mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 05:42:29 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
111
third_party/python/Lib/turtledemo/planet_and_moon.py
vendored
Executable file
111
third_party/python/Lib/turtledemo/planet_and_moon.py
vendored
Executable file
|
@ -0,0 +1,111 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_planets_and_moon.py
|
||||
|
||||
Gravitational system simulation using the
|
||||
approximation method from Feynman-lectures,
|
||||
p.9-8, using turtlegraphics.
|
||||
|
||||
Example: heavy central body, light planet,
|
||||
very light moon!
|
||||
Planet has a circular orbit, moon a stable
|
||||
orbit around the planet.
|
||||
|
||||
You can hold the movement temporarily by
|
||||
pressing the left mouse button with the
|
||||
mouse over the scrollbar of the canvas.
|
||||
|
||||
"""
|
||||
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
|
||||
|
||||
G = 8
|
||||
|
||||
class GravSys(object):
|
||||
def __init__(self):
|
||||
self.planets = []
|
||||
self.t = 0
|
||||
self.dt = 0.01
|
||||
def init(self):
|
||||
for p in self.planets:
|
||||
p.init()
|
||||
def start(self):
|
||||
for i in range(10000):
|
||||
self.t += self.dt
|
||||
for p in self.planets:
|
||||
p.step()
|
||||
|
||||
class Star(Turtle):
|
||||
def __init__(self, m, x, v, gravSys, shape):
|
||||
Turtle.__init__(self, shape=shape)
|
||||
self.penup()
|
||||
self.m = m
|
||||
self.setpos(x)
|
||||
self.v = v
|
||||
gravSys.planets.append(self)
|
||||
self.gravSys = gravSys
|
||||
self.resizemode("user")
|
||||
self.pendown()
|
||||
def init(self):
|
||||
dt = self.gravSys.dt
|
||||
self.a = self.acc()
|
||||
self.v = self.v + 0.5*dt*self.a
|
||||
def acc(self):
|
||||
a = Vec(0,0)
|
||||
for planet in self.gravSys.planets:
|
||||
if planet != self:
|
||||
v = planet.pos()-self.pos()
|
||||
a += (G*planet.m/abs(v)**3)*v
|
||||
return a
|
||||
def step(self):
|
||||
dt = self.gravSys.dt
|
||||
self.setpos(self.pos() + dt*self.v)
|
||||
if self.gravSys.planets.index(self) != 0:
|
||||
self.setheading(self.towards(self.gravSys.planets[0]))
|
||||
self.a = self.acc()
|
||||
self.v = self.v + dt*self.a
|
||||
|
||||
## create compound yellow/blue turtleshape for planets
|
||||
|
||||
def main():
|
||||
s = Turtle()
|
||||
s.reset()
|
||||
s.getscreen().tracer(0,0)
|
||||
s.ht()
|
||||
s.pu()
|
||||
s.fd(6)
|
||||
s.lt(90)
|
||||
s.begin_poly()
|
||||
s.circle(6, 180)
|
||||
s.end_poly()
|
||||
m1 = s.get_poly()
|
||||
s.begin_poly()
|
||||
s.circle(6,180)
|
||||
s.end_poly()
|
||||
m2 = s.get_poly()
|
||||
|
||||
planetshape = Shape("compound")
|
||||
planetshape.addcomponent(m1,"orange")
|
||||
planetshape.addcomponent(m2,"blue")
|
||||
s.getscreen().register_shape("planet", planetshape)
|
||||
s.getscreen().tracer(1,0)
|
||||
|
||||
## setup gravitational system
|
||||
gs = GravSys()
|
||||
sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
|
||||
sun.color("yellow")
|
||||
sun.shapesize(1.8)
|
||||
sun.pu()
|
||||
earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
|
||||
earth.pencolor("green")
|
||||
earth.shapesize(0.8)
|
||||
moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
|
||||
moon.pencolor("blue")
|
||||
moon.shapesize(0.5)
|
||||
gs.init()
|
||||
gs.start()
|
||||
return "Done!"
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop()
|
Loading…
Add table
Add a link
Reference in a new issue