mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 05:42:29 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
14
third_party/python/Lib/turtledemo/__init__.py
vendored
Normal file
14
third_party/python/Lib/turtledemo/__init__.py
vendored
Normal file
|
@ -0,0 +1,14 @@
|
|||
"""
|
||||
--------------------------------------
|
||||
About this viewer
|
||||
--------------------------------------
|
||||
|
||||
Tiny demo viewer to view turtle graphics example scripts.
|
||||
|
||||
Quickly and dirtyly assembled by Gregor Lingl.
|
||||
June, 2006
|
||||
|
||||
For more information see: turtledemo - Help
|
||||
|
||||
Have fun!
|
||||
"""
|
386
third_party/python/Lib/turtledemo/__main__.py
vendored
Normal file
386
third_party/python/Lib/turtledemo/__main__.py
vendored
Normal file
|
@ -0,0 +1,386 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
----------------------------------------------
|
||||
turtleDemo - Help
|
||||
----------------------------------------------
|
||||
|
||||
This document has two sections:
|
||||
|
||||
(1) How to use the demo viewer
|
||||
(2) How to add your own demos to the demo repository
|
||||
|
||||
|
||||
(1) How to use the demo viewer.
|
||||
|
||||
Select a demoscript from the example menu.
|
||||
The (syntax colored) source code appears in the left
|
||||
source code window. IT CANNOT BE EDITED, but ONLY VIEWED!
|
||||
|
||||
The demo viewer windows can be resized. The divider between text
|
||||
and canvas can be moved by grabbing it with the mouse. The text font
|
||||
size can be changed from the menu and with Control/Command '-'/'+'.
|
||||
It can also be changed on most systems with Control-mousewheel
|
||||
when the mouse is over the text.
|
||||
|
||||
Press START button to start the demo.
|
||||
Stop execution by pressing the STOP button.
|
||||
Clear screen by pressing the CLEAR button.
|
||||
Restart by pressing the START button again.
|
||||
|
||||
SPECIAL demos, such as clock.py are those which run EVENTDRIVEN.
|
||||
|
||||
Press START button to start the demo.
|
||||
|
||||
- Until the EVENTLOOP is entered everything works
|
||||
as in an ordinary demo script.
|
||||
|
||||
- When the EVENTLOOP is entered, you control the
|
||||
application by using the mouse and/or keys (or it's
|
||||
controlled by some timer events)
|
||||
To stop it you can and must press the STOP button.
|
||||
|
||||
While the EVENTLOOP is running, the examples menu is disabled.
|
||||
|
||||
- Only after having pressed the STOP button, you may
|
||||
restart it or choose another example script.
|
||||
|
||||
* * * * * * * *
|
||||
In some rare situations there may occur interferences/conflicts
|
||||
between events concerning the demo script and those concerning the
|
||||
demo-viewer. (They run in the same process.) Strange behaviour may be
|
||||
the consequence and in the worst case you must close and restart the
|
||||
viewer.
|
||||
* * * * * * * *
|
||||
|
||||
|
||||
(2) How to add your own demos to the demo repository
|
||||
|
||||
- Place the file in the same directory as turtledemo/__main__.py
|
||||
IMPORTANT! When imported, the demo should not modify the system
|
||||
by calling functions in other modules, such as sys, tkinter, or
|
||||
turtle. Global variables should be initialized in main().
|
||||
|
||||
- The code must contain a main() function which will
|
||||
be executed by the viewer (see provided example scripts).
|
||||
It may return a string which will be displayed in the Label below
|
||||
the source code window (when execution has finished.)
|
||||
|
||||
- In order to run mydemo.py by itself, such as during development,
|
||||
add the following at the end of the file:
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop() # keep window open
|
||||
|
||||
python -m turtledemo.mydemo # will then run it
|
||||
|
||||
- If the demo is EVENT DRIVEN, main must return the string
|
||||
"EVENTLOOP". This informs the demo viewer that the script is
|
||||
still running and must be stopped by the user!
|
||||
|
||||
If an "EVENTLOOP" demo runs by itself, as with clock, which uses
|
||||
ontimer, or minimal_hanoi, which loops by recursion, then the
|
||||
code should catch the turtle.Terminator exception that will be
|
||||
raised when the user presses the STOP button. (Paint is not such
|
||||
a demo; it only acts in response to mouse clicks and movements.)
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
|
||||
from tkinter import *
|
||||
from idlelib.colorizer import ColorDelegator, color_config
|
||||
from idlelib.percolator import Percolator
|
||||
from idlelib.textview import view_text
|
||||
from turtledemo import __doc__ as about_turtledemo
|
||||
|
||||
import turtle
|
||||
|
||||
demo_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
darwin = sys.platform == 'darwin'
|
||||
|
||||
STARTUP = 1
|
||||
READY = 2
|
||||
RUNNING = 3
|
||||
DONE = 4
|
||||
EVENTDRIVEN = 5
|
||||
|
||||
menufont = ("Arial", 12, NORMAL)
|
||||
btnfont = ("Arial", 12, 'bold')
|
||||
txtfont = ['Lucida Console', 10, 'normal']
|
||||
|
||||
MINIMUM_FONT_SIZE = 6
|
||||
MAXIMUM_FONT_SIZE = 100
|
||||
font_sizes = [8, 9, 10, 11, 12, 14, 18, 20, 22, 24, 30]
|
||||
|
||||
def getExampleEntries():
|
||||
return [entry[:-3] for entry in os.listdir(demo_dir) if
|
||||
entry.endswith(".py") and entry[0] != '_']
|
||||
|
||||
help_entries = ( # (help_label, help_doc)
|
||||
('Turtledemo help', __doc__),
|
||||
('About turtledemo', about_turtledemo),
|
||||
('About turtle module', turtle.__doc__),
|
||||
)
|
||||
|
||||
|
||||
|
||||
class DemoWindow(object):
|
||||
|
||||
def __init__(self, filename=None):
|
||||
self.root = root = turtle._root = Tk()
|
||||
root.title('Python turtle-graphics examples')
|
||||
root.wm_protocol("WM_DELETE_WINDOW", self._destroy)
|
||||
|
||||
if darwin:
|
||||
import subprocess
|
||||
# Make sure we are the currently activated OS X application
|
||||
# so that our menu bar appears.
|
||||
subprocess.run(
|
||||
[
|
||||
'osascript',
|
||||
'-e', 'tell application "System Events"',
|
||||
'-e', 'set frontmost of the first process whose '
|
||||
'unix id is {} to true'.format(os.getpid()),
|
||||
'-e', 'end tell',
|
||||
],
|
||||
stderr=subprocess.DEVNULL,
|
||||
stdout=subprocess.DEVNULL,)
|
||||
|
||||
root.grid_rowconfigure(0, weight=1)
|
||||
root.grid_columnconfigure(0, weight=1)
|
||||
root.grid_columnconfigure(1, minsize=90, weight=1)
|
||||
root.grid_columnconfigure(2, minsize=90, weight=1)
|
||||
root.grid_columnconfigure(3, minsize=90, weight=1)
|
||||
|
||||
self.mBar = Menu(root, relief=RAISED, borderwidth=2)
|
||||
self.mBar.add_cascade(menu=self.makeLoadDemoMenu(self.mBar),
|
||||
label='Examples', underline=0)
|
||||
self.mBar.add_cascade(menu=self.makeFontMenu(self.mBar),
|
||||
label='Fontsize', underline=0)
|
||||
self.mBar.add_cascade(menu=self.makeHelpMenu(self.mBar),
|
||||
label='Help', underline=0)
|
||||
root['menu'] = self.mBar
|
||||
|
||||
pane = PanedWindow(orient=HORIZONTAL, sashwidth=5,
|
||||
sashrelief=SOLID, bg='#ddd')
|
||||
pane.add(self.makeTextFrame(pane))
|
||||
pane.add(self.makeGraphFrame(pane))
|
||||
pane.grid(row=0, columnspan=4, sticky='news')
|
||||
|
||||
self.output_lbl = Label(root, height= 1, text=" --- ", bg="#ddf",
|
||||
font=("Arial", 16, 'normal'), borderwidth=2,
|
||||
relief=RIDGE)
|
||||
self.start_btn = Button(root, text=" START ", font=btnfont,
|
||||
fg="white", disabledforeground = "#fed",
|
||||
command=self.startDemo)
|
||||
self.stop_btn = Button(root, text=" STOP ", font=btnfont,
|
||||
fg="white", disabledforeground = "#fed",
|
||||
command=self.stopIt)
|
||||
self.clear_btn = Button(root, text=" CLEAR ", font=btnfont,
|
||||
fg="white", disabledforeground="#fed",
|
||||
command = self.clearCanvas)
|
||||
self.output_lbl.grid(row=1, column=0, sticky='news', padx=(0,5))
|
||||
self.start_btn.grid(row=1, column=1, sticky='ew')
|
||||
self.stop_btn.grid(row=1, column=2, sticky='ew')
|
||||
self.clear_btn.grid(row=1, column=3, sticky='ew')
|
||||
|
||||
Percolator(self.text).insertfilter(ColorDelegator())
|
||||
self.dirty = False
|
||||
self.exitflag = False
|
||||
if filename:
|
||||
self.loadfile(filename)
|
||||
self.configGUI(DISABLED, DISABLED, DISABLED,
|
||||
"Choose example from menu", "black")
|
||||
self.state = STARTUP
|
||||
|
||||
|
||||
def onResize(self, event):
|
||||
cwidth = self._canvas.winfo_width()
|
||||
cheight = self._canvas.winfo_height()
|
||||
self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth)
|
||||
self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight)
|
||||
|
||||
def makeTextFrame(self, root):
|
||||
self.text_frame = text_frame = Frame(root)
|
||||
self.text = text = Text(text_frame, name='text', padx=5,
|
||||
wrap='none', width=45)
|
||||
color_config(text)
|
||||
|
||||
self.vbar = vbar = Scrollbar(text_frame, name='vbar')
|
||||
vbar['command'] = text.yview
|
||||
vbar.pack(side=LEFT, fill=Y)
|
||||
self.hbar = hbar = Scrollbar(text_frame, name='hbar', orient=HORIZONTAL)
|
||||
hbar['command'] = text.xview
|
||||
hbar.pack(side=BOTTOM, fill=X)
|
||||
text['yscrollcommand'] = vbar.set
|
||||
text['xscrollcommand'] = hbar.set
|
||||
|
||||
text['font'] = tuple(txtfont)
|
||||
shortcut = 'Command' if darwin else 'Control'
|
||||
text.bind_all('<%s-minus>' % shortcut, self.decrease_size)
|
||||
text.bind_all('<%s-underscore>' % shortcut, self.decrease_size)
|
||||
text.bind_all('<%s-equal>' % shortcut, self.increase_size)
|
||||
text.bind_all('<%s-plus>' % shortcut, self.increase_size)
|
||||
text.bind('<Control-MouseWheel>', self.update_mousewheel)
|
||||
text.bind('<Control-Button-4>', self.increase_size)
|
||||
text.bind('<Control-Button-5>', self.decrease_size)
|
||||
|
||||
text.pack(side=LEFT, fill=BOTH, expand=1)
|
||||
return text_frame
|
||||
|
||||
def makeGraphFrame(self, root):
|
||||
turtle._Screen._root = root
|
||||
self.canvwidth = 1000
|
||||
self.canvheight = 800
|
||||
turtle._Screen._canvas = self._canvas = canvas = turtle.ScrolledCanvas(
|
||||
root, 800, 600, self.canvwidth, self.canvheight)
|
||||
canvas.adjustScrolls()
|
||||
canvas._rootwindow.bind('<Configure>', self.onResize)
|
||||
canvas._canvas['borderwidth'] = 0
|
||||
|
||||
self.screen = _s_ = turtle.Screen()
|
||||
turtle.TurtleScreen.__init__(_s_, _s_._canvas)
|
||||
self.scanvas = _s_._canvas
|
||||
turtle.RawTurtle.screens = [_s_]
|
||||
return canvas
|
||||
|
||||
def set_txtsize(self, size):
|
||||
txtfont[1] = size
|
||||
self.text['font'] = tuple(txtfont)
|
||||
self.output_lbl['text'] = 'Font size %d' % size
|
||||
|
||||
def decrease_size(self, dummy=None):
|
||||
self.set_txtsize(max(txtfont[1] - 1, MINIMUM_FONT_SIZE))
|
||||
return 'break'
|
||||
|
||||
def increase_size(self, dummy=None):
|
||||
self.set_txtsize(min(txtfont[1] + 1, MAXIMUM_FONT_SIZE))
|
||||
return 'break'
|
||||
|
||||
def update_mousewheel(self, event):
|
||||
# For wheel up, event.delta = 120 on Windows, -1 on darwin.
|
||||
# X-11 sends Control-Button-4 event instead.
|
||||
if (event.delta < 0) == (not darwin):
|
||||
return self.decrease_size()
|
||||
else:
|
||||
return self.increase_size()
|
||||
|
||||
def configGUI(self, start, stop, clear, txt="", color="blue"):
|
||||
self.start_btn.config(state=start,
|
||||
bg="#d00" if start == NORMAL else "#fca")
|
||||
self.stop_btn.config(state=stop,
|
||||
bg="#d00" if stop == NORMAL else "#fca")
|
||||
self.clear_btn.config(state=clear,
|
||||
bg="#d00" if clear == NORMAL else"#fca")
|
||||
self.output_lbl.config(text=txt, fg=color)
|
||||
|
||||
def makeLoadDemoMenu(self, master):
|
||||
menu = Menu(master)
|
||||
|
||||
for entry in getExampleEntries():
|
||||
def load(entry=entry):
|
||||
self.loadfile(entry)
|
||||
menu.add_command(label=entry, underline=0,
|
||||
font=menufont, command=load)
|
||||
return menu
|
||||
|
||||
def makeFontMenu(self, master):
|
||||
menu = Menu(master)
|
||||
menu.add_command(label="Decrease (C-'-')", command=self.decrease_size,
|
||||
font=menufont)
|
||||
menu.add_command(label="Increase (C-'+')", command=self.increase_size,
|
||||
font=menufont)
|
||||
menu.add_separator()
|
||||
|
||||
for size in font_sizes:
|
||||
def resize(size=size):
|
||||
self.set_txtsize(size)
|
||||
menu.add_command(label=str(size), underline=0,
|
||||
font=menufont, command=resize)
|
||||
return menu
|
||||
|
||||
def makeHelpMenu(self, master):
|
||||
menu = Menu(master)
|
||||
|
||||
for help_label, help_file in help_entries:
|
||||
def show(help_label=help_label, help_file=help_file):
|
||||
view_text(self.root, help_label, help_file)
|
||||
menu.add_command(label=help_label, font=menufont, command=show)
|
||||
return menu
|
||||
|
||||
def refreshCanvas(self):
|
||||
if self.dirty:
|
||||
self.screen.clear()
|
||||
self.dirty=False
|
||||
|
||||
def loadfile(self, filename):
|
||||
self.clearCanvas()
|
||||
turtle.TurtleScreen._RUNNING = False
|
||||
modname = 'turtledemo.' + filename
|
||||
__import__(modname)
|
||||
self.module = sys.modules[modname]
|
||||
with open(self.module.__file__, 'r') as f:
|
||||
chars = f.read()
|
||||
self.text.delete("1.0", "end")
|
||||
self.text.insert("1.0", chars)
|
||||
self.root.title(filename + " - a Python turtle graphics example")
|
||||
self.configGUI(NORMAL, DISABLED, DISABLED,
|
||||
"Press start button", "red")
|
||||
self.state = READY
|
||||
|
||||
def startDemo(self):
|
||||
self.refreshCanvas()
|
||||
self.dirty = True
|
||||
turtle.TurtleScreen._RUNNING = True
|
||||
self.configGUI(DISABLED, NORMAL, DISABLED,
|
||||
"demo running...", "black")
|
||||
self.screen.clear()
|
||||
self.screen.mode("standard")
|
||||
self.state = RUNNING
|
||||
|
||||
try:
|
||||
result = self.module.main()
|
||||
if result == "EVENTLOOP":
|
||||
self.state = EVENTDRIVEN
|
||||
else:
|
||||
self.state = DONE
|
||||
except turtle.Terminator:
|
||||
if self.root is None:
|
||||
return
|
||||
self.state = DONE
|
||||
result = "stopped!"
|
||||
if self.state == DONE:
|
||||
self.configGUI(NORMAL, DISABLED, NORMAL,
|
||||
result)
|
||||
elif self.state == EVENTDRIVEN:
|
||||
self.exitflag = True
|
||||
self.configGUI(DISABLED, NORMAL, DISABLED,
|
||||
"use mouse/keys or STOP", "red")
|
||||
|
||||
def clearCanvas(self):
|
||||
self.refreshCanvas()
|
||||
self.screen._delete("all")
|
||||
self.scanvas.config(cursor="")
|
||||
self.configGUI(NORMAL, DISABLED, DISABLED)
|
||||
|
||||
def stopIt(self):
|
||||
if self.exitflag:
|
||||
self.clearCanvas()
|
||||
self.exitflag = False
|
||||
self.configGUI(NORMAL, DISABLED, DISABLED,
|
||||
"STOPPED!", "red")
|
||||
turtle.TurtleScreen._RUNNING = False
|
||||
|
||||
def _destroy(self):
|
||||
turtle.TurtleScreen._RUNNING = False
|
||||
self.root.destroy()
|
||||
self.root = None
|
||||
|
||||
|
||||
def main():
|
||||
demo = DemoWindow()
|
||||
demo.root.mainloop()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
161
third_party/python/Lib/turtledemo/bytedesign.py
vendored
Executable file
161
third_party/python/Lib/turtledemo/bytedesign.py
vendored
Executable file
|
@ -0,0 +1,161 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_bytedesign.py
|
||||
|
||||
An example adapted from the example-suite
|
||||
of PythonCard's turtle graphics.
|
||||
|
||||
It's based on an article in BYTE magazine
|
||||
Problem Solving with Logo: Using Turtle
|
||||
Graphics to Redraw a Design
|
||||
November 1982, p. 118 - 134
|
||||
|
||||
-------------------------------------------
|
||||
|
||||
Due to the statement
|
||||
|
||||
t.delay(0)
|
||||
|
||||
in line 152, which sets the animation delay
|
||||
to 0, this animation runs in "line per line"
|
||||
mode as fast as possible.
|
||||
"""
|
||||
|
||||
from turtle import Turtle, mainloop
|
||||
from time import clock
|
||||
|
||||
# wrapper for any additional drawing routines
|
||||
# that need to know about each other
|
||||
class Designer(Turtle):
|
||||
|
||||
def design(self, homePos, scale):
|
||||
self.up()
|
||||
for i in range(5):
|
||||
self.forward(64.65 * scale)
|
||||
self.down()
|
||||
self.wheel(self.position(), scale)
|
||||
self.up()
|
||||
self.backward(64.65 * scale)
|
||||
self.right(72)
|
||||
self.up()
|
||||
self.goto(homePos)
|
||||
self.right(36)
|
||||
self.forward(24.5 * scale)
|
||||
self.right(198)
|
||||
self.down()
|
||||
self.centerpiece(46 * scale, 143.4, scale)
|
||||
self.getscreen().tracer(True)
|
||||
|
||||
def wheel(self, initpos, scale):
|
||||
self.right(54)
|
||||
for i in range(4):
|
||||
self.pentpiece(initpos, scale)
|
||||
self.down()
|
||||
self.left(36)
|
||||
for i in range(5):
|
||||
self.tripiece(initpos, scale)
|
||||
self.left(36)
|
||||
for i in range(5):
|
||||
self.down()
|
||||
self.right(72)
|
||||
self.forward(28 * scale)
|
||||
self.up()
|
||||
self.backward(28 * scale)
|
||||
self.left(54)
|
||||
self.getscreen().update()
|
||||
|
||||
def tripiece(self, initpos, scale):
|
||||
oldh = self.heading()
|
||||
self.down()
|
||||
self.backward(2.5 * scale)
|
||||
self.tripolyr(31.5 * scale, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.down()
|
||||
self.backward(2.5 * scale)
|
||||
self.tripolyl(31.5 * scale, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.left(72)
|
||||
self.getscreen().update()
|
||||
|
||||
def pentpiece(self, initpos, scale):
|
||||
oldh = self.heading()
|
||||
self.up()
|
||||
self.forward(29 * scale)
|
||||
self.down()
|
||||
for i in range(5):
|
||||
self.forward(18 * scale)
|
||||
self.right(72)
|
||||
self.pentr(18 * scale, 75, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.forward(29 * scale)
|
||||
self.down()
|
||||
for i in range(5):
|
||||
self.forward(18 * scale)
|
||||
self.right(72)
|
||||
self.pentl(18 * scale, 75, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.left(72)
|
||||
self.getscreen().update()
|
||||
|
||||
def pentl(self, side, ang, scale):
|
||||
if side < (2 * scale): return
|
||||
self.forward(side)
|
||||
self.left(ang)
|
||||
self.pentl(side - (.38 * scale), ang, scale)
|
||||
|
||||
def pentr(self, side, ang, scale):
|
||||
if side < (2 * scale): return
|
||||
self.forward(side)
|
||||
self.right(ang)
|
||||
self.pentr(side - (.38 * scale), ang, scale)
|
||||
|
||||
def tripolyr(self, side, scale):
|
||||
if side < (4 * scale): return
|
||||
self.forward(side)
|
||||
self.right(111)
|
||||
self.forward(side / 1.78)
|
||||
self.right(111)
|
||||
self.forward(side / 1.3)
|
||||
self.right(146)
|
||||
self.tripolyr(side * .75, scale)
|
||||
|
||||
def tripolyl(self, side, scale):
|
||||
if side < (4 * scale): return
|
||||
self.forward(side)
|
||||
self.left(111)
|
||||
self.forward(side / 1.78)
|
||||
self.left(111)
|
||||
self.forward(side / 1.3)
|
||||
self.left(146)
|
||||
self.tripolyl(side * .75, scale)
|
||||
|
||||
def centerpiece(self, s, a, scale):
|
||||
self.forward(s); self.left(a)
|
||||
if s < (7.5 * scale):
|
||||
return
|
||||
self.centerpiece(s - (1.2 * scale), a, scale)
|
||||
|
||||
def main():
|
||||
t = Designer()
|
||||
t.speed(0)
|
||||
t.hideturtle()
|
||||
t.getscreen().delay(0)
|
||||
t.getscreen().tracer(0)
|
||||
at = clock()
|
||||
t.design(t.position(), 2)
|
||||
et = clock()
|
||||
return "runtime: %.2f sec." % (et-at)
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
59
third_party/python/Lib/turtledemo/chaos.py
vendored
Normal file
59
third_party/python/Lib/turtledemo/chaos.py
vendored
Normal file
|
@ -0,0 +1,59 @@
|
|||
# File: tdemo_chaos.py
|
||||
# Author: Gregor Lingl
|
||||
# Date: 2009-06-24
|
||||
|
||||
# A demonstration of chaos
|
||||
|
||||
from turtle import *
|
||||
|
||||
N = 80
|
||||
|
||||
def f(x):
|
||||
return 3.9*x*(1-x)
|
||||
|
||||
def g(x):
|
||||
return 3.9*(x-x**2)
|
||||
|
||||
def h(x):
|
||||
return 3.9*x-3.9*x*x
|
||||
|
||||
def jumpto(x, y):
|
||||
penup(); goto(x,y)
|
||||
|
||||
def line(x1, y1, x2, y2):
|
||||
jumpto(x1, y1)
|
||||
pendown()
|
||||
goto(x2, y2)
|
||||
|
||||
def coosys():
|
||||
line(-1, 0, N+1, 0)
|
||||
line(0, -0.1, 0, 1.1)
|
||||
|
||||
def plot(fun, start, color):
|
||||
pencolor(color)
|
||||
x = start
|
||||
jumpto(0, x)
|
||||
pendown()
|
||||
dot(5)
|
||||
for i in range(N):
|
||||
x=fun(x)
|
||||
goto(i+1,x)
|
||||
dot(5)
|
||||
|
||||
def main():
|
||||
reset()
|
||||
setworldcoordinates(-1.0,-0.1, N+1, 1.1)
|
||||
speed(0)
|
||||
hideturtle()
|
||||
coosys()
|
||||
plot(f, 0.35, "blue")
|
||||
plot(g, 0.35, "green")
|
||||
plot(h, 0.35, "red")
|
||||
# Now zoom in:
|
||||
for s in range(100):
|
||||
setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
|
||||
return "Done!"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
mainloop()
|
132
third_party/python/Lib/turtledemo/clock.py
vendored
Executable file
132
third_party/python/Lib/turtledemo/clock.py
vendored
Executable file
|
@ -0,0 +1,132 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: cp1252 -*-
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_clock.py
|
||||
|
||||
Enhanced clock-program, showing date
|
||||
and time
|
||||
------------------------------------
|
||||
Press STOP to exit the program!
|
||||
------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
from datetime import datetime
|
||||
|
||||
def jump(distanz, winkel=0):
|
||||
penup()
|
||||
right(winkel)
|
||||
forward(distanz)
|
||||
left(winkel)
|
||||
pendown()
|
||||
|
||||
def hand(laenge, spitze):
|
||||
fd(laenge*1.15)
|
||||
rt(90)
|
||||
fd(spitze/2.0)
|
||||
lt(120)
|
||||
fd(spitze)
|
||||
lt(120)
|
||||
fd(spitze)
|
||||
lt(120)
|
||||
fd(spitze/2.0)
|
||||
|
||||
def make_hand_shape(name, laenge, spitze):
|
||||
reset()
|
||||
jump(-laenge*0.15)
|
||||
begin_poly()
|
||||
hand(laenge, spitze)
|
||||
end_poly()
|
||||
hand_form = get_poly()
|
||||
register_shape(name, hand_form)
|
||||
|
||||
def clockface(radius):
|
||||
reset()
|
||||
pensize(7)
|
||||
for i in range(60):
|
||||
jump(radius)
|
||||
if i % 5 == 0:
|
||||
fd(25)
|
||||
jump(-radius-25)
|
||||
else:
|
||||
dot(3)
|
||||
jump(-radius)
|
||||
rt(6)
|
||||
|
||||
def setup():
|
||||
global second_hand, minute_hand, hour_hand, writer
|
||||
mode("logo")
|
||||
make_hand_shape("second_hand", 125, 25)
|
||||
make_hand_shape("minute_hand", 130, 25)
|
||||
make_hand_shape("hour_hand", 90, 25)
|
||||
clockface(160)
|
||||
second_hand = Turtle()
|
||||
second_hand.shape("second_hand")
|
||||
second_hand.color("gray20", "gray80")
|
||||
minute_hand = Turtle()
|
||||
minute_hand.shape("minute_hand")
|
||||
minute_hand.color("blue1", "red1")
|
||||
hour_hand = Turtle()
|
||||
hour_hand.shape("hour_hand")
|
||||
hour_hand.color("blue3", "red3")
|
||||
for hand in second_hand, minute_hand, hour_hand:
|
||||
hand.resizemode("user")
|
||||
hand.shapesize(1, 1, 3)
|
||||
hand.speed(0)
|
||||
ht()
|
||||
writer = Turtle()
|
||||
#writer.mode("logo")
|
||||
writer.ht()
|
||||
writer.pu()
|
||||
writer.bk(85)
|
||||
|
||||
def wochentag(t):
|
||||
wochentag = ["Monday", "Tuesday", "Wednesday",
|
||||
"Thursday", "Friday", "Saturday", "Sunday"]
|
||||
return wochentag[t.weekday()]
|
||||
|
||||
def datum(z):
|
||||
monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
|
||||
"July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
|
||||
j = z.year
|
||||
m = monat[z.month - 1]
|
||||
t = z.day
|
||||
return "%s %d %d" % (m, t, j)
|
||||
|
||||
def tick():
|
||||
t = datetime.today()
|
||||
sekunde = t.second + t.microsecond*0.000001
|
||||
minute = t.minute + sekunde/60.0
|
||||
stunde = t.hour + minute/60.0
|
||||
try:
|
||||
tracer(False) # Terminator can occur here
|
||||
writer.clear()
|
||||
writer.home()
|
||||
writer.forward(65)
|
||||
writer.write(wochentag(t),
|
||||
align="center", font=("Courier", 14, "bold"))
|
||||
writer.back(150)
|
||||
writer.write(datum(t),
|
||||
align="center", font=("Courier", 14, "bold"))
|
||||
writer.forward(85)
|
||||
tracer(True)
|
||||
second_hand.setheading(6*sekunde) # or here
|
||||
minute_hand.setheading(6*minute)
|
||||
hour_hand.setheading(30*stunde)
|
||||
tracer(True)
|
||||
ontimer(tick, 100)
|
||||
except Terminator:
|
||||
pass # turtledemo user pressed STOP
|
||||
|
||||
def main():
|
||||
tracer(False)
|
||||
setup()
|
||||
tracer(True)
|
||||
tick()
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
mode("logo")
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
58
third_party/python/Lib/turtledemo/colormixer.py
vendored
Normal file
58
third_party/python/Lib/turtledemo/colormixer.py
vendored
Normal file
|
@ -0,0 +1,58 @@
|
|||
# colormixer
|
||||
|
||||
from turtle import Screen, Turtle, mainloop
|
||||
|
||||
class ColorTurtle(Turtle):
|
||||
|
||||
def __init__(self, x, y):
|
||||
Turtle.__init__(self)
|
||||
self.shape("turtle")
|
||||
self.resizemode("user")
|
||||
self.shapesize(3,3,5)
|
||||
self.pensize(10)
|
||||
self._color = [0,0,0]
|
||||
self.x = x
|
||||
self._color[x] = y
|
||||
self.color(self._color)
|
||||
self.speed(0)
|
||||
self.left(90)
|
||||
self.pu()
|
||||
self.goto(x,0)
|
||||
self.pd()
|
||||
self.sety(1)
|
||||
self.pu()
|
||||
self.sety(y)
|
||||
self.pencolor("gray25")
|
||||
self.ondrag(self.shift)
|
||||
|
||||
def shift(self, x, y):
|
||||
self.sety(max(0,min(y,1)))
|
||||
self._color[self.x] = self.ycor()
|
||||
self.fillcolor(self._color)
|
||||
setbgcolor()
|
||||
|
||||
def setbgcolor():
|
||||
screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
|
||||
|
||||
def main():
|
||||
global screen, red, green, blue
|
||||
screen = Screen()
|
||||
screen.delay(0)
|
||||
screen.setworldcoordinates(-1, -0.3, 3, 1.3)
|
||||
|
||||
red = ColorTurtle(0, .5)
|
||||
green = ColorTurtle(1, .5)
|
||||
blue = ColorTurtle(2, .5)
|
||||
setbgcolor()
|
||||
|
||||
writer = Turtle()
|
||||
writer.ht()
|
||||
writer.pu()
|
||||
writer.goto(1,1.15)
|
||||
writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
108
third_party/python/Lib/turtledemo/forest.py
vendored
Executable file
108
third_party/python/Lib/turtledemo/forest.py
vendored
Executable file
|
@ -0,0 +1,108 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtlegraphics-example-suite:
|
||||
|
||||
tdemo_forest.py
|
||||
|
||||
Displays a 'forest' of 3 breadth-first-trees
|
||||
similar to the one in tree.
|
||||
For further remarks see tree.py
|
||||
|
||||
This example is a 'breadth-first'-rewrite of
|
||||
a Logo program written by Erich Neuwirth. See
|
||||
http://homepage.univie.ac.at/erich.neuwirth/
|
||||
"""
|
||||
from turtle import Turtle, colormode, tracer, mainloop
|
||||
from random import randrange
|
||||
from time import clock
|
||||
|
||||
def symRandom(n):
|
||||
return randrange(-n,n+1)
|
||||
|
||||
def randomize( branchlist, angledist, sizedist ):
|
||||
return [ (angle+symRandom(angledist),
|
||||
sizefactor*1.01**symRandom(sizedist))
|
||||
for angle, sizefactor in branchlist ]
|
||||
|
||||
def randomfd( t, distance, parts, angledist ):
|
||||
for i in range(parts):
|
||||
t.left(symRandom(angledist))
|
||||
t.forward( (1.0 * distance)/parts )
|
||||
|
||||
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
|
||||
# benutzt Liste von turtles und Liste von Zweiglisten,
|
||||
# fuer jede turtle eine!
|
||||
if level > 0:
|
||||
lst = []
|
||||
brs = []
|
||||
for t, branchlist in list(zip(tlist,branchlists)):
|
||||
t.pensize( size * widthfactor )
|
||||
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
|
||||
180 - 11 * level + symRandom(15),
|
||||
0 )
|
||||
t.pendown()
|
||||
randomfd(t, size, level, angledist )
|
||||
yield 1
|
||||
for angle, sizefactor in branchlist:
|
||||
t.left(angle)
|
||||
lst.append(t.clone())
|
||||
brs.append(randomize(branchlist, angledist, sizedist))
|
||||
t.right(angle)
|
||||
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
|
||||
angledist, sizedist):
|
||||
yield None
|
||||
|
||||
|
||||
def start(t,x,y):
|
||||
colormode(255)
|
||||
t.reset()
|
||||
t.speed(0)
|
||||
t.hideturtle()
|
||||
t.left(90)
|
||||
t.penup()
|
||||
t.setpos(x,y)
|
||||
t.pendown()
|
||||
|
||||
def doit1(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, 20, -208)
|
||||
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
|
||||
return t
|
||||
|
||||
def doit2(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, -135, -130)
|
||||
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
|
||||
return t
|
||||
|
||||
def doit3(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, 190, -90)
|
||||
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
|
||||
return t
|
||||
|
||||
# Hier 3 Baumgeneratoren:
|
||||
def main():
|
||||
p = Turtle()
|
||||
p.ht()
|
||||
tracer(75,0)
|
||||
u = doit1(6, Turtle(undobuffersize=1))
|
||||
s = doit2(7, Turtle(undobuffersize=1))
|
||||
t = doit3(5, Turtle(undobuffersize=1))
|
||||
a = clock()
|
||||
while True:
|
||||
done = 0
|
||||
for b in u,s,t:
|
||||
try:
|
||||
b.__next__()
|
||||
except:
|
||||
done += 1
|
||||
if done == 3:
|
||||
break
|
||||
|
||||
tracer(1,10)
|
||||
b = clock()
|
||||
return "runtime: %.2f sec." % (b-a)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop()
|
138
third_party/python/Lib/turtledemo/fractalcurves.py
vendored
Executable file
138
third_party/python/Lib/turtledemo/fractalcurves.py
vendored
Executable file
|
@ -0,0 +1,138 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_fractalCurves.py
|
||||
|
||||
This program draws two fractal-curve-designs:
|
||||
(1) A hilbert curve (in a box)
|
||||
(2) A combination of Koch-curves.
|
||||
|
||||
The CurvesTurtle class and the fractal-curve-
|
||||
methods are taken from the PythonCard example
|
||||
scripts for turtle-graphics.
|
||||
"""
|
||||
from turtle import *
|
||||
from time import sleep, clock
|
||||
|
||||
class CurvesTurtle(Pen):
|
||||
# example derived from
|
||||
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics
|
||||
# by Harold Abelson and Andrea diSessa
|
||||
# p. 96-98
|
||||
def hilbert(self, size, level, parity):
|
||||
if level == 0:
|
||||
return
|
||||
# rotate and draw first subcurve with opposite parity to big curve
|
||||
self.left(parity * 90)
|
||||
self.hilbert(size, level - 1, -parity)
|
||||
# interface to and draw second subcurve with same parity as big curve
|
||||
self.forward(size)
|
||||
self.right(parity * 90)
|
||||
self.hilbert(size, level - 1, parity)
|
||||
# third subcurve
|
||||
self.forward(size)
|
||||
self.hilbert(size, level - 1, parity)
|
||||
# fourth subcurve
|
||||
self.right(parity * 90)
|
||||
self.forward(size)
|
||||
self.hilbert(size, level - 1, -parity)
|
||||
# a final turn is needed to make the turtle
|
||||
# end up facing outward from the large square
|
||||
self.left(parity * 90)
|
||||
|
||||
# Visual Modeling with Logo: A Structural Approach to Seeing
|
||||
# by James Clayson
|
||||
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904
|
||||
# p. 146
|
||||
def fractalgon(self, n, rad, lev, dir):
|
||||
import math
|
||||
|
||||
# if dir = 1 turn outward
|
||||
# if dir = -1 turn inward
|
||||
edge = 2 * rad * math.sin(math.pi / n)
|
||||
self.pu()
|
||||
self.fd(rad)
|
||||
self.pd()
|
||||
self.rt(180 - (90 * (n - 2) / n))
|
||||
for i in range(n):
|
||||
self.fractal(edge, lev, dir)
|
||||
self.rt(360 / n)
|
||||
self.lt(180 - (90 * (n - 2) / n))
|
||||
self.pu()
|
||||
self.bk(rad)
|
||||
self.pd()
|
||||
|
||||
# p. 146
|
||||
def fractal(self, dist, depth, dir):
|
||||
if depth < 1:
|
||||
self.fd(dist)
|
||||
return
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.lt(60 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.rt(120 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.lt(60 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
|
||||
def main():
|
||||
ft = CurvesTurtle()
|
||||
|
||||
ft.reset()
|
||||
ft.speed(0)
|
||||
ft.ht()
|
||||
ft.getscreen().tracer(1,0)
|
||||
ft.pu()
|
||||
|
||||
size = 6
|
||||
ft.setpos(-33*size, -32*size)
|
||||
ft.pd()
|
||||
|
||||
ta=clock()
|
||||
ft.fillcolor("red")
|
||||
ft.begin_fill()
|
||||
ft.fd(size)
|
||||
|
||||
ft.hilbert(size, 6, 1)
|
||||
|
||||
# frame
|
||||
ft.fd(size)
|
||||
for i in range(3):
|
||||
ft.lt(90)
|
||||
ft.fd(size*(64+i%2))
|
||||
ft.pu()
|
||||
for i in range(2):
|
||||
ft.fd(size)
|
||||
ft.rt(90)
|
||||
ft.pd()
|
||||
for i in range(4):
|
||||
ft.fd(size*(66+i%2))
|
||||
ft.rt(90)
|
||||
ft.end_fill()
|
||||
tb=clock()
|
||||
res = "Hilbert: %.2fsec. " % (tb-ta)
|
||||
|
||||
sleep(3)
|
||||
|
||||
ft.reset()
|
||||
ft.speed(0)
|
||||
ft.ht()
|
||||
ft.getscreen().tracer(1,0)
|
||||
|
||||
ta=clock()
|
||||
ft.color("black", "blue")
|
||||
ft.begin_fill()
|
||||
ft.fractalgon(3, 250, 4, 1)
|
||||
ft.end_fill()
|
||||
ft.begin_fill()
|
||||
ft.color("red")
|
||||
ft.fractalgon(3, 200, 4, -1)
|
||||
ft.end_fill()
|
||||
tb=clock()
|
||||
res += "Koch: %.2fsec." % (tb-ta)
|
||||
return res
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
119
third_party/python/Lib/turtledemo/lindenmayer.py
vendored
Executable file
119
third_party/python/Lib/turtledemo/lindenmayer.py
vendored
Executable file
|
@ -0,0 +1,119 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
xtx_lindenmayer_indian.py
|
||||
|
||||
Each morning women in Tamil Nadu, in southern
|
||||
India, place designs, created by using rice
|
||||
flour and known as kolam on the thresholds of
|
||||
their homes.
|
||||
|
||||
These can be described by Lindenmayer systems,
|
||||
which can easily be implemented with turtle
|
||||
graphics and Python.
|
||||
|
||||
Two examples are shown here:
|
||||
(1) the snake kolam
|
||||
(2) anklets of Krishna
|
||||
|
||||
Taken from Marcia Ascher: Mathematics
|
||||
Elsewhere, An Exploration of Ideas Across
|
||||
Cultures
|
||||
|
||||
"""
|
||||
################################
|
||||
# Mini Lindenmayer tool
|
||||
###############################
|
||||
|
||||
from turtle import *
|
||||
|
||||
def replace( seq, replacementRules, n ):
|
||||
for i in range(n):
|
||||
newseq = ""
|
||||
for element in seq:
|
||||
newseq = newseq + replacementRules.get(element,element)
|
||||
seq = newseq
|
||||
return seq
|
||||
|
||||
def draw( commands, rules ):
|
||||
for b in commands:
|
||||
try:
|
||||
rules[b]()
|
||||
except TypeError:
|
||||
try:
|
||||
draw(rules[b], rules)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
################################
|
||||
# Example 1: Snake kolam
|
||||
################################
|
||||
|
||||
|
||||
def r():
|
||||
right(45)
|
||||
|
||||
def l():
|
||||
left(45)
|
||||
|
||||
def f():
|
||||
forward(7.5)
|
||||
|
||||
snake_rules = {"-":r, "+":l, "f":f, "b":"f+f+f--f--f+f+f"}
|
||||
snake_replacementRules = {"b": "b+f+b--f--b+f+b"}
|
||||
snake_start = "b--f--b--f"
|
||||
|
||||
drawing = replace(snake_start, snake_replacementRules, 3)
|
||||
|
||||
reset()
|
||||
speed(3)
|
||||
tracer(1,0)
|
||||
ht()
|
||||
up()
|
||||
backward(195)
|
||||
down()
|
||||
draw(drawing, snake_rules)
|
||||
|
||||
from time import sleep
|
||||
sleep(3)
|
||||
|
||||
################################
|
||||
# Example 2: Anklets of Krishna
|
||||
################################
|
||||
|
||||
def A():
|
||||
color("red")
|
||||
circle(10,90)
|
||||
|
||||
def B():
|
||||
from math import sqrt
|
||||
color("black")
|
||||
l = 5/sqrt(2)
|
||||
forward(l)
|
||||
circle(l, 270)
|
||||
forward(l)
|
||||
|
||||
def F():
|
||||
color("green")
|
||||
forward(10)
|
||||
|
||||
krishna_rules = {"a":A, "b":B, "f":F}
|
||||
krishna_replacementRules = {"a" : "afbfa", "b" : "afbfbfbfa" }
|
||||
krishna_start = "fbfbfbfb"
|
||||
|
||||
reset()
|
||||
speed(0)
|
||||
tracer(3,0)
|
||||
ht()
|
||||
left(45)
|
||||
drawing = replace(krishna_start, krishna_replacementRules, 3)
|
||||
draw(drawing, krishna_rules)
|
||||
tracer(1)
|
||||
return "Done!"
|
||||
|
||||
if __name__=='__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
79
third_party/python/Lib/turtledemo/minimal_hanoi.py
vendored
Executable file
79
third_party/python/Lib/turtledemo/minimal_hanoi.py
vendored
Executable file
|
@ -0,0 +1,79 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_minimal_hanoi.py
|
||||
|
||||
A minimal 'Towers of Hanoi' animation:
|
||||
A tower of 6 discs is transferred from the
|
||||
left to the right peg.
|
||||
|
||||
An imho quite elegant and concise
|
||||
implementation using a tower class, which
|
||||
is derived from the built-in type list.
|
||||
|
||||
Discs are turtles with shape "square", but
|
||||
stretched to rectangles by shapesize()
|
||||
---------------------------------------
|
||||
To exit press STOP button
|
||||
---------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
|
||||
class Disc(Turtle):
|
||||
def __init__(self, n):
|
||||
Turtle.__init__(self, shape="square", visible=False)
|
||||
self.pu()
|
||||
self.shapesize(1.5, n*1.5, 2) # square-->rectangle
|
||||
self.fillcolor(n/6., 0, 1-n/6.)
|
||||
self.st()
|
||||
|
||||
class Tower(list):
|
||||
"Hanoi tower, a subclass of built-in type list"
|
||||
def __init__(self, x):
|
||||
"create an empty tower. x is x-position of peg"
|
||||
self.x = x
|
||||
def push(self, d):
|
||||
d.setx(self.x)
|
||||
d.sety(-150+34*len(self))
|
||||
self.append(d)
|
||||
def pop(self):
|
||||
d = list.pop(self)
|
||||
d.sety(150)
|
||||
return d
|
||||
|
||||
def hanoi(n, from_, with_, to_):
|
||||
if n > 0:
|
||||
hanoi(n-1, from_, to_, with_)
|
||||
to_.push(from_.pop())
|
||||
hanoi(n-1, with_, from_, to_)
|
||||
|
||||
def play():
|
||||
onkey(None,"space")
|
||||
clear()
|
||||
try:
|
||||
hanoi(6, t1, t2, t3)
|
||||
write("press STOP button to exit",
|
||||
align="center", font=("Courier", 16, "bold"))
|
||||
except Terminator:
|
||||
pass # turtledemo user pressed STOP
|
||||
|
||||
def main():
|
||||
global t1, t2, t3
|
||||
ht(); penup(); goto(0, -225) # writer turtle
|
||||
t1 = Tower(-250)
|
||||
t2 = Tower(0)
|
||||
t3 = Tower(250)
|
||||
# make tower of 6 discs
|
||||
for i in range(6,0,-1):
|
||||
t1.push(Disc(i))
|
||||
# prepare spartanic user interface ;-)
|
||||
write("press spacebar to start game",
|
||||
align="center", font=("Courier", 16, "bold"))
|
||||
onkey(play, "space")
|
||||
listen()
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__=="__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
226
third_party/python/Lib/turtledemo/nim.py
vendored
Normal file
226
third_party/python/Lib/turtledemo/nim.py
vendored
Normal file
|
@ -0,0 +1,226 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_nim.py
|
||||
|
||||
Play nim against the computer. The player
|
||||
who takes the last stick is the winner.
|
||||
|
||||
Implements the model-view-controller
|
||||
design pattern.
|
||||
"""
|
||||
|
||||
|
||||
import turtle
|
||||
import random
|
||||
import time
|
||||
|
||||
SCREENWIDTH = 640
|
||||
SCREENHEIGHT = 480
|
||||
|
||||
MINSTICKS = 7
|
||||
MAXSTICKS = 31
|
||||
|
||||
HUNIT = SCREENHEIGHT // 12
|
||||
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
|
||||
|
||||
SCOLOR = (63, 63, 31)
|
||||
HCOLOR = (255, 204, 204)
|
||||
COLOR = (204, 204, 255)
|
||||
|
||||
def randomrow():
|
||||
return random.randint(MINSTICKS, MAXSTICKS)
|
||||
|
||||
def computerzug(state):
|
||||
xored = state[0] ^ state[1] ^ state[2]
|
||||
if xored == 0:
|
||||
return randommove(state)
|
||||
for z in range(3):
|
||||
s = state[z] ^ xored
|
||||
if s <= state[z]:
|
||||
move = (z, s)
|
||||
return move
|
||||
|
||||
def randommove(state):
|
||||
m = max(state)
|
||||
while True:
|
||||
z = random.randint(0,2)
|
||||
if state[z] > (m > 1):
|
||||
break
|
||||
rand = random.randint(m > 1, state[z]-1)
|
||||
return z, rand
|
||||
|
||||
|
||||
class NimModel(object):
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
|
||||
def setup(self):
|
||||
if self.game.state not in [Nim.CREATED, Nim.OVER]:
|
||||
return
|
||||
self.sticks = [randomrow(), randomrow(), randomrow()]
|
||||
self.player = 0
|
||||
self.winner = None
|
||||
self.game.view.setup()
|
||||
self.game.state = Nim.RUNNING
|
||||
|
||||
def move(self, row, col):
|
||||
maxspalte = self.sticks[row]
|
||||
self.sticks[row] = col
|
||||
self.game.view.notify_move(row, col, maxspalte, self.player)
|
||||
if self.game_over():
|
||||
self.game.state = Nim.OVER
|
||||
self.winner = self.player
|
||||
self.game.view.notify_over()
|
||||
elif self.player == 0:
|
||||
self.player = 1
|
||||
row, col = computerzug(self.sticks)
|
||||
self.move(row, col)
|
||||
self.player = 0
|
||||
|
||||
def game_over(self):
|
||||
return self.sticks == [0, 0, 0]
|
||||
|
||||
def notify_move(self, row, col):
|
||||
if self.sticks[row] <= col:
|
||||
return
|
||||
self.move(row, col)
|
||||
|
||||
|
||||
class Stick(turtle.Turtle):
|
||||
def __init__(self, row, col, game):
|
||||
turtle.Turtle.__init__(self, visible=False)
|
||||
self.row = row
|
||||
self.col = col
|
||||
self.game = game
|
||||
x, y = self.coords(row, col)
|
||||
self.shape("square")
|
||||
self.shapesize(HUNIT/10.0, WUNIT/20.0)
|
||||
self.speed(0)
|
||||
self.pu()
|
||||
self.goto(x,y)
|
||||
self.color("white")
|
||||
self.showturtle()
|
||||
|
||||
def coords(self, row, col):
|
||||
packet, remainder = divmod(col, 5)
|
||||
x = (3 + 11 * packet + 2 * remainder) * WUNIT
|
||||
y = (2 + 3 * row) * HUNIT
|
||||
return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
|
||||
|
||||
def makemove(self, x, y):
|
||||
if self.game.state != Nim.RUNNING:
|
||||
return
|
||||
self.game.controller.notify_move(self.row, self.col)
|
||||
|
||||
|
||||
class NimView(object):
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
self.screen = game.screen
|
||||
self.model = game.model
|
||||
self.screen.colormode(255)
|
||||
self.screen.tracer(False)
|
||||
self.screen.bgcolor((240, 240, 255))
|
||||
self.writer = turtle.Turtle(visible=False)
|
||||
self.writer.pu()
|
||||
self.writer.speed(0)
|
||||
self.sticks = {}
|
||||
for row in range(3):
|
||||
for col in range(MAXSTICKS):
|
||||
self.sticks[(row, col)] = Stick(row, col, game)
|
||||
self.display("... a moment please ...")
|
||||
self.screen.tracer(True)
|
||||
|
||||
def display(self, msg1, msg2=None):
|
||||
self.screen.tracer(False)
|
||||
self.writer.clear()
|
||||
if msg2 is not None:
|
||||
self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
|
||||
self.writer.pencolor("red")
|
||||
self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
|
||||
self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
|
||||
self.writer.pencolor("black")
|
||||
self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
|
||||
self.screen.tracer(True)
|
||||
|
||||
def setup(self):
|
||||
self.screen.tracer(False)
|
||||
for row in range(3):
|
||||
for col in range(self.model.sticks[row]):
|
||||
self.sticks[(row, col)].color(SCOLOR)
|
||||
for row in range(3):
|
||||
for col in range(self.model.sticks[row], MAXSTICKS):
|
||||
self.sticks[(row, col)].color("white")
|
||||
self.display("Your turn! Click leftmost stick to remove.")
|
||||
self.screen.tracer(True)
|
||||
|
||||
def notify_move(self, row, col, maxspalte, player):
|
||||
if player == 0:
|
||||
farbe = HCOLOR
|
||||
for s in range(col, maxspalte):
|
||||
self.sticks[(row, s)].color(farbe)
|
||||
else:
|
||||
self.display(" ... thinking ... ")
|
||||
time.sleep(0.5)
|
||||
self.display(" ... thinking ... aaah ...")
|
||||
farbe = COLOR
|
||||
for s in range(maxspalte-1, col-1, -1):
|
||||
time.sleep(0.2)
|
||||
self.sticks[(row, s)].color(farbe)
|
||||
self.display("Your turn! Click leftmost stick to remove.")
|
||||
|
||||
def notify_over(self):
|
||||
if self.game.model.winner == 0:
|
||||
msg2 = "Congrats. You're the winner!!!"
|
||||
else:
|
||||
msg2 = "Sorry, the computer is the winner."
|
||||
self.display("To play again press space bar. To leave press ESC.", msg2)
|
||||
|
||||
def clear(self):
|
||||
if self.game.state == Nim.OVER:
|
||||
self.screen.clear()
|
||||
|
||||
|
||||
class NimController(object):
|
||||
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
self.sticks = game.view.sticks
|
||||
self.BUSY = False
|
||||
for stick in self.sticks.values():
|
||||
stick.onclick(stick.makemove)
|
||||
self.game.screen.onkey(self.game.model.setup, "space")
|
||||
self.game.screen.onkey(self.game.view.clear, "Escape")
|
||||
self.game.view.display("Press space bar to start game")
|
||||
self.game.screen.listen()
|
||||
|
||||
def notify_move(self, row, col):
|
||||
if self.BUSY:
|
||||
return
|
||||
self.BUSY = True
|
||||
self.game.model.notify_move(row, col)
|
||||
self.BUSY = False
|
||||
|
||||
|
||||
class Nim(object):
|
||||
CREATED = 0
|
||||
RUNNING = 1
|
||||
OVER = 2
|
||||
def __init__(self, screen):
|
||||
self.state = Nim.CREATED
|
||||
self.screen = screen
|
||||
self.model = NimModel(self)
|
||||
self.view = NimView(self)
|
||||
self.controller = NimController(self)
|
||||
|
||||
|
||||
def main():
|
||||
mainscreen = turtle.Screen()
|
||||
mainscreen.mode("standard")
|
||||
mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
|
||||
nim = Nim(mainscreen)
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
turtle.mainloop()
|
54
third_party/python/Lib/turtledemo/paint.py
vendored
Executable file
54
third_party/python/Lib/turtledemo/paint.py
vendored
Executable file
|
@ -0,0 +1,54 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_paint.py
|
||||
|
||||
A simple event-driven paint program
|
||||
|
||||
- left mouse button moves turtle
|
||||
- middle mouse button changes color
|
||||
- right mouse button toogles betweem pen up
|
||||
(no line drawn when the turtle moves) and
|
||||
pen down (line is drawn). If pen up follows
|
||||
at least two pen-down moves, the polygon that
|
||||
includes the starting point is filled.
|
||||
-------------------------------------------
|
||||
Play around by clicking into the canvas
|
||||
using all three mouse buttons.
|
||||
-------------------------------------------
|
||||
To exit press STOP button
|
||||
-------------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
|
||||
def switchupdown(x=0, y=0):
|
||||
if pen()["pendown"]:
|
||||
end_fill()
|
||||
up()
|
||||
else:
|
||||
down()
|
||||
begin_fill()
|
||||
|
||||
def changecolor(x=0, y=0):
|
||||
global colors
|
||||
colors = colors[1:]+colors[:1]
|
||||
color(colors[0])
|
||||
|
||||
def main():
|
||||
global colors
|
||||
shape("circle")
|
||||
resizemode("user")
|
||||
shapesize(.5)
|
||||
width(3)
|
||||
colors=["red", "green", "blue", "yellow"]
|
||||
color(colors[0])
|
||||
switchupdown()
|
||||
onscreenclick(goto,1)
|
||||
onscreenclick(changecolor,2)
|
||||
onscreenclick(switchupdown,3)
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
61
third_party/python/Lib/turtledemo/peace.py
vendored
Executable file
61
third_party/python/Lib/turtledemo/peace.py
vendored
Executable file
|
@ -0,0 +1,61 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_peace.py
|
||||
|
||||
A simple drawing suitable as a beginner's
|
||||
programming example. Aside from the
|
||||
peacecolors assignment and the for loop,
|
||||
it only uses turtle commands.
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def main():
|
||||
peacecolors = ("red3", "orange", "yellow",
|
||||
"seagreen4", "orchid4",
|
||||
"royalblue1", "dodgerblue4")
|
||||
|
||||
reset()
|
||||
Screen()
|
||||
up()
|
||||
goto(-320,-195)
|
||||
width(70)
|
||||
|
||||
for pcolor in peacecolors:
|
||||
color(pcolor)
|
||||
down()
|
||||
forward(640)
|
||||
up()
|
||||
backward(640)
|
||||
left(90)
|
||||
forward(66)
|
||||
right(90)
|
||||
|
||||
width(25)
|
||||
color("white")
|
||||
goto(0,-170)
|
||||
down()
|
||||
|
||||
circle(170)
|
||||
left(90)
|
||||
forward(340)
|
||||
up()
|
||||
left(180)
|
||||
forward(170)
|
||||
right(45)
|
||||
down()
|
||||
forward(170)
|
||||
up()
|
||||
backward(170)
|
||||
left(90)
|
||||
down()
|
||||
forward(170)
|
||||
up()
|
||||
|
||||
goto(0,300) # vanish if hideturtle() is not available ;-)
|
||||
return "Done!"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
mainloop()
|
178
third_party/python/Lib/turtledemo/penrose.py
vendored
Executable file
178
third_party/python/Lib/turtledemo/penrose.py
vendored
Executable file
|
@ -0,0 +1,178 @@
|
|||
#!/usr/bin/env python3
|
||||
""" xturtle-example-suite:
|
||||
|
||||
xtx_kites_and_darts.py
|
||||
|
||||
Constructs two aperiodic penrose-tilings,
|
||||
consisting of kites and darts, by the method
|
||||
of inflation in six steps.
|
||||
|
||||
Starting points are the patterns "sun"
|
||||
consisting of five kites and "star"
|
||||
consisting of five darts.
|
||||
|
||||
For more information see:
|
||||
http://en.wikipedia.org/wiki/Penrose_tiling
|
||||
-------------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
from math import cos, pi
|
||||
from time import clock, sleep
|
||||
|
||||
f = (5**0.5-1)/2.0 # (sqrt(5)-1)/2 -- golden ratio
|
||||
d = 2 * cos(3*pi/10)
|
||||
|
||||
def kite(l):
|
||||
fl = f * l
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(108)
|
||||
fd(fl)
|
||||
rt(36)
|
||||
fd(fl)
|
||||
rt(108)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def dart(l):
|
||||
fl = f * l
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(144)
|
||||
fd(fl)
|
||||
lt(36)
|
||||
fd(fl)
|
||||
rt(144)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def inflatekite(l, n):
|
||||
if n == 0:
|
||||
px, py = pos()
|
||||
h, x, y = int(heading()), round(px,3), round(py,3)
|
||||
tiledict[(h,x,y)] = True
|
||||
return
|
||||
fl = f * l
|
||||
lt(36)
|
||||
inflatedart(fl, n-1)
|
||||
fd(l)
|
||||
rt(144)
|
||||
inflatekite(fl, n-1)
|
||||
lt(18)
|
||||
fd(l*d)
|
||||
rt(162)
|
||||
inflatekite(fl, n-1)
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(180)
|
||||
inflatedart(fl, n-1)
|
||||
lt(36)
|
||||
|
||||
def inflatedart(l, n):
|
||||
if n == 0:
|
||||
px, py = pos()
|
||||
h, x, y = int(heading()), round(px,3), round(py,3)
|
||||
tiledict[(h,x,y)] = False
|
||||
return
|
||||
fl = f * l
|
||||
inflatekite(fl, n-1)
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(180)
|
||||
inflatedart(fl, n-1)
|
||||
lt(54)
|
||||
fd(l*d)
|
||||
rt(126)
|
||||
inflatedart(fl, n-1)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def draw(l, n, th=2):
|
||||
clear()
|
||||
l = l * f**n
|
||||
shapesize(l/100.0, l/100.0, th)
|
||||
for k in tiledict:
|
||||
h, x, y = k
|
||||
setpos(x, y)
|
||||
setheading(h)
|
||||
if tiledict[k]:
|
||||
shape("kite")
|
||||
color("black", (0, 0.75, 0))
|
||||
else:
|
||||
shape("dart")
|
||||
color("black", (0.75, 0, 0))
|
||||
stamp()
|
||||
|
||||
def sun(l, n):
|
||||
for i in range(5):
|
||||
inflatekite(l, n)
|
||||
lt(72)
|
||||
|
||||
def star(l,n):
|
||||
for i in range(5):
|
||||
inflatedart(l, n)
|
||||
lt(72)
|
||||
|
||||
def makeshapes():
|
||||
tracer(0)
|
||||
begin_poly()
|
||||
kite(100)
|
||||
end_poly()
|
||||
register_shape("kite", get_poly())
|
||||
begin_poly()
|
||||
dart(100)
|
||||
end_poly()
|
||||
register_shape("dart", get_poly())
|
||||
tracer(1)
|
||||
|
||||
def start():
|
||||
reset()
|
||||
ht()
|
||||
pu()
|
||||
makeshapes()
|
||||
resizemode("user")
|
||||
|
||||
def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
|
||||
global tiledict
|
||||
goto(startpos)
|
||||
setheading(0)
|
||||
tiledict = {}
|
||||
a = clock()
|
||||
tracer(0)
|
||||
fun(l, n)
|
||||
b = clock()
|
||||
draw(l, n, th)
|
||||
tracer(1)
|
||||
c = clock()
|
||||
nk = len([x for x in tiledict if tiledict[x]])
|
||||
nd = len([x for x in tiledict if not tiledict[x]])
|
||||
print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
|
||||
|
||||
def demo(fun=sun):
|
||||
start()
|
||||
for i in range(8):
|
||||
a = clock()
|
||||
test(300, i, fun)
|
||||
b = clock()
|
||||
t = b - a
|
||||
if t < 2:
|
||||
sleep(2 - t)
|
||||
|
||||
def main():
|
||||
#title("Penrose-tiling with kites and darts.")
|
||||
mode("logo")
|
||||
bgcolor(0.3, 0.3, 0)
|
||||
demo(sun)
|
||||
sleep(2)
|
||||
demo(star)
|
||||
pencolor("black")
|
||||
goto(0,-200)
|
||||
pencolor(0.7,0.7,1)
|
||||
write("Please wait...",
|
||||
align="center", font=('Arial Black', 36, 'bold'))
|
||||
test(600, 8, startpos=(70, 117))
|
||||
return "Done"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
mainloop()
|
111
third_party/python/Lib/turtledemo/planet_and_moon.py
vendored
Executable file
111
third_party/python/Lib/turtledemo/planet_and_moon.py
vendored
Executable file
|
@ -0,0 +1,111 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_planets_and_moon.py
|
||||
|
||||
Gravitational system simulation using the
|
||||
approximation method from Feynman-lectures,
|
||||
p.9-8, using turtlegraphics.
|
||||
|
||||
Example: heavy central body, light planet,
|
||||
very light moon!
|
||||
Planet has a circular orbit, moon a stable
|
||||
orbit around the planet.
|
||||
|
||||
You can hold the movement temporarily by
|
||||
pressing the left mouse button with the
|
||||
mouse over the scrollbar of the canvas.
|
||||
|
||||
"""
|
||||
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
|
||||
|
||||
G = 8
|
||||
|
||||
class GravSys(object):
|
||||
def __init__(self):
|
||||
self.planets = []
|
||||
self.t = 0
|
||||
self.dt = 0.01
|
||||
def init(self):
|
||||
for p in self.planets:
|
||||
p.init()
|
||||
def start(self):
|
||||
for i in range(10000):
|
||||
self.t += self.dt
|
||||
for p in self.planets:
|
||||
p.step()
|
||||
|
||||
class Star(Turtle):
|
||||
def __init__(self, m, x, v, gravSys, shape):
|
||||
Turtle.__init__(self, shape=shape)
|
||||
self.penup()
|
||||
self.m = m
|
||||
self.setpos(x)
|
||||
self.v = v
|
||||
gravSys.planets.append(self)
|
||||
self.gravSys = gravSys
|
||||
self.resizemode("user")
|
||||
self.pendown()
|
||||
def init(self):
|
||||
dt = self.gravSys.dt
|
||||
self.a = self.acc()
|
||||
self.v = self.v + 0.5*dt*self.a
|
||||
def acc(self):
|
||||
a = Vec(0,0)
|
||||
for planet in self.gravSys.planets:
|
||||
if planet != self:
|
||||
v = planet.pos()-self.pos()
|
||||
a += (G*planet.m/abs(v)**3)*v
|
||||
return a
|
||||
def step(self):
|
||||
dt = self.gravSys.dt
|
||||
self.setpos(self.pos() + dt*self.v)
|
||||
if self.gravSys.planets.index(self) != 0:
|
||||
self.setheading(self.towards(self.gravSys.planets[0]))
|
||||
self.a = self.acc()
|
||||
self.v = self.v + dt*self.a
|
||||
|
||||
## create compound yellow/blue turtleshape for planets
|
||||
|
||||
def main():
|
||||
s = Turtle()
|
||||
s.reset()
|
||||
s.getscreen().tracer(0,0)
|
||||
s.ht()
|
||||
s.pu()
|
||||
s.fd(6)
|
||||
s.lt(90)
|
||||
s.begin_poly()
|
||||
s.circle(6, 180)
|
||||
s.end_poly()
|
||||
m1 = s.get_poly()
|
||||
s.begin_poly()
|
||||
s.circle(6,180)
|
||||
s.end_poly()
|
||||
m2 = s.get_poly()
|
||||
|
||||
planetshape = Shape("compound")
|
||||
planetshape.addcomponent(m1,"orange")
|
||||
planetshape.addcomponent(m2,"blue")
|
||||
s.getscreen().register_shape("planet", planetshape)
|
||||
s.getscreen().tracer(1,0)
|
||||
|
||||
## setup gravitational system
|
||||
gs = GravSys()
|
||||
sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
|
||||
sun.color("yellow")
|
||||
sun.shapesize(1.8)
|
||||
sun.pu()
|
||||
earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
|
||||
earth.pencolor("green")
|
||||
earth.shapesize(0.8)
|
||||
moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
|
||||
moon.pencolor("blue")
|
||||
moon.shapesize(0.5)
|
||||
gs.init()
|
||||
gs.start()
|
||||
return "Done!"
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop()
|
65
third_party/python/Lib/turtledemo/rosette.py
vendored
Normal file
65
third_party/python/Lib/turtledemo/rosette.py
vendored
Normal file
|
@ -0,0 +1,65 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_wikipedia3.py
|
||||
|
||||
This example is
|
||||
inspired by the Wikipedia article on turtle
|
||||
graphics. (See example wikipedia1 for URLs)
|
||||
|
||||
First we create (ne-1) (i.e. 35 in this
|
||||
example) copies of our first turtle p.
|
||||
Then we let them perform their steps in
|
||||
parallel.
|
||||
|
||||
Followed by a complete undo().
|
||||
"""
|
||||
from turtle import Screen, Turtle, mainloop
|
||||
from time import clock, sleep
|
||||
|
||||
def mn_eck(p, ne,sz):
|
||||
turtlelist = [p]
|
||||
#create ne-1 additional turtles
|
||||
for i in range(1,ne):
|
||||
q = p.clone()
|
||||
q.rt(360.0/ne)
|
||||
turtlelist.append(q)
|
||||
p = q
|
||||
for i in range(ne):
|
||||
c = abs(ne/2.0-i)/(ne*.7)
|
||||
# let those ne turtles make a step
|
||||
# in parallel:
|
||||
for t in turtlelist:
|
||||
t.rt(360./ne)
|
||||
t.pencolor(1-c,0,c)
|
||||
t.fd(sz)
|
||||
|
||||
def main():
|
||||
s = Screen()
|
||||
s.bgcolor("black")
|
||||
p=Turtle()
|
||||
p.speed(0)
|
||||
p.hideturtle()
|
||||
p.pencolor("red")
|
||||
p.pensize(3)
|
||||
|
||||
s.tracer(36,0)
|
||||
|
||||
at = clock()
|
||||
mn_eck(p, 36, 19)
|
||||
et = clock()
|
||||
z1 = et-at
|
||||
|
||||
sleep(1)
|
||||
|
||||
at = clock()
|
||||
while any([t.undobufferentries() for t in s.turtles()]):
|
||||
for t in s.turtles():
|
||||
t.undo()
|
||||
et = clock()
|
||||
return "runtime: %.3f sec" % (z1+et-at)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
86
third_party/python/Lib/turtledemo/round_dance.py
vendored
Normal file
86
third_party/python/Lib/turtledemo/round_dance.py
vendored
Normal file
|
@ -0,0 +1,86 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_round_dance.py
|
||||
|
||||
(Needs version 1.1 of the turtle module that
|
||||
comes with Python 3.1)
|
||||
|
||||
Dancing turtles have a compound shape
|
||||
consisting of a series of triangles of
|
||||
decreasing size.
|
||||
|
||||
Turtles march along a circle while rotating
|
||||
pairwise in opposite direction, with one
|
||||
exception. Does that breaking of symmetry
|
||||
enhance the attractiveness of the example?
|
||||
|
||||
Press any key to stop the animation.
|
||||
|
||||
Technically: demonstrates use of compound
|
||||
shapes, transformation of shapes as well as
|
||||
cloning turtles. The animation is
|
||||
controlled through update().
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def stop():
|
||||
global running
|
||||
running = False
|
||||
|
||||
def main():
|
||||
global running
|
||||
clearscreen()
|
||||
bgcolor("gray10")
|
||||
tracer(False)
|
||||
shape("triangle")
|
||||
f = 0.793402
|
||||
phi = 9.064678
|
||||
s = 5
|
||||
c = 1
|
||||
# create compound shape
|
||||
sh = Shape("compound")
|
||||
for i in range(10):
|
||||
shapesize(s)
|
||||
p =get_shapepoly()
|
||||
s *= f
|
||||
c *= f
|
||||
tilt(-phi)
|
||||
sh.addcomponent(p, (c, 0.25, 1-c), "black")
|
||||
register_shape("multitri", sh)
|
||||
# create dancers
|
||||
shapesize(1)
|
||||
shape("multitri")
|
||||
pu()
|
||||
setpos(0, -200)
|
||||
dancers = []
|
||||
for i in range(180):
|
||||
fd(7)
|
||||
tilt(-4)
|
||||
lt(2)
|
||||
update()
|
||||
if i % 12 == 0:
|
||||
dancers.append(clone())
|
||||
home()
|
||||
# dance
|
||||
running = True
|
||||
onkeypress(stop)
|
||||
listen()
|
||||
cs = 1
|
||||
while running:
|
||||
ta = -4
|
||||
for dancer in dancers:
|
||||
dancer.fd(7)
|
||||
dancer.lt(2)
|
||||
dancer.tilt(ta)
|
||||
ta = -4 if ta > 0 else 2
|
||||
if cs < 180:
|
||||
right(4)
|
||||
shapesize(cs)
|
||||
cs *= 1.005
|
||||
update()
|
||||
return "DONE!"
|
||||
|
||||
if __name__=='__main__':
|
||||
print(main())
|
||||
mainloop()
|
204
third_party/python/Lib/turtledemo/sorting_animate.py
vendored
Normal file
204
third_party/python/Lib/turtledemo/sorting_animate.py
vendored
Normal file
|
@ -0,0 +1,204 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
|
||||
sorting_animation.py
|
||||
|
||||
A minimal sorting algorithm animation:
|
||||
Sorts a shelf of 10 blocks using insertion
|
||||
sort, selection sort and quicksort.
|
||||
|
||||
Shelfs are implemented using builtin lists.
|
||||
|
||||
Blocks are turtles with shape "square", but
|
||||
stretched to rectangles by shapesize()
|
||||
---------------------------------------
|
||||
To exit press space button
|
||||
---------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
import random
|
||||
|
||||
|
||||
class Block(Turtle):
|
||||
|
||||
def __init__(self, size):
|
||||
self.size = size
|
||||
Turtle.__init__(self, shape="square", visible=False)
|
||||
self.pu()
|
||||
self.shapesize(size * 1.5, 1.5, 2) # square-->rectangle
|
||||
self.fillcolor("black")
|
||||
self.st()
|
||||
|
||||
def glow(self):
|
||||
self.fillcolor("red")
|
||||
|
||||
def unglow(self):
|
||||
self.fillcolor("black")
|
||||
|
||||
def __repr__(self):
|
||||
return "Block size: {0}".format(self.size)
|
||||
|
||||
|
||||
class Shelf(list):
|
||||
|
||||
def __init__(self, y):
|
||||
"create a shelf. y is y-position of first block"
|
||||
self.y = y
|
||||
self.x = -150
|
||||
|
||||
def push(self, d):
|
||||
width, _, _ = d.shapesize()
|
||||
# align blocks by the bottom edge
|
||||
y_offset = width / 2 * 20
|
||||
d.sety(self.y + y_offset)
|
||||
d.setx(self.x + 34 * len(self))
|
||||
self.append(d)
|
||||
|
||||
def _close_gap_from_i(self, i):
|
||||
for b in self[i:]:
|
||||
xpos, _ = b.pos()
|
||||
b.setx(xpos - 34)
|
||||
|
||||
def _open_gap_from_i(self, i):
|
||||
for b in self[i:]:
|
||||
xpos, _ = b.pos()
|
||||
b.setx(xpos + 34)
|
||||
|
||||
def pop(self, key):
|
||||
b = list.pop(self, key)
|
||||
b.glow()
|
||||
b.sety(200)
|
||||
self._close_gap_from_i(key)
|
||||
return b
|
||||
|
||||
def insert(self, key, b):
|
||||
self._open_gap_from_i(key)
|
||||
list.insert(self, key, b)
|
||||
b.setx(self.x + 34 * key)
|
||||
width, _, _ = b.shapesize()
|
||||
# align blocks by the bottom edge
|
||||
y_offset = width / 2 * 20
|
||||
b.sety(self.y + y_offset)
|
||||
b.unglow()
|
||||
|
||||
def isort(shelf):
|
||||
length = len(shelf)
|
||||
for i in range(1, length):
|
||||
hole = i
|
||||
while hole > 0 and shelf[i].size < shelf[hole - 1].size:
|
||||
hole = hole - 1
|
||||
shelf.insert(hole, shelf.pop(i))
|
||||
return
|
||||
|
||||
def ssort(shelf):
|
||||
length = len(shelf)
|
||||
for j in range(0, length - 1):
|
||||
imin = j
|
||||
for i in range(j + 1, length):
|
||||
if shelf[i].size < shelf[imin].size:
|
||||
imin = i
|
||||
if imin != j:
|
||||
shelf.insert(j, shelf.pop(imin))
|
||||
|
||||
def partition(shelf, left, right, pivot_index):
|
||||
pivot = shelf[pivot_index]
|
||||
shelf.insert(right, shelf.pop(pivot_index))
|
||||
store_index = left
|
||||
for i in range(left, right): # range is non-inclusive of ending value
|
||||
if shelf[i].size < pivot.size:
|
||||
shelf.insert(store_index, shelf.pop(i))
|
||||
store_index = store_index + 1
|
||||
shelf.insert(store_index, shelf.pop(right)) # move pivot to correct position
|
||||
return store_index
|
||||
|
||||
def qsort(shelf, left, right):
|
||||
if left < right:
|
||||
pivot_index = left
|
||||
pivot_new_index = partition(shelf, left, right, pivot_index)
|
||||
qsort(shelf, left, pivot_new_index - 1)
|
||||
qsort(shelf, pivot_new_index + 1, right)
|
||||
|
||||
def randomize():
|
||||
disable_keys()
|
||||
clear()
|
||||
target = list(range(10))
|
||||
random.shuffle(target)
|
||||
for i, t in enumerate(target):
|
||||
for j in range(i, len(s)):
|
||||
if s[j].size == t + 1:
|
||||
s.insert(i, s.pop(j))
|
||||
show_text(instructions1)
|
||||
show_text(instructions2, line=1)
|
||||
enable_keys()
|
||||
|
||||
def show_text(text, line=0):
|
||||
line = 20 * line
|
||||
goto(0,-250 - line)
|
||||
write(text, align="center", font=("Courier", 16, "bold"))
|
||||
|
||||
def start_ssort():
|
||||
disable_keys()
|
||||
clear()
|
||||
show_text("Selection Sort")
|
||||
ssort(s)
|
||||
clear()
|
||||
show_text(instructions1)
|
||||
show_text(instructions2, line=1)
|
||||
enable_keys()
|
||||
|
||||
def start_isort():
|
||||
disable_keys()
|
||||
clear()
|
||||
show_text("Insertion Sort")
|
||||
isort(s)
|
||||
clear()
|
||||
show_text(instructions1)
|
||||
show_text(instructions2, line=1)
|
||||
enable_keys()
|
||||
|
||||
def start_qsort():
|
||||
disable_keys()
|
||||
clear()
|
||||
show_text("Quicksort")
|
||||
qsort(s, 0, len(s) - 1)
|
||||
clear()
|
||||
show_text(instructions1)
|
||||
show_text(instructions2, line=1)
|
||||
enable_keys()
|
||||
|
||||
def init_shelf():
|
||||
global s
|
||||
s = Shelf(-200)
|
||||
vals = (4, 2, 8, 9, 1, 5, 10, 3, 7, 6)
|
||||
for i in vals:
|
||||
s.push(Block(i))
|
||||
|
||||
def disable_keys():
|
||||
onkey(None, "s")
|
||||
onkey(None, "i")
|
||||
onkey(None, "q")
|
||||
onkey(None, "r")
|
||||
|
||||
def enable_keys():
|
||||
onkey(start_isort, "i")
|
||||
onkey(start_ssort, "s")
|
||||
onkey(start_qsort, "q")
|
||||
onkey(randomize, "r")
|
||||
onkey(bye, "space")
|
||||
|
||||
def main():
|
||||
getscreen().clearscreen()
|
||||
ht(); penup()
|
||||
init_shelf()
|
||||
show_text(instructions1)
|
||||
show_text(instructions2, line=1)
|
||||
enable_keys()
|
||||
listen()
|
||||
return "EVENTLOOP"
|
||||
|
||||
instructions1 = "press i for insertion sort, s for selection sort, q for quicksort"
|
||||
instructions2 = "spacebar to quit, r to randomize"
|
||||
|
||||
if __name__=="__main__":
|
||||
msg = main()
|
||||
mainloop()
|
62
third_party/python/Lib/turtledemo/tree.py
vendored
Executable file
62
third_party/python/Lib/turtledemo/tree.py
vendored
Executable file
|
@ -0,0 +1,62 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_tree.py
|
||||
|
||||
Displays a 'breadth-first-tree' - in contrast
|
||||
to the classical Logo tree drawing programs,
|
||||
which use a depth-first-algorithm.
|
||||
|
||||
Uses:
|
||||
(1) a tree-generator, where the drawing is
|
||||
quasi the side-effect, whereas the generator
|
||||
always yields None.
|
||||
(2) Turtle-cloning: At each branching point
|
||||
the current pen is cloned. So in the end
|
||||
there are 1024 turtles.
|
||||
"""
|
||||
from turtle import Turtle, mainloop
|
||||
from time import clock
|
||||
|
||||
def tree(plist, l, a, f):
|
||||
""" plist is list of pens
|
||||
l is length of branch
|
||||
a is half of the angle between 2 branches
|
||||
f is factor by which branch is shortened
|
||||
from level to level."""
|
||||
if l > 3:
|
||||
lst = []
|
||||
for p in plist:
|
||||
p.forward(l)
|
||||
q = p.clone()
|
||||
p.left(a)
|
||||
q.right(a)
|
||||
lst.append(p)
|
||||
lst.append(q)
|
||||
for x in tree(lst, l*f, a, f):
|
||||
yield None
|
||||
|
||||
def maketree():
|
||||
p = Turtle()
|
||||
p.setundobuffer(None)
|
||||
p.hideturtle()
|
||||
p.speed(0)
|
||||
p.getscreen().tracer(30,0)
|
||||
p.left(90)
|
||||
p.penup()
|
||||
p.forward(-210)
|
||||
p.pendown()
|
||||
t = tree([p], 200, 65, 0.6375)
|
||||
for x in t:
|
||||
pass
|
||||
|
||||
def main():
|
||||
a=clock()
|
||||
maketree()
|
||||
b=clock()
|
||||
return "done: %.2f sec." % (b-a)
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
10
third_party/python/Lib/turtledemo/turtle.cfg
vendored
Normal file
10
third_party/python/Lib/turtledemo/turtle.cfg
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
width = 800
|
||||
height = 600
|
||||
canvwidth = 1200
|
||||
canvheight = 900
|
||||
shape = arrow
|
||||
mode = standard
|
||||
resizemode = auto
|
||||
fillcolor = ""
|
||||
title = Python turtle graphics demo.
|
||||
|
54
third_party/python/Lib/turtledemo/two_canvases.py
vendored
Executable file
54
third_party/python/Lib/turtledemo/two_canvases.py
vendored
Executable file
|
@ -0,0 +1,54 @@
|
|||
"""turtledemo.two_canvases
|
||||
|
||||
Use TurtleScreen and RawTurtle to draw on two
|
||||
distinct canvases in a separate windows. The
|
||||
new window must be separately closed in
|
||||
addition to pressing the STOP button.
|
||||
"""
|
||||
|
||||
from turtle import TurtleScreen, RawTurtle, TK
|
||||
|
||||
def main():
|
||||
root = TK.Tk()
|
||||
cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
|
||||
cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
|
||||
cv1.pack()
|
||||
cv2.pack()
|
||||
|
||||
s1 = TurtleScreen(cv1)
|
||||
s1.bgcolor(0.85, 0.85, 1)
|
||||
s2 = TurtleScreen(cv2)
|
||||
s2.bgcolor(1, 0.85, 0.85)
|
||||
|
||||
p = RawTurtle(s1)
|
||||
q = RawTurtle(s2)
|
||||
|
||||
p.color("red", (1, 0.85, 0.85))
|
||||
p.width(3)
|
||||
q.color("blue", (0.85, 0.85, 1))
|
||||
q.width(3)
|
||||
|
||||
for t in p,q:
|
||||
t.shape("turtle")
|
||||
t.lt(36)
|
||||
|
||||
q.lt(180)
|
||||
|
||||
for t in p, q:
|
||||
t.begin_fill()
|
||||
for i in range(5):
|
||||
for t in p, q:
|
||||
t.fd(50)
|
||||
t.lt(72)
|
||||
for t in p,q:
|
||||
t.end_fill()
|
||||
t.lt(54)
|
||||
t.pu()
|
||||
t.bk(50)
|
||||
|
||||
return "EVENTLOOP"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
TK.mainloop() # keep window open until user closes it
|
49
third_party/python/Lib/turtledemo/yinyang.py
vendored
Executable file
49
third_party/python/Lib/turtledemo/yinyang.py
vendored
Executable file
|
@ -0,0 +1,49 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_yinyang.py
|
||||
|
||||
Another drawing suitable as a beginner's
|
||||
programming example.
|
||||
|
||||
The small circles are drawn by the circle
|
||||
command.
|
||||
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def yin(radius, color1, color2):
|
||||
width(3)
|
||||
color("black", color1)
|
||||
begin_fill()
|
||||
circle(radius/2., 180)
|
||||
circle(radius, 180)
|
||||
left(180)
|
||||
circle(-radius/2., 180)
|
||||
end_fill()
|
||||
left(90)
|
||||
up()
|
||||
forward(radius*0.35)
|
||||
right(90)
|
||||
down()
|
||||
color(color1, color2)
|
||||
begin_fill()
|
||||
circle(radius*0.15)
|
||||
end_fill()
|
||||
left(90)
|
||||
up()
|
||||
backward(radius*0.35)
|
||||
down()
|
||||
left(90)
|
||||
|
||||
def main():
|
||||
reset()
|
||||
yin(200, "black", "white")
|
||||
yin(200, "white", "black")
|
||||
ht()
|
||||
return "Done!"
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop()
|
Loading…
Add table
Add a link
Reference in a new issue