mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
247
third_party/python/Lib/test/test_threadsignals.py
vendored
Normal file
247
third_party/python/Lib/test/test_threadsignals.py
vendored
Normal file
|
@ -0,0 +1,247 @@
|
|||
"""PyUnit testing that threads honor our signal semantics"""
|
||||
|
||||
import unittest
|
||||
import signal
|
||||
import os
|
||||
import sys
|
||||
from test import support
|
||||
thread = support.import_module('_thread')
|
||||
import time
|
||||
|
||||
if (sys.platform[:3] == 'win'):
|
||||
raise unittest.SkipTest("Can't test signal on %s" % sys.platform)
|
||||
|
||||
process_pid = os.getpid()
|
||||
signalled_all=thread.allocate_lock()
|
||||
|
||||
USING_PTHREAD_COND = (sys.thread_info.name == 'pthread'
|
||||
and sys.thread_info.lock == 'mutex+cond')
|
||||
|
||||
def registerSignals(for_usr1, for_usr2, for_alrm):
|
||||
usr1 = signal.signal(signal.SIGUSR1, for_usr1)
|
||||
usr2 = signal.signal(signal.SIGUSR2, for_usr2)
|
||||
alrm = signal.signal(signal.SIGALRM, for_alrm)
|
||||
return usr1, usr2, alrm
|
||||
|
||||
|
||||
# The signal handler. Just note that the signal occurred and
|
||||
# from who.
|
||||
def handle_signals(sig,frame):
|
||||
signal_blackboard[sig]['tripped'] += 1
|
||||
signal_blackboard[sig]['tripped_by'] = thread.get_ident()
|
||||
|
||||
# a function that will be spawned as a separate thread.
|
||||
def send_signals():
|
||||
os.kill(process_pid, signal.SIGUSR1)
|
||||
os.kill(process_pid, signal.SIGUSR2)
|
||||
signalled_all.release()
|
||||
|
||||
class ThreadSignals(unittest.TestCase):
|
||||
|
||||
def test_signals(self):
|
||||
with support.wait_threads_exit():
|
||||
# Test signal handling semantics of threads.
|
||||
# We spawn a thread, have the thread send two signals, and
|
||||
# wait for it to finish. Check that we got both signals
|
||||
# and that they were run by the main thread.
|
||||
signalled_all.acquire()
|
||||
self.spawnSignallingThread()
|
||||
signalled_all.acquire()
|
||||
|
||||
# the signals that we asked the kernel to send
|
||||
# will come back, but we don't know when.
|
||||
# (it might even be after the thread exits
|
||||
# and might be out of order.) If we haven't seen
|
||||
# the signals yet, send yet another signal and
|
||||
# wait for it return.
|
||||
if signal_blackboard[signal.SIGUSR1]['tripped'] == 0 \
|
||||
or signal_blackboard[signal.SIGUSR2]['tripped'] == 0:
|
||||
try:
|
||||
signal.alarm(1)
|
||||
signal.pause()
|
||||
finally:
|
||||
signal.alarm(0)
|
||||
|
||||
self.assertEqual( signal_blackboard[signal.SIGUSR1]['tripped'], 1)
|
||||
self.assertEqual( signal_blackboard[signal.SIGUSR1]['tripped_by'],
|
||||
thread.get_ident())
|
||||
self.assertEqual( signal_blackboard[signal.SIGUSR2]['tripped'], 1)
|
||||
self.assertEqual( signal_blackboard[signal.SIGUSR2]['tripped_by'],
|
||||
thread.get_ident())
|
||||
signalled_all.release()
|
||||
|
||||
def spawnSignallingThread(self):
|
||||
thread.start_new_thread(send_signals, ())
|
||||
|
||||
def alarm_interrupt(self, sig, frame):
|
||||
raise KeyboardInterrupt
|
||||
|
||||
@unittest.skipIf(USING_PTHREAD_COND,
|
||||
'POSIX condition variables cannot be interrupted')
|
||||
@unittest.skipIf(sys.platform.startswith('linux') and
|
||||
not sys.thread_info.version,
|
||||
'Issue 34004: musl does not allow interruption of locks '
|
||||
'by signals.')
|
||||
# Issue #20564: sem_timedwait() cannot be interrupted on OpenBSD
|
||||
@unittest.skipIf(sys.platform.startswith('openbsd'),
|
||||
'lock cannot be interrupted on OpenBSD')
|
||||
def test_lock_acquire_interruption(self):
|
||||
# Mimic receiving a SIGINT (KeyboardInterrupt) with SIGALRM while stuck
|
||||
# in a deadlock.
|
||||
# XXX this test can fail when the legacy (non-semaphore) implementation
|
||||
# of locks is used in thread_pthread.h, see issue #11223.
|
||||
oldalrm = signal.signal(signal.SIGALRM, self.alarm_interrupt)
|
||||
try:
|
||||
lock = thread.allocate_lock()
|
||||
lock.acquire()
|
||||
signal.alarm(1)
|
||||
t1 = time.time()
|
||||
self.assertRaises(KeyboardInterrupt, lock.acquire, timeout=5)
|
||||
dt = time.time() - t1
|
||||
# Checking that KeyboardInterrupt was raised is not sufficient.
|
||||
# We want to assert that lock.acquire() was interrupted because
|
||||
# of the signal, not that the signal handler was called immediately
|
||||
# after timeout return of lock.acquire() (which can fool assertRaises).
|
||||
self.assertLess(dt, 3.0)
|
||||
finally:
|
||||
signal.alarm(0)
|
||||
signal.signal(signal.SIGALRM, oldalrm)
|
||||
|
||||
@unittest.skipIf(USING_PTHREAD_COND,
|
||||
'POSIX condition variables cannot be interrupted')
|
||||
@unittest.skipIf(sys.platform.startswith('linux') and
|
||||
not sys.thread_info.version,
|
||||
'Issue 34004: musl does not allow interruption of locks '
|
||||
'by signals.')
|
||||
# Issue #20564: sem_timedwait() cannot be interrupted on OpenBSD
|
||||
@unittest.skipIf(sys.platform.startswith('openbsd'),
|
||||
'lock cannot be interrupted on OpenBSD')
|
||||
def test_rlock_acquire_interruption(self):
|
||||
# Mimic receiving a SIGINT (KeyboardInterrupt) with SIGALRM while stuck
|
||||
# in a deadlock.
|
||||
# XXX this test can fail when the legacy (non-semaphore) implementation
|
||||
# of locks is used in thread_pthread.h, see issue #11223.
|
||||
oldalrm = signal.signal(signal.SIGALRM, self.alarm_interrupt)
|
||||
try:
|
||||
rlock = thread.RLock()
|
||||
# For reentrant locks, the initial acquisition must be in another
|
||||
# thread.
|
||||
def other_thread():
|
||||
rlock.acquire()
|
||||
|
||||
with support.wait_threads_exit():
|
||||
thread.start_new_thread(other_thread, ())
|
||||
# Wait until we can't acquire it without blocking...
|
||||
while rlock.acquire(blocking=False):
|
||||
rlock.release()
|
||||
time.sleep(0.01)
|
||||
signal.alarm(1)
|
||||
t1 = time.time()
|
||||
self.assertRaises(KeyboardInterrupt, rlock.acquire, timeout=5)
|
||||
dt = time.time() - t1
|
||||
# See rationale above in test_lock_acquire_interruption
|
||||
self.assertLess(dt, 3.0)
|
||||
finally:
|
||||
signal.alarm(0)
|
||||
signal.signal(signal.SIGALRM, oldalrm)
|
||||
|
||||
def acquire_retries_on_intr(self, lock):
|
||||
self.sig_recvd = False
|
||||
def my_handler(signal, frame):
|
||||
self.sig_recvd = True
|
||||
|
||||
old_handler = signal.signal(signal.SIGUSR1, my_handler)
|
||||
try:
|
||||
def other_thread():
|
||||
# Acquire the lock in a non-main thread, so this test works for
|
||||
# RLocks.
|
||||
lock.acquire()
|
||||
# Wait until the main thread is blocked in the lock acquire, and
|
||||
# then wake it up with this.
|
||||
time.sleep(0.5)
|
||||
os.kill(process_pid, signal.SIGUSR1)
|
||||
# Let the main thread take the interrupt, handle it, and retry
|
||||
# the lock acquisition. Then we'll let it run.
|
||||
time.sleep(0.5)
|
||||
lock.release()
|
||||
|
||||
with support.wait_threads_exit():
|
||||
thread.start_new_thread(other_thread, ())
|
||||
# Wait until we can't acquire it without blocking...
|
||||
while lock.acquire(blocking=False):
|
||||
lock.release()
|
||||
time.sleep(0.01)
|
||||
result = lock.acquire() # Block while we receive a signal.
|
||||
self.assertTrue(self.sig_recvd)
|
||||
self.assertTrue(result)
|
||||
finally:
|
||||
signal.signal(signal.SIGUSR1, old_handler)
|
||||
|
||||
def test_lock_acquire_retries_on_intr(self):
|
||||
self.acquire_retries_on_intr(thread.allocate_lock())
|
||||
|
||||
def test_rlock_acquire_retries_on_intr(self):
|
||||
self.acquire_retries_on_intr(thread.RLock())
|
||||
|
||||
def test_interrupted_timed_acquire(self):
|
||||
# Test to make sure we recompute lock acquisition timeouts when we
|
||||
# receive a signal. Check this by repeatedly interrupting a lock
|
||||
# acquire in the main thread, and make sure that the lock acquire times
|
||||
# out after the right amount of time.
|
||||
# NOTE: this test only behaves as expected if C signals get delivered
|
||||
# to the main thread. Otherwise lock.acquire() itself doesn't get
|
||||
# interrupted and the test trivially succeeds.
|
||||
self.start = None
|
||||
self.end = None
|
||||
self.sigs_recvd = 0
|
||||
done = thread.allocate_lock()
|
||||
done.acquire()
|
||||
lock = thread.allocate_lock()
|
||||
lock.acquire()
|
||||
def my_handler(signum, frame):
|
||||
self.sigs_recvd += 1
|
||||
old_handler = signal.signal(signal.SIGUSR1, my_handler)
|
||||
try:
|
||||
def timed_acquire():
|
||||
self.start = time.time()
|
||||
lock.acquire(timeout=0.5)
|
||||
self.end = time.time()
|
||||
def send_signals():
|
||||
for _ in range(40):
|
||||
time.sleep(0.02)
|
||||
os.kill(process_pid, signal.SIGUSR1)
|
||||
done.release()
|
||||
|
||||
with support.wait_threads_exit():
|
||||
# Send the signals from the non-main thread, since the main thread
|
||||
# is the only one that can process signals.
|
||||
thread.start_new_thread(send_signals, ())
|
||||
timed_acquire()
|
||||
# Wait for thread to finish
|
||||
done.acquire()
|
||||
# This allows for some timing and scheduling imprecision
|
||||
self.assertLess(self.end - self.start, 2.0)
|
||||
self.assertGreater(self.end - self.start, 0.3)
|
||||
# If the signal is received several times before PyErr_CheckSignals()
|
||||
# is called, the handler will get called less than 40 times. Just
|
||||
# check it's been called at least once.
|
||||
self.assertGreater(self.sigs_recvd, 0)
|
||||
finally:
|
||||
signal.signal(signal.SIGUSR1, old_handler)
|
||||
|
||||
|
||||
def test_main():
|
||||
global signal_blackboard
|
||||
|
||||
signal_blackboard = { signal.SIGUSR1 : {'tripped': 0, 'tripped_by': 0 },
|
||||
signal.SIGUSR2 : {'tripped': 0, 'tripped_by': 0 },
|
||||
signal.SIGALRM : {'tripped': 0, 'tripped_by': 0 } }
|
||||
|
||||
oldsigs = registerSignals(handle_signals, handle_signals, handle_signals)
|
||||
try:
|
||||
support.run_unittest(ThreadSignals)
|
||||
finally:
|
||||
registerSignals(*oldsigs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_main()
|
Loading…
Add table
Add a link
Reference in a new issue