python-3.6.zip added from Github

README.cosmo contains the necessary links.
This commit is contained in:
ahgamut 2021-08-08 09:38:33 +05:30 committed by Justine Tunney
parent 75fc601ff5
commit 0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions

View file

@ -0,0 +1,14 @@
"""
--------------------------------------
About this viewer
--------------------------------------
Tiny demo viewer to view turtle graphics example scripts.
Quickly and dirtyly assembled by Gregor Lingl.
June, 2006
For more information see: turtledemo - Help
Have fun!
"""

View file

@ -0,0 +1,386 @@
#!/usr/bin/env python3
"""
----------------------------------------------
turtleDemo - Help
----------------------------------------------
This document has two sections:
(1) How to use the demo viewer
(2) How to add your own demos to the demo repository
(1) How to use the demo viewer.
Select a demoscript from the example menu.
The (syntax colored) source code appears in the left
source code window. IT CANNOT BE EDITED, but ONLY VIEWED!
The demo viewer windows can be resized. The divider between text
and canvas can be moved by grabbing it with the mouse. The text font
size can be changed from the menu and with Control/Command '-'/'+'.
It can also be changed on most systems with Control-mousewheel
when the mouse is over the text.
Press START button to start the demo.
Stop execution by pressing the STOP button.
Clear screen by pressing the CLEAR button.
Restart by pressing the START button again.
SPECIAL demos, such as clock.py are those which run EVENTDRIVEN.
Press START button to start the demo.
- Until the EVENTLOOP is entered everything works
as in an ordinary demo script.
- When the EVENTLOOP is entered, you control the
application by using the mouse and/or keys (or it's
controlled by some timer events)
To stop it you can and must press the STOP button.
While the EVENTLOOP is running, the examples menu is disabled.
- Only after having pressed the STOP button, you may
restart it or choose another example script.
* * * * * * * *
In some rare situations there may occur interferences/conflicts
between events concerning the demo script and those concerning the
demo-viewer. (They run in the same process.) Strange behaviour may be
the consequence and in the worst case you must close and restart the
viewer.
* * * * * * * *
(2) How to add your own demos to the demo repository
- Place the file in the same directory as turtledemo/__main__.py
IMPORTANT! When imported, the demo should not modify the system
by calling functions in other modules, such as sys, tkinter, or
turtle. Global variables should be initialized in main().
- The code must contain a main() function which will
be executed by the viewer (see provided example scripts).
It may return a string which will be displayed in the Label below
the source code window (when execution has finished.)
- In order to run mydemo.py by itself, such as during development,
add the following at the end of the file:
if __name__ == '__main__':
main()
mainloop() # keep window open
python -m turtledemo.mydemo # will then run it
- If the demo is EVENT DRIVEN, main must return the string
"EVENTLOOP". This informs the demo viewer that the script is
still running and must be stopped by the user!
If an "EVENTLOOP" demo runs by itself, as with clock, which uses
ontimer, or minimal_hanoi, which loops by recursion, then the
code should catch the turtle.Terminator exception that will be
raised when the user presses the STOP button. (Paint is not such
a demo; it only acts in response to mouse clicks and movements.)
"""
import sys
import os
from tkinter import *
from idlelib.colorizer import ColorDelegator, color_config
from idlelib.percolator import Percolator
from idlelib.textview import view_text
from turtledemo import __doc__ as about_turtledemo
import turtle
demo_dir = os.path.dirname(os.path.abspath(__file__))
darwin = sys.platform == 'darwin'
STARTUP = 1
READY = 2
RUNNING = 3
DONE = 4
EVENTDRIVEN = 5
menufont = ("Arial", 12, NORMAL)
btnfont = ("Arial", 12, 'bold')
txtfont = ['Lucida Console', 10, 'normal']
MINIMUM_FONT_SIZE = 6
MAXIMUM_FONT_SIZE = 100
font_sizes = [8, 9, 10, 11, 12, 14, 18, 20, 22, 24, 30]
def getExampleEntries():
return [entry[:-3] for entry in os.listdir(demo_dir) if
entry.endswith(".py") and entry[0] != '_']
help_entries = ( # (help_label, help_doc)
('Turtledemo help', __doc__),
('About turtledemo', about_turtledemo),
('About turtle module', turtle.__doc__),
)
class DemoWindow(object):
def __init__(self, filename=None):
self.root = root = turtle._root = Tk()
root.title('Python turtle-graphics examples')
root.wm_protocol("WM_DELETE_WINDOW", self._destroy)
if darwin:
import subprocess
# Make sure we are the currently activated OS X application
# so that our menu bar appears.
subprocess.run(
[
'osascript',
'-e', 'tell application "System Events"',
'-e', 'set frontmost of the first process whose '
'unix id is {} to true'.format(os.getpid()),
'-e', 'end tell',
],
stderr=subprocess.DEVNULL,
stdout=subprocess.DEVNULL,)
root.grid_rowconfigure(0, weight=1)
root.grid_columnconfigure(0, weight=1)
root.grid_columnconfigure(1, minsize=90, weight=1)
root.grid_columnconfigure(2, minsize=90, weight=1)
root.grid_columnconfigure(3, minsize=90, weight=1)
self.mBar = Menu(root, relief=RAISED, borderwidth=2)
self.mBar.add_cascade(menu=self.makeLoadDemoMenu(self.mBar),
label='Examples', underline=0)
self.mBar.add_cascade(menu=self.makeFontMenu(self.mBar),
label='Fontsize', underline=0)
self.mBar.add_cascade(menu=self.makeHelpMenu(self.mBar),
label='Help', underline=0)
root['menu'] = self.mBar
pane = PanedWindow(orient=HORIZONTAL, sashwidth=5,
sashrelief=SOLID, bg='#ddd')
pane.add(self.makeTextFrame(pane))
pane.add(self.makeGraphFrame(pane))
pane.grid(row=0, columnspan=4, sticky='news')
self.output_lbl = Label(root, height= 1, text=" --- ", bg="#ddf",
font=("Arial", 16, 'normal'), borderwidth=2,
relief=RIDGE)
self.start_btn = Button(root, text=" START ", font=btnfont,
fg="white", disabledforeground = "#fed",
command=self.startDemo)
self.stop_btn = Button(root, text=" STOP ", font=btnfont,
fg="white", disabledforeground = "#fed",
command=self.stopIt)
self.clear_btn = Button(root, text=" CLEAR ", font=btnfont,
fg="white", disabledforeground="#fed",
command = self.clearCanvas)
self.output_lbl.grid(row=1, column=0, sticky='news', padx=(0,5))
self.start_btn.grid(row=1, column=1, sticky='ew')
self.stop_btn.grid(row=1, column=2, sticky='ew')
self.clear_btn.grid(row=1, column=3, sticky='ew')
Percolator(self.text).insertfilter(ColorDelegator())
self.dirty = False
self.exitflag = False
if filename:
self.loadfile(filename)
self.configGUI(DISABLED, DISABLED, DISABLED,
"Choose example from menu", "black")
self.state = STARTUP
def onResize(self, event):
cwidth = self._canvas.winfo_width()
cheight = self._canvas.winfo_height()
self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth)
self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight)
def makeTextFrame(self, root):
self.text_frame = text_frame = Frame(root)
self.text = text = Text(text_frame, name='text', padx=5,
wrap='none', width=45)
color_config(text)
self.vbar = vbar = Scrollbar(text_frame, name='vbar')
vbar['command'] = text.yview
vbar.pack(side=LEFT, fill=Y)
self.hbar = hbar = Scrollbar(text_frame, name='hbar', orient=HORIZONTAL)
hbar['command'] = text.xview
hbar.pack(side=BOTTOM, fill=X)
text['yscrollcommand'] = vbar.set
text['xscrollcommand'] = hbar.set
text['font'] = tuple(txtfont)
shortcut = 'Command' if darwin else 'Control'
text.bind_all('<%s-minus>' % shortcut, self.decrease_size)
text.bind_all('<%s-underscore>' % shortcut, self.decrease_size)
text.bind_all('<%s-equal>' % shortcut, self.increase_size)
text.bind_all('<%s-plus>' % shortcut, self.increase_size)
text.bind('<Control-MouseWheel>', self.update_mousewheel)
text.bind('<Control-Button-4>', self.increase_size)
text.bind('<Control-Button-5>', self.decrease_size)
text.pack(side=LEFT, fill=BOTH, expand=1)
return text_frame
def makeGraphFrame(self, root):
turtle._Screen._root = root
self.canvwidth = 1000
self.canvheight = 800
turtle._Screen._canvas = self._canvas = canvas = turtle.ScrolledCanvas(
root, 800, 600, self.canvwidth, self.canvheight)
canvas.adjustScrolls()
canvas._rootwindow.bind('<Configure>', self.onResize)
canvas._canvas['borderwidth'] = 0
self.screen = _s_ = turtle.Screen()
turtle.TurtleScreen.__init__(_s_, _s_._canvas)
self.scanvas = _s_._canvas
turtle.RawTurtle.screens = [_s_]
return canvas
def set_txtsize(self, size):
txtfont[1] = size
self.text['font'] = tuple(txtfont)
self.output_lbl['text'] = 'Font size %d' % size
def decrease_size(self, dummy=None):
self.set_txtsize(max(txtfont[1] - 1, MINIMUM_FONT_SIZE))
return 'break'
def increase_size(self, dummy=None):
self.set_txtsize(min(txtfont[1] + 1, MAXIMUM_FONT_SIZE))
return 'break'
def update_mousewheel(self, event):
# For wheel up, event.delta = 120 on Windows, -1 on darwin.
# X-11 sends Control-Button-4 event instead.
if (event.delta < 0) == (not darwin):
return self.decrease_size()
else:
return self.increase_size()
def configGUI(self, start, stop, clear, txt="", color="blue"):
self.start_btn.config(state=start,
bg="#d00" if start == NORMAL else "#fca")
self.stop_btn.config(state=stop,
bg="#d00" if stop == NORMAL else "#fca")
self.clear_btn.config(state=clear,
bg="#d00" if clear == NORMAL else"#fca")
self.output_lbl.config(text=txt, fg=color)
def makeLoadDemoMenu(self, master):
menu = Menu(master)
for entry in getExampleEntries():
def load(entry=entry):
self.loadfile(entry)
menu.add_command(label=entry, underline=0,
font=menufont, command=load)
return menu
def makeFontMenu(self, master):
menu = Menu(master)
menu.add_command(label="Decrease (C-'-')", command=self.decrease_size,
font=menufont)
menu.add_command(label="Increase (C-'+')", command=self.increase_size,
font=menufont)
menu.add_separator()
for size in font_sizes:
def resize(size=size):
self.set_txtsize(size)
menu.add_command(label=str(size), underline=0,
font=menufont, command=resize)
return menu
def makeHelpMenu(self, master):
menu = Menu(master)
for help_label, help_file in help_entries:
def show(help_label=help_label, help_file=help_file):
view_text(self.root, help_label, help_file)
menu.add_command(label=help_label, font=menufont, command=show)
return menu
def refreshCanvas(self):
if self.dirty:
self.screen.clear()
self.dirty=False
def loadfile(self, filename):
self.clearCanvas()
turtle.TurtleScreen._RUNNING = False
modname = 'turtledemo.' + filename
__import__(modname)
self.module = sys.modules[modname]
with open(self.module.__file__, 'r') as f:
chars = f.read()
self.text.delete("1.0", "end")
self.text.insert("1.0", chars)
self.root.title(filename + " - a Python turtle graphics example")
self.configGUI(NORMAL, DISABLED, DISABLED,
"Press start button", "red")
self.state = READY
def startDemo(self):
self.refreshCanvas()
self.dirty = True
turtle.TurtleScreen._RUNNING = True
self.configGUI(DISABLED, NORMAL, DISABLED,
"demo running...", "black")
self.screen.clear()
self.screen.mode("standard")
self.state = RUNNING
try:
result = self.module.main()
if result == "EVENTLOOP":
self.state = EVENTDRIVEN
else:
self.state = DONE
except turtle.Terminator:
if self.root is None:
return
self.state = DONE
result = "stopped!"
if self.state == DONE:
self.configGUI(NORMAL, DISABLED, NORMAL,
result)
elif self.state == EVENTDRIVEN:
self.exitflag = True
self.configGUI(DISABLED, NORMAL, DISABLED,
"use mouse/keys or STOP", "red")
def clearCanvas(self):
self.refreshCanvas()
self.screen._delete("all")
self.scanvas.config(cursor="")
self.configGUI(NORMAL, DISABLED, DISABLED)
def stopIt(self):
if self.exitflag:
self.clearCanvas()
self.exitflag = False
self.configGUI(NORMAL, DISABLED, DISABLED,
"STOPPED!", "red")
turtle.TurtleScreen._RUNNING = False
def _destroy(self):
turtle.TurtleScreen._RUNNING = False
self.root.destroy()
self.root = None
def main():
demo = DemoWindow()
demo.root.mainloop()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,161 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_bytedesign.py
An example adapted from the example-suite
of PythonCard's turtle graphics.
It's based on an article in BYTE magazine
Problem Solving with Logo: Using Turtle
Graphics to Redraw a Design
November 1982, p. 118 - 134
-------------------------------------------
Due to the statement
t.delay(0)
in line 152, which sets the animation delay
to 0, this animation runs in "line per line"
mode as fast as possible.
"""
from turtle import Turtle, mainloop
from time import clock
# wrapper for any additional drawing routines
# that need to know about each other
class Designer(Turtle):
def design(self, homePos, scale):
self.up()
for i in range(5):
self.forward(64.65 * scale)
self.down()
self.wheel(self.position(), scale)
self.up()
self.backward(64.65 * scale)
self.right(72)
self.up()
self.goto(homePos)
self.right(36)
self.forward(24.5 * scale)
self.right(198)
self.down()
self.centerpiece(46 * scale, 143.4, scale)
self.getscreen().tracer(True)
def wheel(self, initpos, scale):
self.right(54)
for i in range(4):
self.pentpiece(initpos, scale)
self.down()
self.left(36)
for i in range(5):
self.tripiece(initpos, scale)
self.left(36)
for i in range(5):
self.down()
self.right(72)
self.forward(28 * scale)
self.up()
self.backward(28 * scale)
self.left(54)
self.getscreen().update()
def tripiece(self, initpos, scale):
oldh = self.heading()
self.down()
self.backward(2.5 * scale)
self.tripolyr(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.down()
self.backward(2.5 * scale)
self.tripolyl(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentpiece(self, initpos, scale):
oldh = self.heading()
self.up()
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentr(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentl(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentl(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.left(ang)
self.pentl(side - (.38 * scale), ang, scale)
def pentr(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.right(ang)
self.pentr(side - (.38 * scale), ang, scale)
def tripolyr(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.right(111)
self.forward(side / 1.78)
self.right(111)
self.forward(side / 1.3)
self.right(146)
self.tripolyr(side * .75, scale)
def tripolyl(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.left(111)
self.forward(side / 1.78)
self.left(111)
self.forward(side / 1.3)
self.left(146)
self.tripolyl(side * .75, scale)
def centerpiece(self, s, a, scale):
self.forward(s); self.left(a)
if s < (7.5 * scale):
return
self.centerpiece(s - (1.2 * scale), a, scale)
def main():
t = Designer()
t.speed(0)
t.hideturtle()
t.getscreen().delay(0)
t.getscreen().tracer(0)
at = clock()
t.design(t.position(), 2)
et = clock()
return "runtime: %.2f sec." % (et-at)
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,59 @@
# File: tdemo_chaos.py
# Author: Gregor Lingl
# Date: 2009-06-24
# A demonstration of chaos
from turtle import *
N = 80
def f(x):
return 3.9*x*(1-x)
def g(x):
return 3.9*(x-x**2)
def h(x):
return 3.9*x-3.9*x*x
def jumpto(x, y):
penup(); goto(x,y)
def line(x1, y1, x2, y2):
jumpto(x1, y1)
pendown()
goto(x2, y2)
def coosys():
line(-1, 0, N+1, 0)
line(0, -0.1, 0, 1.1)
def plot(fun, start, color):
pencolor(color)
x = start
jumpto(0, x)
pendown()
dot(5)
for i in range(N):
x=fun(x)
goto(i+1,x)
dot(5)
def main():
reset()
setworldcoordinates(-1.0,-0.1, N+1, 1.1)
speed(0)
hideturtle()
coosys()
plot(f, 0.35, "blue")
plot(g, 0.35, "green")
plot(h, 0.35, "red")
# Now zoom in:
for s in range(100):
setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
return "Done!"
if __name__ == "__main__":
main()
mainloop()

132
third_party/python/Lib/turtledemo/clock.py vendored Executable file
View file

@ -0,0 +1,132 @@
#!/usr/bin/env python3
# -*- coding: cp1252 -*-
""" turtle-example-suite:
tdemo_clock.py
Enhanced clock-program, showing date
and time
------------------------------------
Press STOP to exit the program!
------------------------------------
"""
from turtle import *
from datetime import datetime
def jump(distanz, winkel=0):
penup()
right(winkel)
forward(distanz)
left(winkel)
pendown()
def hand(laenge, spitze):
fd(laenge*1.15)
rt(90)
fd(spitze/2.0)
lt(120)
fd(spitze)
lt(120)
fd(spitze)
lt(120)
fd(spitze/2.0)
def make_hand_shape(name, laenge, spitze):
reset()
jump(-laenge*0.15)
begin_poly()
hand(laenge, spitze)
end_poly()
hand_form = get_poly()
register_shape(name, hand_form)
def clockface(radius):
reset()
pensize(7)
for i in range(60):
jump(radius)
if i % 5 == 0:
fd(25)
jump(-radius-25)
else:
dot(3)
jump(-radius)
rt(6)
def setup():
global second_hand, minute_hand, hour_hand, writer
mode("logo")
make_hand_shape("second_hand", 125, 25)
make_hand_shape("minute_hand", 130, 25)
make_hand_shape("hour_hand", 90, 25)
clockface(160)
second_hand = Turtle()
second_hand.shape("second_hand")
second_hand.color("gray20", "gray80")
minute_hand = Turtle()
minute_hand.shape("minute_hand")
minute_hand.color("blue1", "red1")
hour_hand = Turtle()
hour_hand.shape("hour_hand")
hour_hand.color("blue3", "red3")
for hand in second_hand, minute_hand, hour_hand:
hand.resizemode("user")
hand.shapesize(1, 1, 3)
hand.speed(0)
ht()
writer = Turtle()
#writer.mode("logo")
writer.ht()
writer.pu()
writer.bk(85)
def wochentag(t):
wochentag = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]
return wochentag[t.weekday()]
def datum(z):
monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
"July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
j = z.year
m = monat[z.month - 1]
t = z.day
return "%s %d %d" % (m, t, j)
def tick():
t = datetime.today()
sekunde = t.second + t.microsecond*0.000001
minute = t.minute + sekunde/60.0
stunde = t.hour + minute/60.0
try:
tracer(False) # Terminator can occur here
writer.clear()
writer.home()
writer.forward(65)
writer.write(wochentag(t),
align="center", font=("Courier", 14, "bold"))
writer.back(150)
writer.write(datum(t),
align="center", font=("Courier", 14, "bold"))
writer.forward(85)
tracer(True)
second_hand.setheading(6*sekunde) # or here
minute_hand.setheading(6*minute)
hour_hand.setheading(30*stunde)
tracer(True)
ontimer(tick, 100)
except Terminator:
pass # turtledemo user pressed STOP
def main():
tracer(False)
setup()
tracer(True)
tick()
return "EVENTLOOP"
if __name__ == "__main__":
mode("logo")
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,58 @@
# colormixer
from turtle import Screen, Turtle, mainloop
class ColorTurtle(Turtle):
def __init__(self, x, y):
Turtle.__init__(self)
self.shape("turtle")
self.resizemode("user")
self.shapesize(3,3,5)
self.pensize(10)
self._color = [0,0,0]
self.x = x
self._color[x] = y
self.color(self._color)
self.speed(0)
self.left(90)
self.pu()
self.goto(x,0)
self.pd()
self.sety(1)
self.pu()
self.sety(y)
self.pencolor("gray25")
self.ondrag(self.shift)
def shift(self, x, y):
self.sety(max(0,min(y,1)))
self._color[self.x] = self.ycor()
self.fillcolor(self._color)
setbgcolor()
def setbgcolor():
screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
def main():
global screen, red, green, blue
screen = Screen()
screen.delay(0)
screen.setworldcoordinates(-1, -0.3, 3, 1.3)
red = ColorTurtle(0, .5)
green = ColorTurtle(1, .5)
blue = ColorTurtle(2, .5)
setbgcolor()
writer = Turtle()
writer.ht()
writer.pu()
writer.goto(1,1.15)
writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

108
third_party/python/Lib/turtledemo/forest.py vendored Executable file
View file

@ -0,0 +1,108 @@
#!/usr/bin/env python3
""" turtlegraphics-example-suite:
tdemo_forest.py
Displays a 'forest' of 3 breadth-first-trees
similar to the one in tree.
For further remarks see tree.py
This example is a 'breadth-first'-rewrite of
a Logo program written by Erich Neuwirth. See
http://homepage.univie.ac.at/erich.neuwirth/
"""
from turtle import Turtle, colormode, tracer, mainloop
from random import randrange
from time import clock
def symRandom(n):
return randrange(-n,n+1)
def randomize( branchlist, angledist, sizedist ):
return [ (angle+symRandom(angledist),
sizefactor*1.01**symRandom(sizedist))
for angle, sizefactor in branchlist ]
def randomfd( t, distance, parts, angledist ):
for i in range(parts):
t.left(symRandom(angledist))
t.forward( (1.0 * distance)/parts )
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
# benutzt Liste von turtles und Liste von Zweiglisten,
# fuer jede turtle eine!
if level > 0:
lst = []
brs = []
for t, branchlist in list(zip(tlist,branchlists)):
t.pensize( size * widthfactor )
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
180 - 11 * level + symRandom(15),
0 )
t.pendown()
randomfd(t, size, level, angledist )
yield 1
for angle, sizefactor in branchlist:
t.left(angle)
lst.append(t.clone())
brs.append(randomize(branchlist, angledist, sizedist))
t.right(angle)
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
angledist, sizedist):
yield None
def start(t,x,y):
colormode(255)
t.reset()
t.speed(0)
t.hideturtle()
t.left(90)
t.penup()
t.setpos(x,y)
t.pendown()
def doit1(level, pen):
pen.hideturtle()
start(pen, 20, -208)
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
return t
def doit2(level, pen):
pen.hideturtle()
start(pen, -135, -130)
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
return t
def doit3(level, pen):
pen.hideturtle()
start(pen, 190, -90)
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
return t
# Hier 3 Baumgeneratoren:
def main():
p = Turtle()
p.ht()
tracer(75,0)
u = doit1(6, Turtle(undobuffersize=1))
s = doit2(7, Turtle(undobuffersize=1))
t = doit3(5, Turtle(undobuffersize=1))
a = clock()
while True:
done = 0
for b in u,s,t:
try:
b.__next__()
except:
done += 1
if done == 3:
break
tracer(1,10)
b = clock()
return "runtime: %.2f sec." % (b-a)
if __name__ == '__main__':
main()
mainloop()

View file

@ -0,0 +1,138 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_fractalCurves.py
This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.
The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock
class CurvesTurtle(Pen):
# example derived from
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics
# by Harold Abelson and Andrea diSessa
# p. 96-98
def hilbert(self, size, level, parity):
if level == 0:
return
# rotate and draw first subcurve with opposite parity to big curve
self.left(parity * 90)
self.hilbert(size, level - 1, -parity)
# interface to and draw second subcurve with same parity as big curve
self.forward(size)
self.right(parity * 90)
self.hilbert(size, level - 1, parity)
# third subcurve
self.forward(size)
self.hilbert(size, level - 1, parity)
# fourth subcurve
self.right(parity * 90)
self.forward(size)
self.hilbert(size, level - 1, -parity)
# a final turn is needed to make the turtle
# end up facing outward from the large square
self.left(parity * 90)
# Visual Modeling with Logo: A Structural Approach to Seeing
# by James Clayson
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904
# p. 146
def fractalgon(self, n, rad, lev, dir):
import math
# if dir = 1 turn outward
# if dir = -1 turn inward
edge = 2 * rad * math.sin(math.pi / n)
self.pu()
self.fd(rad)
self.pd()
self.rt(180 - (90 * (n - 2) / n))
for i in range(n):
self.fractal(edge, lev, dir)
self.rt(360 / n)
self.lt(180 - (90 * (n - 2) / n))
self.pu()
self.bk(rad)
self.pd()
# p. 146
def fractal(self, dist, depth, dir):
if depth < 1:
self.fd(dist)
return
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.rt(120 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
def main():
ft = CurvesTurtle()
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ft.pu()
size = 6
ft.setpos(-33*size, -32*size)
ft.pd()
ta=clock()
ft.fillcolor("red")
ft.begin_fill()
ft.fd(size)
ft.hilbert(size, 6, 1)
# frame
ft.fd(size)
for i in range(3):
ft.lt(90)
ft.fd(size*(64+i%2))
ft.pu()
for i in range(2):
ft.fd(size)
ft.rt(90)
ft.pd()
for i in range(4):
ft.fd(size*(66+i%2))
ft.rt(90)
ft.end_fill()
tb=clock()
res = "Hilbert: %.2fsec. " % (tb-ta)
sleep(3)
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ta=clock()
ft.color("black", "blue")
ft.begin_fill()
ft.fractalgon(3, 250, 4, 1)
ft.end_fill()
ft.begin_fill()
ft.color("red")
ft.fractalgon(3, 200, 4, -1)
ft.end_fill()
tb=clock()
res += "Koch: %.2fsec." % (tb-ta)
return res
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,119 @@
#!/usr/bin/env python3
""" turtle-example-suite:
xtx_lindenmayer_indian.py
Each morning women in Tamil Nadu, in southern
India, place designs, created by using rice
flour and known as kolam on the thresholds of
their homes.
These can be described by Lindenmayer systems,
which can easily be implemented with turtle
graphics and Python.
Two examples are shown here:
(1) the snake kolam
(2) anklets of Krishna
Taken from Marcia Ascher: Mathematics
Elsewhere, An Exploration of Ideas Across
Cultures
"""
################################
# Mini Lindenmayer tool
###############################
from turtle import *
def replace( seq, replacementRules, n ):
for i in range(n):
newseq = ""
for element in seq:
newseq = newseq + replacementRules.get(element,element)
seq = newseq
return seq
def draw( commands, rules ):
for b in commands:
try:
rules[b]()
except TypeError:
try:
draw(rules[b], rules)
except:
pass
def main():
################################
# Example 1: Snake kolam
################################
def r():
right(45)
def l():
left(45)
def f():
forward(7.5)
snake_rules = {"-":r, "+":l, "f":f, "b":"f+f+f--f--f+f+f"}
snake_replacementRules = {"b": "b+f+b--f--b+f+b"}
snake_start = "b--f--b--f"
drawing = replace(snake_start, snake_replacementRules, 3)
reset()
speed(3)
tracer(1,0)
ht()
up()
backward(195)
down()
draw(drawing, snake_rules)
from time import sleep
sleep(3)
################################
# Example 2: Anklets of Krishna
################################
def A():
color("red")
circle(10,90)
def B():
from math import sqrt
color("black")
l = 5/sqrt(2)
forward(l)
circle(l, 270)
forward(l)
def F():
color("green")
forward(10)
krishna_rules = {"a":A, "b":B, "f":F}
krishna_replacementRules = {"a" : "afbfa", "b" : "afbfbfbfa" }
krishna_start = "fbfbfbfb"
reset()
speed(0)
tracer(3,0)
ht()
left(45)
drawing = replace(krishna_start, krishna_replacementRules, 3)
draw(drawing, krishna_rules)
tracer(1)
return "Done!"
if __name__=='__main__':
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,79 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_minimal_hanoi.py
A minimal 'Towers of Hanoi' animation:
A tower of 6 discs is transferred from the
left to the right peg.
An imho quite elegant and concise
implementation using a tower class, which
is derived from the built-in type list.
Discs are turtles with shape "square", but
stretched to rectangles by shapesize()
---------------------------------------
To exit press STOP button
---------------------------------------
"""
from turtle import *
class Disc(Turtle):
def __init__(self, n):
Turtle.__init__(self, shape="square", visible=False)
self.pu()
self.shapesize(1.5, n*1.5, 2) # square-->rectangle
self.fillcolor(n/6., 0, 1-n/6.)
self.st()
class Tower(list):
"Hanoi tower, a subclass of built-in type list"
def __init__(self, x):
"create an empty tower. x is x-position of peg"
self.x = x
def push(self, d):
d.setx(self.x)
d.sety(-150+34*len(self))
self.append(d)
def pop(self):
d = list.pop(self)
d.sety(150)
return d
def hanoi(n, from_, with_, to_):
if n > 0:
hanoi(n-1, from_, to_, with_)
to_.push(from_.pop())
hanoi(n-1, with_, from_, to_)
def play():
onkey(None,"space")
clear()
try:
hanoi(6, t1, t2, t3)
write("press STOP button to exit",
align="center", font=("Courier", 16, "bold"))
except Terminator:
pass # turtledemo user pressed STOP
def main():
global t1, t2, t3
ht(); penup(); goto(0, -225) # writer turtle
t1 = Tower(-250)
t2 = Tower(0)
t3 = Tower(250)
# make tower of 6 discs
for i in range(6,0,-1):
t1.push(Disc(i))
# prepare spartanic user interface ;-)
write("press spacebar to start game",
align="center", font=("Courier", 16, "bold"))
onkey(play, "space")
listen()
return "EVENTLOOP"
if __name__=="__main__":
msg = main()
print(msg)
mainloop()

226
third_party/python/Lib/turtledemo/nim.py vendored Normal file
View file

@ -0,0 +1,226 @@
""" turtle-example-suite:
tdemo_nim.py
Play nim against the computer. The player
who takes the last stick is the winner.
Implements the model-view-controller
design pattern.
"""
import turtle
import random
import time
SCREENWIDTH = 640
SCREENHEIGHT = 480
MINSTICKS = 7
MAXSTICKS = 31
HUNIT = SCREENHEIGHT // 12
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
SCOLOR = (63, 63, 31)
HCOLOR = (255, 204, 204)
COLOR = (204, 204, 255)
def randomrow():
return random.randint(MINSTICKS, MAXSTICKS)
def computerzug(state):
xored = state[0] ^ state[1] ^ state[2]
if xored == 0:
return randommove(state)
for z in range(3):
s = state[z] ^ xored
if s <= state[z]:
move = (z, s)
return move
def randommove(state):
m = max(state)
while True:
z = random.randint(0,2)
if state[z] > (m > 1):
break
rand = random.randint(m > 1, state[z]-1)
return z, rand
class NimModel(object):
def __init__(self, game):
self.game = game
def setup(self):
if self.game.state not in [Nim.CREATED, Nim.OVER]:
return
self.sticks = [randomrow(), randomrow(), randomrow()]
self.player = 0
self.winner = None
self.game.view.setup()
self.game.state = Nim.RUNNING
def move(self, row, col):
maxspalte = self.sticks[row]
self.sticks[row] = col
self.game.view.notify_move(row, col, maxspalte, self.player)
if self.game_over():
self.game.state = Nim.OVER
self.winner = self.player
self.game.view.notify_over()
elif self.player == 0:
self.player = 1
row, col = computerzug(self.sticks)
self.move(row, col)
self.player = 0
def game_over(self):
return self.sticks == [0, 0, 0]
def notify_move(self, row, col):
if self.sticks[row] <= col:
return
self.move(row, col)
class Stick(turtle.Turtle):
def __init__(self, row, col, game):
turtle.Turtle.__init__(self, visible=False)
self.row = row
self.col = col
self.game = game
x, y = self.coords(row, col)
self.shape("square")
self.shapesize(HUNIT/10.0, WUNIT/20.0)
self.speed(0)
self.pu()
self.goto(x,y)
self.color("white")
self.showturtle()
def coords(self, row, col):
packet, remainder = divmod(col, 5)
x = (3 + 11 * packet + 2 * remainder) * WUNIT
y = (2 + 3 * row) * HUNIT
return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
def makemove(self, x, y):
if self.game.state != Nim.RUNNING:
return
self.game.controller.notify_move(self.row, self.col)
class NimView(object):
def __init__(self, game):
self.game = game
self.screen = game.screen
self.model = game.model
self.screen.colormode(255)
self.screen.tracer(False)
self.screen.bgcolor((240, 240, 255))
self.writer = turtle.Turtle(visible=False)
self.writer.pu()
self.writer.speed(0)
self.sticks = {}
for row in range(3):
for col in range(MAXSTICKS):
self.sticks[(row, col)] = Stick(row, col, game)
self.display("... a moment please ...")
self.screen.tracer(True)
def display(self, msg1, msg2=None):
self.screen.tracer(False)
self.writer.clear()
if msg2 is not None:
self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
self.writer.pencolor("red")
self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
self.writer.pencolor("black")
self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
self.screen.tracer(True)
def setup(self):
self.screen.tracer(False)
for row in range(3):
for col in range(self.model.sticks[row]):
self.sticks[(row, col)].color(SCOLOR)
for row in range(3):
for col in range(self.model.sticks[row], MAXSTICKS):
self.sticks[(row, col)].color("white")
self.display("Your turn! Click leftmost stick to remove.")
self.screen.tracer(True)
def notify_move(self, row, col, maxspalte, player):
if player == 0:
farbe = HCOLOR
for s in range(col, maxspalte):
self.sticks[(row, s)].color(farbe)
else:
self.display(" ... thinking ... ")
time.sleep(0.5)
self.display(" ... thinking ... aaah ...")
farbe = COLOR
for s in range(maxspalte-1, col-1, -1):
time.sleep(0.2)
self.sticks[(row, s)].color(farbe)
self.display("Your turn! Click leftmost stick to remove.")
def notify_over(self):
if self.game.model.winner == 0:
msg2 = "Congrats. You're the winner!!!"
else:
msg2 = "Sorry, the computer is the winner."
self.display("To play again press space bar. To leave press ESC.", msg2)
def clear(self):
if self.game.state == Nim.OVER:
self.screen.clear()
class NimController(object):
def __init__(self, game):
self.game = game
self.sticks = game.view.sticks
self.BUSY = False
for stick in self.sticks.values():
stick.onclick(stick.makemove)
self.game.screen.onkey(self.game.model.setup, "space")
self.game.screen.onkey(self.game.view.clear, "Escape")
self.game.view.display("Press space bar to start game")
self.game.screen.listen()
def notify_move(self, row, col):
if self.BUSY:
return
self.BUSY = True
self.game.model.notify_move(row, col)
self.BUSY = False
class Nim(object):
CREATED = 0
RUNNING = 1
OVER = 2
def __init__(self, screen):
self.state = Nim.CREATED
self.screen = screen
self.model = NimModel(self)
self.view = NimView(self)
self.controller = NimController(self)
def main():
mainscreen = turtle.Screen()
mainscreen.mode("standard")
mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
nim = Nim(mainscreen)
return "EVENTLOOP"
if __name__ == "__main__":
main()
turtle.mainloop()

54
third_party/python/Lib/turtledemo/paint.py vendored Executable file
View file

@ -0,0 +1,54 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_paint.py
A simple event-driven paint program
- left mouse button moves turtle
- middle mouse button changes color
- right mouse button toogles betweem pen up
(no line drawn when the turtle moves) and
pen down (line is drawn). If pen up follows
at least two pen-down moves, the polygon that
includes the starting point is filled.
-------------------------------------------
Play around by clicking into the canvas
using all three mouse buttons.
-------------------------------------------
To exit press STOP button
-------------------------------------------
"""
from turtle import *
def switchupdown(x=0, y=0):
if pen()["pendown"]:
end_fill()
up()
else:
down()
begin_fill()
def changecolor(x=0, y=0):
global colors
colors = colors[1:]+colors[:1]
color(colors[0])
def main():
global colors
shape("circle")
resizemode("user")
shapesize(.5)
width(3)
colors=["red", "green", "blue", "yellow"]
color(colors[0])
switchupdown()
onscreenclick(goto,1)
onscreenclick(changecolor,2)
onscreenclick(switchupdown,3)
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

61
third_party/python/Lib/turtledemo/peace.py vendored Executable file
View file

@ -0,0 +1,61 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_peace.py
A simple drawing suitable as a beginner's
programming example. Aside from the
peacecolors assignment and the for loop,
it only uses turtle commands.
"""
from turtle import *
def main():
peacecolors = ("red3", "orange", "yellow",
"seagreen4", "orchid4",
"royalblue1", "dodgerblue4")
reset()
Screen()
up()
goto(-320,-195)
width(70)
for pcolor in peacecolors:
color(pcolor)
down()
forward(640)
up()
backward(640)
left(90)
forward(66)
right(90)
width(25)
color("white")
goto(0,-170)
down()
circle(170)
left(90)
forward(340)
up()
left(180)
forward(170)
right(45)
down()
forward(170)
up()
backward(170)
left(90)
down()
forward(170)
up()
goto(0,300) # vanish if hideturtle() is not available ;-)
return "Done!"
if __name__ == "__main__":
main()
mainloop()

178
third_party/python/Lib/turtledemo/penrose.py vendored Executable file
View file

@ -0,0 +1,178 @@
#!/usr/bin/env python3
""" xturtle-example-suite:
xtx_kites_and_darts.py
Constructs two aperiodic penrose-tilings,
consisting of kites and darts, by the method
of inflation in six steps.
Starting points are the patterns "sun"
consisting of five kites and "star"
consisting of five darts.
For more information see:
http://en.wikipedia.org/wiki/Penrose_tiling
-------------------------------------------
"""
from turtle import *
from math import cos, pi
from time import clock, sleep
f = (5**0.5-1)/2.0 # (sqrt(5)-1)/2 -- golden ratio
d = 2 * cos(3*pi/10)
def kite(l):
fl = f * l
lt(36)
fd(l)
rt(108)
fd(fl)
rt(36)
fd(fl)
rt(108)
fd(l)
rt(144)
def dart(l):
fl = f * l
lt(36)
fd(l)
rt(144)
fd(fl)
lt(36)
fd(fl)
rt(144)
fd(l)
rt(144)
def inflatekite(l, n):
if n == 0:
px, py = pos()
h, x, y = int(heading()), round(px,3), round(py,3)
tiledict[(h,x,y)] = True
return
fl = f * l
lt(36)
inflatedart(fl, n-1)
fd(l)
rt(144)
inflatekite(fl, n-1)
lt(18)
fd(l*d)
rt(162)
inflatekite(fl, n-1)
lt(36)
fd(l)
rt(180)
inflatedart(fl, n-1)
lt(36)
def inflatedart(l, n):
if n == 0:
px, py = pos()
h, x, y = int(heading()), round(px,3), round(py,3)
tiledict[(h,x,y)] = False
return
fl = f * l
inflatekite(fl, n-1)
lt(36)
fd(l)
rt(180)
inflatedart(fl, n-1)
lt(54)
fd(l*d)
rt(126)
inflatedart(fl, n-1)
fd(l)
rt(144)
def draw(l, n, th=2):
clear()
l = l * f**n
shapesize(l/100.0, l/100.0, th)
for k in tiledict:
h, x, y = k
setpos(x, y)
setheading(h)
if tiledict[k]:
shape("kite")
color("black", (0, 0.75, 0))
else:
shape("dart")
color("black", (0.75, 0, 0))
stamp()
def sun(l, n):
for i in range(5):
inflatekite(l, n)
lt(72)
def star(l,n):
for i in range(5):
inflatedart(l, n)
lt(72)
def makeshapes():
tracer(0)
begin_poly()
kite(100)
end_poly()
register_shape("kite", get_poly())
begin_poly()
dart(100)
end_poly()
register_shape("dart", get_poly())
tracer(1)
def start():
reset()
ht()
pu()
makeshapes()
resizemode("user")
def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
global tiledict
goto(startpos)
setheading(0)
tiledict = {}
a = clock()
tracer(0)
fun(l, n)
b = clock()
draw(l, n, th)
tracer(1)
c = clock()
nk = len([x for x in tiledict if tiledict[x]])
nd = len([x for x in tiledict if not tiledict[x]])
print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
def demo(fun=sun):
start()
for i in range(8):
a = clock()
test(300, i, fun)
b = clock()
t = b - a
if t < 2:
sleep(2 - t)
def main():
#title("Penrose-tiling with kites and darts.")
mode("logo")
bgcolor(0.3, 0.3, 0)
demo(sun)
sleep(2)
demo(star)
pencolor("black")
goto(0,-200)
pencolor(0.7,0.7,1)
write("Please wait...",
align="center", font=('Arial Black', 36, 'bold'))
test(600, 8, startpos=(70, 117))
return "Done"
if __name__ == "__main__":
msg = main()
mainloop()

View file

@ -0,0 +1,111 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_planets_and_moon.py
Gravitational system simulation using the
approximation method from Feynman-lectures,
p.9-8, using turtlegraphics.
Example: heavy central body, light planet,
very light moon!
Planet has a circular orbit, moon a stable
orbit around the planet.
You can hold the movement temporarily by
pressing the left mouse button with the
mouse over the scrollbar of the canvas.
"""
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
G = 8
class GravSys(object):
def __init__(self):
self.planets = []
self.t = 0
self.dt = 0.01
def init(self):
for p in self.planets:
p.init()
def start(self):
for i in range(10000):
self.t += self.dt
for p in self.planets:
p.step()
class Star(Turtle):
def __init__(self, m, x, v, gravSys, shape):
Turtle.__init__(self, shape=shape)
self.penup()
self.m = m
self.setpos(x)
self.v = v
gravSys.planets.append(self)
self.gravSys = gravSys
self.resizemode("user")
self.pendown()
def init(self):
dt = self.gravSys.dt
self.a = self.acc()
self.v = self.v + 0.5*dt*self.a
def acc(self):
a = Vec(0,0)
for planet in self.gravSys.planets:
if planet != self:
v = planet.pos()-self.pos()
a += (G*planet.m/abs(v)**3)*v
return a
def step(self):
dt = self.gravSys.dt
self.setpos(self.pos() + dt*self.v)
if self.gravSys.planets.index(self) != 0:
self.setheading(self.towards(self.gravSys.planets[0]))
self.a = self.acc()
self.v = self.v + dt*self.a
## create compound yellow/blue turtleshape for planets
def main():
s = Turtle()
s.reset()
s.getscreen().tracer(0,0)
s.ht()
s.pu()
s.fd(6)
s.lt(90)
s.begin_poly()
s.circle(6, 180)
s.end_poly()
m1 = s.get_poly()
s.begin_poly()
s.circle(6,180)
s.end_poly()
m2 = s.get_poly()
planetshape = Shape("compound")
planetshape.addcomponent(m1,"orange")
planetshape.addcomponent(m2,"blue")
s.getscreen().register_shape("planet", planetshape)
s.getscreen().tracer(1,0)
## setup gravitational system
gs = GravSys()
sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
sun.color("yellow")
sun.shapesize(1.8)
sun.pu()
earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
earth.pencolor("green")
earth.shapesize(0.8)
moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
moon.pencolor("blue")
moon.shapesize(0.5)
gs.init()
gs.start()
return "Done!"
if __name__ == '__main__':
main()
mainloop()

View file

@ -0,0 +1,65 @@
""" turtle-example-suite:
tdemo_wikipedia3.py
This example is
inspired by the Wikipedia article on turtle
graphics. (See example wikipedia1 for URLs)
First we create (ne-1) (i.e. 35 in this
example) copies of our first turtle p.
Then we let them perform their steps in
parallel.
Followed by a complete undo().
"""
from turtle import Screen, Turtle, mainloop
from time import clock, sleep
def mn_eck(p, ne,sz):
turtlelist = [p]
#create ne-1 additional turtles
for i in range(1,ne):
q = p.clone()
q.rt(360.0/ne)
turtlelist.append(q)
p = q
for i in range(ne):
c = abs(ne/2.0-i)/(ne*.7)
# let those ne turtles make a step
# in parallel:
for t in turtlelist:
t.rt(360./ne)
t.pencolor(1-c,0,c)
t.fd(sz)
def main():
s = Screen()
s.bgcolor("black")
p=Turtle()
p.speed(0)
p.hideturtle()
p.pencolor("red")
p.pensize(3)
s.tracer(36,0)
at = clock()
mn_eck(p, 36, 19)
et = clock()
z1 = et-at
sleep(1)
at = clock()
while any([t.undobufferentries() for t in s.turtles()]):
for t in s.turtles():
t.undo()
et = clock()
return "runtime: %.3f sec" % (z1+et-at)
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,86 @@
""" turtle-example-suite:
tdemo_round_dance.py
(Needs version 1.1 of the turtle module that
comes with Python 3.1)
Dancing turtles have a compound shape
consisting of a series of triangles of
decreasing size.
Turtles march along a circle while rotating
pairwise in opposite direction, with one
exception. Does that breaking of symmetry
enhance the attractiveness of the example?
Press any key to stop the animation.
Technically: demonstrates use of compound
shapes, transformation of shapes as well as
cloning turtles. The animation is
controlled through update().
"""
from turtle import *
def stop():
global running
running = False
def main():
global running
clearscreen()
bgcolor("gray10")
tracer(False)
shape("triangle")
f = 0.793402
phi = 9.064678
s = 5
c = 1
# create compound shape
sh = Shape("compound")
for i in range(10):
shapesize(s)
p =get_shapepoly()
s *= f
c *= f
tilt(-phi)
sh.addcomponent(p, (c, 0.25, 1-c), "black")
register_shape("multitri", sh)
# create dancers
shapesize(1)
shape("multitri")
pu()
setpos(0, -200)
dancers = []
for i in range(180):
fd(7)
tilt(-4)
lt(2)
update()
if i % 12 == 0:
dancers.append(clone())
home()
# dance
running = True
onkeypress(stop)
listen()
cs = 1
while running:
ta = -4
for dancer in dancers:
dancer.fd(7)
dancer.lt(2)
dancer.tilt(ta)
ta = -4 if ta > 0 else 2
if cs < 180:
right(4)
shapesize(cs)
cs *= 1.005
update()
return "DONE!"
if __name__=='__main__':
print(main())
mainloop()

View file

@ -0,0 +1,204 @@
#!/usr/bin/env python3
"""
sorting_animation.py
A minimal sorting algorithm animation:
Sorts a shelf of 10 blocks using insertion
sort, selection sort and quicksort.
Shelfs are implemented using builtin lists.
Blocks are turtles with shape "square", but
stretched to rectangles by shapesize()
---------------------------------------
To exit press space button
---------------------------------------
"""
from turtle import *
import random
class Block(Turtle):
def __init__(self, size):
self.size = size
Turtle.__init__(self, shape="square", visible=False)
self.pu()
self.shapesize(size * 1.5, 1.5, 2) # square-->rectangle
self.fillcolor("black")
self.st()
def glow(self):
self.fillcolor("red")
def unglow(self):
self.fillcolor("black")
def __repr__(self):
return "Block size: {0}".format(self.size)
class Shelf(list):
def __init__(self, y):
"create a shelf. y is y-position of first block"
self.y = y
self.x = -150
def push(self, d):
width, _, _ = d.shapesize()
# align blocks by the bottom edge
y_offset = width / 2 * 20
d.sety(self.y + y_offset)
d.setx(self.x + 34 * len(self))
self.append(d)
def _close_gap_from_i(self, i):
for b in self[i:]:
xpos, _ = b.pos()
b.setx(xpos - 34)
def _open_gap_from_i(self, i):
for b in self[i:]:
xpos, _ = b.pos()
b.setx(xpos + 34)
def pop(self, key):
b = list.pop(self, key)
b.glow()
b.sety(200)
self._close_gap_from_i(key)
return b
def insert(self, key, b):
self._open_gap_from_i(key)
list.insert(self, key, b)
b.setx(self.x + 34 * key)
width, _, _ = b.shapesize()
# align blocks by the bottom edge
y_offset = width / 2 * 20
b.sety(self.y + y_offset)
b.unglow()
def isort(shelf):
length = len(shelf)
for i in range(1, length):
hole = i
while hole > 0 and shelf[i].size < shelf[hole - 1].size:
hole = hole - 1
shelf.insert(hole, shelf.pop(i))
return
def ssort(shelf):
length = len(shelf)
for j in range(0, length - 1):
imin = j
for i in range(j + 1, length):
if shelf[i].size < shelf[imin].size:
imin = i
if imin != j:
shelf.insert(j, shelf.pop(imin))
def partition(shelf, left, right, pivot_index):
pivot = shelf[pivot_index]
shelf.insert(right, shelf.pop(pivot_index))
store_index = left
for i in range(left, right): # range is non-inclusive of ending value
if shelf[i].size < pivot.size:
shelf.insert(store_index, shelf.pop(i))
store_index = store_index + 1
shelf.insert(store_index, shelf.pop(right)) # move pivot to correct position
return store_index
def qsort(shelf, left, right):
if left < right:
pivot_index = left
pivot_new_index = partition(shelf, left, right, pivot_index)
qsort(shelf, left, pivot_new_index - 1)
qsort(shelf, pivot_new_index + 1, right)
def randomize():
disable_keys()
clear()
target = list(range(10))
random.shuffle(target)
for i, t in enumerate(target):
for j in range(i, len(s)):
if s[j].size == t + 1:
s.insert(i, s.pop(j))
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
def show_text(text, line=0):
line = 20 * line
goto(0,-250 - line)
write(text, align="center", font=("Courier", 16, "bold"))
def start_ssort():
disable_keys()
clear()
show_text("Selection Sort")
ssort(s)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
def start_isort():
disable_keys()
clear()
show_text("Insertion Sort")
isort(s)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
def start_qsort():
disable_keys()
clear()
show_text("Quicksort")
qsort(s, 0, len(s) - 1)
clear()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
def init_shelf():
global s
s = Shelf(-200)
vals = (4, 2, 8, 9, 1, 5, 10, 3, 7, 6)
for i in vals:
s.push(Block(i))
def disable_keys():
onkey(None, "s")
onkey(None, "i")
onkey(None, "q")
onkey(None, "r")
def enable_keys():
onkey(start_isort, "i")
onkey(start_ssort, "s")
onkey(start_qsort, "q")
onkey(randomize, "r")
onkey(bye, "space")
def main():
getscreen().clearscreen()
ht(); penup()
init_shelf()
show_text(instructions1)
show_text(instructions2, line=1)
enable_keys()
listen()
return "EVENTLOOP"
instructions1 = "press i for insertion sort, s for selection sort, q for quicksort"
instructions2 = "spacebar to quit, r to randomize"
if __name__=="__main__":
msg = main()
mainloop()

62
third_party/python/Lib/turtledemo/tree.py vendored Executable file
View file

@ -0,0 +1,62 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_tree.py
Displays a 'breadth-first-tree' - in contrast
to the classical Logo tree drawing programs,
which use a depth-first-algorithm.
Uses:
(1) a tree-generator, where the drawing is
quasi the side-effect, whereas the generator
always yields None.
(2) Turtle-cloning: At each branching point
the current pen is cloned. So in the end
there are 1024 turtles.
"""
from turtle import Turtle, mainloop
from time import clock
def tree(plist, l, a, f):
""" plist is list of pens
l is length of branch
a is half of the angle between 2 branches
f is factor by which branch is shortened
from level to level."""
if l > 3:
lst = []
for p in plist:
p.forward(l)
q = p.clone()
p.left(a)
q.right(a)
lst.append(p)
lst.append(q)
for x in tree(lst, l*f, a, f):
yield None
def maketree():
p = Turtle()
p.setundobuffer(None)
p.hideturtle()
p.speed(0)
p.getscreen().tracer(30,0)
p.left(90)
p.penup()
p.forward(-210)
p.pendown()
t = tree([p], 200, 65, 0.6375)
for x in t:
pass
def main():
a=clock()
maketree()
b=clock()
return "done: %.2f sec." % (b-a)
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

View file

@ -0,0 +1,10 @@
width = 800
height = 600
canvwidth = 1200
canvheight = 900
shape = arrow
mode = standard
resizemode = auto
fillcolor = ""
title = Python turtle graphics demo.

View file

@ -0,0 +1,54 @@
"""turtledemo.two_canvases
Use TurtleScreen and RawTurtle to draw on two
distinct canvases in a separate windows. The
new window must be separately closed in
addition to pressing the STOP button.
"""
from turtle import TurtleScreen, RawTurtle, TK
def main():
root = TK.Tk()
cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
cv1.pack()
cv2.pack()
s1 = TurtleScreen(cv1)
s1.bgcolor(0.85, 0.85, 1)
s2 = TurtleScreen(cv2)
s2.bgcolor(1, 0.85, 0.85)
p = RawTurtle(s1)
q = RawTurtle(s2)
p.color("red", (1, 0.85, 0.85))
p.width(3)
q.color("blue", (0.85, 0.85, 1))
q.width(3)
for t in p,q:
t.shape("turtle")
t.lt(36)
q.lt(180)
for t in p, q:
t.begin_fill()
for i in range(5):
for t in p, q:
t.fd(50)
t.lt(72)
for t in p,q:
t.end_fill()
t.lt(54)
t.pu()
t.bk(50)
return "EVENTLOOP"
if __name__ == '__main__':
main()
TK.mainloop() # keep window open until user closes it

49
third_party/python/Lib/turtledemo/yinyang.py vendored Executable file
View file

@ -0,0 +1,49 @@
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_yinyang.py
Another drawing suitable as a beginner's
programming example.
The small circles are drawn by the circle
command.
"""
from turtle import *
def yin(radius, color1, color2):
width(3)
color("black", color1)
begin_fill()
circle(radius/2., 180)
circle(radius, 180)
left(180)
circle(-radius/2., 180)
end_fill()
left(90)
up()
forward(radius*0.35)
right(90)
down()
color(color1, color2)
begin_fill()
circle(radius*0.15)
end_fill()
left(90)
up()
backward(radius*0.35)
down()
left(90)
def main():
reset()
yin(200, "black", "white")
yin(200, "white", "black")
ht()
return "Done!"
if __name__ == '__main__':
main()
mainloop()