mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
250
third_party/python/Modules/_decimal/tests/randfloat.py
vendored
Normal file
250
third_party/python/Modules/_decimal/tests/randfloat.py
vendored
Normal file
|
@ -0,0 +1,250 @@
|
|||
# Copyright (c) 2010 Python Software Foundation. All Rights Reserved.
|
||||
# Adapted from Python's Lib/test/test_strtod.py (by Mark Dickinson)
|
||||
|
||||
# More test cases for deccheck.py.
|
||||
|
||||
import random
|
||||
|
||||
TEST_SIZE = 2
|
||||
|
||||
|
||||
def test_short_halfway_cases():
|
||||
# exact halfway cases with a small number of significant digits
|
||||
for k in 0, 5, 10, 15, 20:
|
||||
# upper = smallest integer >= 2**54/5**k
|
||||
upper = -(-2**54//5**k)
|
||||
# lower = smallest odd number >= 2**53/5**k
|
||||
lower = -(-2**53//5**k)
|
||||
if lower % 2 == 0:
|
||||
lower += 1
|
||||
for i in range(10 * TEST_SIZE):
|
||||
# Select a random odd n in [2**53/5**k,
|
||||
# 2**54/5**k). Then n * 10**k gives a halfway case
|
||||
# with small number of significant digits.
|
||||
n, e = random.randrange(lower, upper, 2), k
|
||||
|
||||
# Remove any additional powers of 5.
|
||||
while n % 5 == 0:
|
||||
n, e = n // 5, e + 1
|
||||
assert n % 10 in (1, 3, 7, 9)
|
||||
|
||||
# Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
|
||||
# until n * 2**p2 has more than 20 significant digits.
|
||||
digits, exponent = n, e
|
||||
while digits < 10**20:
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
# Same again, but with extra trailing zeros.
|
||||
s = '{}e{}'.format(digits * 10**40, exponent - 40)
|
||||
yield s
|
||||
digits *= 2
|
||||
|
||||
# Try numbers of the form n * 5**p2 * 10**(e - p5), p5
|
||||
# >= 0, with n * 5**p5 < 10**20.
|
||||
digits, exponent = n, e
|
||||
while digits < 10**20:
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
# Same again, but with extra trailing zeros.
|
||||
s = '{}e{}'.format(digits * 10**40, exponent - 40)
|
||||
yield s
|
||||
digits *= 5
|
||||
exponent -= 1
|
||||
|
||||
def test_halfway_cases():
|
||||
# test halfway cases for the round-half-to-even rule
|
||||
for i in range(1000):
|
||||
for j in range(TEST_SIZE):
|
||||
# bit pattern for a random finite positive (or +0.0) float
|
||||
bits = random.randrange(2047*2**52)
|
||||
|
||||
# convert bit pattern to a number of the form m * 2**e
|
||||
e, m = divmod(bits, 2**52)
|
||||
if e:
|
||||
m, e = m + 2**52, e - 1
|
||||
e -= 1074
|
||||
|
||||
# add 0.5 ulps
|
||||
m, e = 2*m + 1, e - 1
|
||||
|
||||
# convert to a decimal string
|
||||
if e >= 0:
|
||||
digits = m << e
|
||||
exponent = 0
|
||||
else:
|
||||
# m * 2**e = (m * 5**-e) * 10**e
|
||||
digits = m * 5**-e
|
||||
exponent = e
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
|
||||
def test_boundaries():
|
||||
# boundaries expressed as triples (n, e, u), where
|
||||
# n*10**e is an approximation to the boundary value and
|
||||
# u*10**e is 1ulp
|
||||
boundaries = [
|
||||
(10000000000000000000, -19, 1110), # a power of 2 boundary (1.0)
|
||||
(17976931348623159077, 289, 1995), # overflow boundary (2.**1024)
|
||||
(22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022)
|
||||
(0, -327, 4941), # zero
|
||||
]
|
||||
for n, e, u in boundaries:
|
||||
for j in range(1000):
|
||||
for i in range(TEST_SIZE):
|
||||
digits = n + random.randrange(-3*u, 3*u)
|
||||
exponent = e
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
n *= 10
|
||||
u *= 10
|
||||
e -= 1
|
||||
|
||||
def test_underflow_boundary():
|
||||
# test values close to 2**-1075, the underflow boundary; similar
|
||||
# to boundary_tests, except that the random error doesn't scale
|
||||
# with n
|
||||
for exponent in range(-400, -320):
|
||||
base = 10**-exponent // 2**1075
|
||||
for j in range(TEST_SIZE):
|
||||
digits = base + random.randrange(-1000, 1000)
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
|
||||
def test_bigcomp():
|
||||
for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
|
||||
dig10 = 10**ndigs
|
||||
for i in range(100 * TEST_SIZE):
|
||||
digits = random.randrange(dig10)
|
||||
exponent = random.randrange(-400, 400)
|
||||
s = '{}e{}'.format(digits, exponent)
|
||||
yield s
|
||||
|
||||
def test_parsing():
|
||||
# make '0' more likely to be chosen than other digits
|
||||
digits = '000000123456789'
|
||||
signs = ('+', '-', '')
|
||||
|
||||
# put together random short valid strings
|
||||
# \d*[.\d*]?e
|
||||
for i in range(1000):
|
||||
for j in range(TEST_SIZE):
|
||||
s = random.choice(signs)
|
||||
intpart_len = random.randrange(5)
|
||||
s += ''.join(random.choice(digits) for _ in range(intpart_len))
|
||||
if random.choice([True, False]):
|
||||
s += '.'
|
||||
fracpart_len = random.randrange(5)
|
||||
s += ''.join(random.choice(digits)
|
||||
for _ in range(fracpart_len))
|
||||
else:
|
||||
fracpart_len = 0
|
||||
if random.choice([True, False]):
|
||||
s += random.choice(['e', 'E'])
|
||||
s += random.choice(signs)
|
||||
exponent_len = random.randrange(1, 4)
|
||||
s += ''.join(random.choice(digits)
|
||||
for _ in range(exponent_len))
|
||||
|
||||
if intpart_len + fracpart_len:
|
||||
yield s
|
||||
|
||||
test_particular = [
|
||||
# squares
|
||||
'1.00000000100000000025',
|
||||
'1.0000000000000000000000000100000000000000000000000' #...
|
||||
'00025',
|
||||
'1.0000000000000000000000000000000000000000000010000' #...
|
||||
'0000000000000000000000000000000000000000025',
|
||||
'1.0000000000000000000000000000000000000000000000000' #...
|
||||
'000001000000000000000000000000000000000000000000000' #...
|
||||
'000000000025',
|
||||
'0.99999999900000000025',
|
||||
'0.9999999999999999999999999999999999999999999999999' #...
|
||||
'999000000000000000000000000000000000000000000000000' #...
|
||||
'000025',
|
||||
'0.9999999999999999999999999999999999999999999999999' #...
|
||||
'999999999999999999999999999999999999999999999999999' #...
|
||||
'999999999999999999999999999999999999999990000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'0000000000000000000000000000025',
|
||||
|
||||
'1.0000000000000000000000000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'100000000000000000000000000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000001',
|
||||
'1.0000000000000000000000000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'500000000000000000000000000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000005',
|
||||
'1.0000000000000000000000000000000000000000000000000' #...
|
||||
'000000000100000000000000000000000000000000000000000' #...
|
||||
'000000000000000000250000000000000002000000000000000' #...
|
||||
'000000000000000000000000000000000000000000010000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'0000000000000000001',
|
||||
'1.0000000000000000000000000000000000000000000000000' #...
|
||||
'000000000100000000000000000000000000000000000000000' #...
|
||||
'000000000000000000249999999999999999999999999999999' #...
|
||||
'999999999999979999999999999999999999999999999999999' #...
|
||||
'999999999999999999999900000000000000000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'00000000000000000000000001',
|
||||
|
||||
'0.9999999999999999999999999999999999999999999999999' #...
|
||||
'999999999900000000000000000000000000000000000000000' #...
|
||||
'000000000000000000249999999999999998000000000000000' #...
|
||||
'000000000000000000000000000000000000000000010000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'0000000000000000001',
|
||||
'0.9999999999999999999999999999999999999999999999999' #...
|
||||
'999999999900000000000000000000000000000000000000000' #...
|
||||
'000000000000000000250000001999999999999999999999999' #...
|
||||
'999999999999999999999999999999999990000000000000000' #...
|
||||
'000000000000000000000000000000000000000000000000000' #...
|
||||
'1',
|
||||
|
||||
# tough cases for ln etc.
|
||||
'1.000000000000000000000000000000000000000000000000' #...
|
||||
'00000000000000000000000000000000000000000000000000' #...
|
||||
'00100000000000000000000000000000000000000000000000' #...
|
||||
'00000000000000000000000000000000000000000000000000' #...
|
||||
'0001',
|
||||
'0.999999999999999999999999999999999999999999999999' #...
|
||||
'99999999999999999999999999999999999999999999999999' #...
|
||||
'99899999999999999999999999999999999999999999999999' #...
|
||||
'99999999999999999999999999999999999999999999999999' #...
|
||||
'99999999999999999999999999999999999999999999999999' #...
|
||||
'9999'
|
||||
]
|
||||
|
||||
|
||||
TESTCASES = [
|
||||
[x for x in test_short_halfway_cases()],
|
||||
[x for x in test_halfway_cases()],
|
||||
[x for x in test_boundaries()],
|
||||
[x for x in test_underflow_boundary()],
|
||||
[x for x in test_bigcomp()],
|
||||
[x for x in test_parsing()],
|
||||
test_particular
|
||||
]
|
||||
|
||||
def un_randfloat():
|
||||
for i in range(1000):
|
||||
l = random.choice(TESTCASES[:6])
|
||||
yield random.choice(l)
|
||||
for v in test_particular:
|
||||
yield v
|
||||
|
||||
def bin_randfloat():
|
||||
for i in range(1000):
|
||||
l1 = random.choice(TESTCASES)
|
||||
l2 = random.choice(TESTCASES)
|
||||
yield random.choice(l1), random.choice(l2)
|
||||
|
||||
def tern_randfloat():
|
||||
for i in range(1000):
|
||||
l1 = random.choice(TESTCASES)
|
||||
l2 = random.choice(TESTCASES)
|
||||
l3 = random.choice(TESTCASES)
|
||||
yield random.choice(l1), random.choice(l2), random.choice(l3)
|
Loading…
Add table
Add a link
Reference in a new issue