.writerow(self._dict_to_list(rowdict))
|
||||
|
||||
def writerows(self, rowdicts):
|
||||
return self.writer.writerows(map(self._dict_to_list, rowdicts))
|
||||
|
||||
# Guard Sniffer's type checking against builds that exclude complex()
|
||||
try:
|
||||
complex
|
||||
except NameError:
|
||||
complex = float
|
||||
|
||||
class Sniffer:
|
||||
'''
|
||||
"Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
|
||||
Returns a Dialect object.
|
||||
'''
|
||||
def __init__(self):
|
||||
# in case there is more than one possible delimiter
|
||||
self.preferred = [',', '\t', ';', ' ', ':']
|
||||
|
||||
|
||||
def sniff(self, sample, delimiters=None):
|
||||
"""
|
||||
Returns a dialect (or None) corresponding to the sample
|
||||
"""
|
||||
|
||||
quotechar, doublequote, delimiter, skipinitialspace = \
|
||||
self._guess_quote_and_delimiter(sample, delimiters)
|
||||
if not delimiter:
|
||||
delimiter, skipinitialspace = self._guess_delimiter(sample,
|
||||
delimiters)
|
||||
|
||||
if not delimiter:
|
||||
raise Error("Could not determine delimiter")
|
||||
|
||||
class dialect(Dialect):
|
||||
_name = "sniffed"
|
||||
lineterminator = '\r\n'
|
||||
quoting = QUOTE_MINIMAL
|
||||
# escapechar = ''
|
||||
|
||||
dialect.doublequote = doublequote
|
||||
dialect.delimiter = delimiter
|
||||
# _csv.reader won't accept a quotechar of ''
|
||||
dialect.quotechar = quotechar or '"'
|
||||
dialect.skipinitialspace = skipinitialspace
|
||||
|
||||
return dialect
|
||||
|
||||
|
||||
def _guess_quote_and_delimiter(self, data, delimiters):
|
||||
"""
|
||||
Looks for text enclosed between two identical quotes
|
||||
(the probable quotechar) which are preceded and followed
|
||||
by the same character (the probable delimiter).
|
||||
For example:
|
||||
,'some text',
|
||||
The quote with the most wins, same with the delimiter.
|
||||
If there is no quotechar the delimiter can't be determined
|
||||
this way.
|
||||
"""
|
||||
|
||||
matches = []
|
||||
for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
|
||||
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
|
||||
r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
|
||||
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
|
||||
regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
|
||||
matches = regexp.findall(data)
|
||||
if matches:
|
||||
break
|
||||
|
||||
if not matches:
|
||||
# (quotechar, doublequote, delimiter, skipinitialspace)
|
||||
return ('', False, None, 0)
|
||||
quotes = {}
|
||||
delims = {}
|
||||
spaces = 0
|
||||
groupindex = regexp.groupindex
|
||||
for m in matches:
|
||||
n = groupindex['quote'] - 1
|
||||
key = m[n]
|
||||
if key:
|
||||
quotes[key] = quotes.get(key, 0) + 1
|
||||
try:
|
||||
n = groupindex['delim'] - 1
|
||||
key = m[n]
|
||||
except KeyError:
|
||||
continue
|
||||
if key and (delimiters is None or key in delimiters):
|
||||
delims[key] = delims.get(key, 0) + 1
|
||||
try:
|
||||
n = groupindex['space'] - 1
|
||||
except KeyError:
|
||||
continue
|
||||
if m[n]:
|
||||
spaces += 1
|
||||
|
||||
quotechar = max(quotes, key=quotes.get)
|
||||
|
||||
if delims:
|
||||
delim = max(delims, key=delims.get)
|
||||
skipinitialspace = delims[delim] == spaces
|
||||
if delim == '\n': # most likely a file with a single column
|
||||
delim = ''
|
||||
else:
|
||||
# there is *no* delimiter, it's a single column of quoted data
|
||||
delim = ''
|
||||
skipinitialspace = 0
|
||||
|
||||
# if we see an extra quote between delimiters, we've got a
|
||||
# double quoted format
|
||||
dq_regexp = re.compile(
|
||||
r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
|
||||
{'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)
|
||||
|
||||
|
||||
|
||||
if dq_regexp.search(data):
|
||||
doublequote = True
|
||||
else:
|
||||
doublequote = False
|
||||
|
||||
return (quotechar, doublequote, delim, skipinitialspace)
|
||||
|
||||
|
||||
def _guess_delimiter(self, data, delimiters):
|
||||
"""
|
||||
The delimiter /should/ occur the same number of times on
|
||||
each row. However, due to malformed data, it may not. We don't want
|
||||
an all or nothing approach, so we allow for small variations in this
|
||||
number.
|
||||
1) build a table of the frequency of each character on every line.
|
||||
2) build a table of frequencies of this frequency (meta-frequency?),
|
||||
e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
|
||||
7 times in 2 rows'
|
||||
3) use the mode of the meta-frequency to determine the /expected/
|
||||
frequency for that character
|
||||
4) find out how often the character actually meets that goal
|
||||
5) the character that best meets its goal is the delimiter
|
||||
For performance reasons, the data is evaluated in chunks, so it can
|
||||
try and evaluate the smallest portion of the data possible, evaluating
|
||||
additional chunks as necessary.
|
||||
"""
|
||||
|
||||
data = list(filter(None, data.split('\n')))
|
||||
|
||||
ascii = [chr(c) for c in range(127)] # 7-bit ASCII
|
||||
|
||||
# build frequency tables
|
||||
chunkLength = min(10, len(data))
|
||||
iteration = 0
|
||||
charFrequency = {}
|
||||
modes = {}
|
||||
delims = {}
|
||||
start, end = 0, min(chunkLength, len(data))
|
||||
while start < len(data):
|
||||
iteration += 1
|
||||
for line in data[start:end]:
|
||||
for char in ascii:
|
||||
metaFrequency = charFrequency.get(char, {})
|
||||
# must count even if frequency is 0
|
||||
freq = line.count(char)
|
||||
# value is the mode
|
||||
metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
|
||||
charFrequency[char] = metaFrequency
|
||||
|
||||
for char in charFrequency.keys():
|
||||
items = list(charFrequency[char].items())
|
||||
if len(items) == 1 and items[0][0] == 0:
|
||||
continue
|
||||
# get the mode of the frequencies
|
||||
if len(items) > 1:
|
||||
modes[char] = max(items, key=lambda x: x[1])
|
||||
# adjust the mode - subtract the sum of all
|
||||
# other frequencies
|
||||
items.remove(modes[char])
|
||||
modes[char] = (modes[char][0], modes[char][1]
|
||||
- sum(item[1] for item in items))
|
||||
else:
|
||||
modes[char] = items[0]
|
||||
|
||||
# build a list of possible delimiters
|
||||
modeList = modes.items()
|
||||
total = float(chunkLength * iteration)
|
||||
# (rows of consistent data) / (number of rows) = 100%
|
||||
consistency = 1.0
|
||||
# minimum consistency threshold
|
||||
threshold = 0.9
|
||||
while len(delims) == 0 and consistency >= threshold:
|
||||
for k, v in modeList:
|
||||
if v[0] > 0 and v[1] > 0:
|
||||
if ((v[1]/total) >= consistency and
|
||||
(delimiters is None or k in delimiters)):
|
||||
delims[k] = v
|
||||
consistency -= 0.01
|
||||
|
||||
if len(delims) == 1:
|
||||
delim = list(delims.keys())[0]
|
||||
skipinitialspace = (data[0].count(delim) ==
|
||||
data[0].count("%c " % delim))
|
||||
return (delim, skipinitialspace)
|
||||
|
||||
# analyze another chunkLength lines
|
||||
start = end
|
||||
end += chunkLength
|
||||
|
||||
if not delims:
|
||||
return ('', 0)
|
||||
|
||||
# if there's more than one, fall back to a 'preferred' list
|
||||
if len(delims) > 1:
|
||||
for d in self.preferred:
|
||||
if d in delims.keys():
|
||||
skipinitialspace = (data[0].count(d) ==
|
||||
data[0].count("%c " % d))
|
||||
return (d, skipinitialspace)
|
||||
|
||||
# nothing else indicates a preference, pick the character that
|
||||
# dominates(?)
|
||||
items = [(v,k) for (k,v) in delims.items()]
|
||||
items.sort()
|
||||
delim = items[-1][1]
|
||||
|
||||
skipinitialspace = (data[0].count(delim) ==
|
||||
data[0].count("%c " % delim))
|
||||
return (delim, skipinitialspace)
|
||||
|
||||
|
||||
def has_header(self, sample):
|
||||
# Creates a dictionary of types of data in each column. If any
|
||||
# column is of a single type (say, integers), *except* for the first
|
||||
# row, then the first row is presumed to be labels. If the type
|
||||
# can't be determined, it is assumed to be a string in which case
|
||||
# the length of the string is the determining factor: if all of the
|
||||
# rows except for the first are the same length, it's a header.
|
||||
# Finally, a 'vote' is taken at the end for each column, adding or
|
||||
# subtracting from the likelihood of the first row being a header.
|
||||
|
||||
rdr = reader(StringIO(sample), self.sniff(sample))
|
||||
|
||||
header = next(rdr) # assume first row is header
|
||||
|
||||
columns = len(header)
|
||||
columnTypes = {}
|
||||
for i in range(columns): columnTypes[i] = None
|
||||
|
||||
checked = 0
|
||||
for row in rdr:
|
||||
# arbitrary number of rows to check, to keep it sane
|
||||
if checked > 20:
|
||||
break
|
||||
checked += 1
|
||||
|
||||
if len(row) != columns:
|
||||
continue # skip rows that have irregular number of columns
|
||||
|
||||
for col in list(columnTypes.keys()):
|
||||
|
||||
for thisType in [int, float, complex]:
|
||||
try:
|
||||
thisType(row[col])
|
||||
break
|
||||
except (ValueError, OverflowError):
|
||||
pass
|
||||
else:
|
||||
# fallback to length of string
|
||||
thisType = len(row[col])
|
||||
|
||||
if thisType != columnTypes[col]:
|
||||
if columnTypes[col] is None: # add new column type
|
||||
columnTypes[col] = thisType
|
||||
else:
|
||||
# type is inconsistent, remove column from
|
||||
# consideration
|
||||
del columnTypes[col]
|
||||
|
||||
# finally, compare results against first row and "vote"
|
||||
# on whether it's a header
|
||||
hasHeader = 0
|
||||
for col, colType in columnTypes.items():
|
||||
if type(colType) == type(0): # it's a length
|
||||
if len(header[col]) != colType:
|
||||
hasHeader += 1
|
||||
else:
|
||||
hasHeader -= 1
|
||||
else: # attempt typecast
|
||||
try:
|
||||
colType(header[col])
|
||||
except (ValueError, TypeError):
|
||||
hasHeader += 1
|
||||
else:
|
||||
hasHeader -= 1
|
||||
|
||||
return hasHeader > 0
|
Loading…
Add table
Add a link
Reference in a new issue