mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 22:02:27 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
664
third_party/python/Modules/_heapqmodule.c
vendored
Normal file
664
third_party/python/Modules/_heapqmodule.c
vendored
Normal file
|
@ -0,0 +1,664 @@
|
|||
/* Drop in replacement for heapq.py
|
||||
|
||||
C implementation derived directly from heapq.py in Py2.3
|
||||
which was written by Kevin O'Connor, augmented by Tim Peters,
|
||||
annotated by François Pinard, and converted to C by Raymond Hettinger.
|
||||
|
||||
*/
|
||||
|
||||
#include "Python.h"
|
||||
|
||||
static int
|
||||
siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
||||
{
|
||||
PyObject *newitem, *parent, **arr;
|
||||
Py_ssize_t parentpos, size;
|
||||
int cmp;
|
||||
|
||||
assert(PyList_Check(heap));
|
||||
size = PyList_GET_SIZE(heap);
|
||||
if (pos >= size) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Follow the path to the root, moving parents down until finding
|
||||
a place newitem fits. */
|
||||
arr = _PyList_ITEMS(heap);
|
||||
newitem = arr[pos];
|
||||
while (pos > startpos) {
|
||||
parentpos = (pos - 1) >> 1;
|
||||
parent = arr[parentpos];
|
||||
Py_INCREF(newitem);
|
||||
Py_INCREF(parent);
|
||||
cmp = PyObject_RichCompareBool(newitem, parent, Py_LT);
|
||||
Py_DECREF(parent);
|
||||
Py_DECREF(newitem);
|
||||
if (cmp < 0)
|
||||
return -1;
|
||||
if (size != PyList_GET_SIZE(heap)) {
|
||||
PyErr_SetString(PyExc_RuntimeError,
|
||||
"list changed size during iteration");
|
||||
return -1;
|
||||
}
|
||||
if (cmp == 0)
|
||||
break;
|
||||
arr = _PyList_ITEMS(heap);
|
||||
parent = arr[parentpos];
|
||||
newitem = arr[pos];
|
||||
arr[parentpos] = newitem;
|
||||
arr[pos] = parent;
|
||||
pos = parentpos;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
siftup(PyListObject *heap, Py_ssize_t pos)
|
||||
{
|
||||
Py_ssize_t startpos, endpos, childpos, limit;
|
||||
PyObject *tmp1, *tmp2, **arr;
|
||||
int cmp;
|
||||
|
||||
assert(PyList_Check(heap));
|
||||
endpos = PyList_GET_SIZE(heap);
|
||||
startpos = pos;
|
||||
if (pos >= endpos) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Bubble up the smaller child until hitting a leaf. */
|
||||
arr = _PyList_ITEMS(heap);
|
||||
limit = endpos >> 1; /* smallest pos that has no child */
|
||||
while (pos < limit) {
|
||||
/* Set childpos to index of smaller child. */
|
||||
childpos = 2*pos + 1; /* leftmost child position */
|
||||
if (childpos + 1 < endpos) {
|
||||
PyObject* a = arr[childpos];
|
||||
PyObject* b = arr[childpos + 1];
|
||||
Py_INCREF(a);
|
||||
Py_INCREF(b);
|
||||
cmp = PyObject_RichCompareBool(a, b, Py_LT);
|
||||
Py_DECREF(a);
|
||||
Py_DECREF(b);
|
||||
if (cmp < 0)
|
||||
return -1;
|
||||
childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
|
||||
arr = _PyList_ITEMS(heap); /* arr may have changed */
|
||||
if (endpos != PyList_GET_SIZE(heap)) {
|
||||
PyErr_SetString(PyExc_RuntimeError,
|
||||
"list changed size during iteration");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
/* Move the smaller child up. */
|
||||
tmp1 = arr[childpos];
|
||||
tmp2 = arr[pos];
|
||||
arr[childpos] = tmp2;
|
||||
arr[pos] = tmp1;
|
||||
pos = childpos;
|
||||
}
|
||||
/* Bubble it up to its final resting place (by sifting its parents down). */
|
||||
return siftdown(heap, startpos, pos);
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heappush(PyObject *self, PyObject *args)
|
||||
{
|
||||
PyObject *heap, *item;
|
||||
|
||||
if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
|
||||
return NULL;
|
||||
|
||||
if (!PyList_Check(heap)) {
|
||||
PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (PyList_Append(heap, item))
|
||||
return NULL;
|
||||
|
||||
if (siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1))
|
||||
return NULL;
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heappush_doc,
|
||||
"heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant.");
|
||||
|
||||
static PyObject *
|
||||
heappop_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
|
||||
{
|
||||
PyObject *lastelt, *returnitem;
|
||||
Py_ssize_t n;
|
||||
|
||||
if (!PyList_Check(heap)) {
|
||||
PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* raises IndexError if the heap is empty */
|
||||
n = PyList_GET_SIZE(heap);
|
||||
if (n == 0) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
lastelt = PyList_GET_ITEM(heap, n-1) ;
|
||||
Py_INCREF(lastelt);
|
||||
if (PyList_SetSlice(heap, n-1, n, NULL)) {
|
||||
Py_DECREF(lastelt);
|
||||
return NULL;
|
||||
}
|
||||
n--;
|
||||
|
||||
if (!n)
|
||||
return lastelt;
|
||||
returnitem = PyList_GET_ITEM(heap, 0);
|
||||
PyList_SET_ITEM(heap, 0, lastelt);
|
||||
if (siftup_func((PyListObject *)heap, 0)) {
|
||||
Py_DECREF(returnitem);
|
||||
return NULL;
|
||||
}
|
||||
return returnitem;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heappop(PyObject *self, PyObject *heap)
|
||||
{
|
||||
return heappop_internal(heap, siftup);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heappop_doc,
|
||||
"Pop the smallest item off the heap, maintaining the heap invariant.");
|
||||
|
||||
static PyObject *
|
||||
heapreplace_internal(PyObject *args, int siftup_func(PyListObject *, Py_ssize_t))
|
||||
{
|
||||
PyObject *heap, *item, *returnitem;
|
||||
|
||||
if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
|
||||
return NULL;
|
||||
|
||||
if (!PyList_Check(heap)) {
|
||||
PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (PyList_GET_SIZE(heap) == 0) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
returnitem = PyList_GET_ITEM(heap, 0);
|
||||
Py_INCREF(item);
|
||||
PyList_SET_ITEM(heap, 0, item);
|
||||
if (siftup_func((PyListObject *)heap, 0)) {
|
||||
Py_DECREF(returnitem);
|
||||
return NULL;
|
||||
}
|
||||
return returnitem;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heapreplace(PyObject *self, PyObject *args)
|
||||
{
|
||||
return heapreplace_internal(args, siftup);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heapreplace_doc,
|
||||
"heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\
|
||||
\n\
|
||||
This is more efficient than heappop() followed by heappush(), and can be\n\
|
||||
more appropriate when using a fixed-size heap. Note that the value\n\
|
||||
returned may be larger than item! That constrains reasonable uses of\n\
|
||||
this routine unless written as part of a conditional replacement:\n\n\
|
||||
if item > heap[0]:\n\
|
||||
item = heapreplace(heap, item)\n");
|
||||
|
||||
static PyObject *
|
||||
heappushpop(PyObject *self, PyObject *args)
|
||||
{
|
||||
PyObject *heap, *item, *returnitem;
|
||||
int cmp;
|
||||
|
||||
if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item))
|
||||
return NULL;
|
||||
|
||||
if (!PyList_Check(heap)) {
|
||||
PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (PyList_GET_SIZE(heap) == 0) {
|
||||
Py_INCREF(item);
|
||||
return item;
|
||||
}
|
||||
|
||||
PyObject* top = PyList_GET_ITEM(heap, 0);
|
||||
Py_INCREF(top);
|
||||
cmp = PyObject_RichCompareBool(top, item, Py_LT);
|
||||
Py_DECREF(top);
|
||||
if (cmp < 0)
|
||||
return NULL;
|
||||
if (cmp == 0) {
|
||||
Py_INCREF(item);
|
||||
return item;
|
||||
}
|
||||
|
||||
if (PyList_GET_SIZE(heap) == 0) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
returnitem = PyList_GET_ITEM(heap, 0);
|
||||
Py_INCREF(item);
|
||||
PyList_SET_ITEM(heap, 0, item);
|
||||
if (siftup((PyListObject *)heap, 0)) {
|
||||
Py_DECREF(returnitem);
|
||||
return NULL;
|
||||
}
|
||||
return returnitem;
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heappushpop_doc,
|
||||
"heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\
|
||||
from the heap. The combined action runs more efficiently than\n\
|
||||
heappush() followed by a separate call to heappop().");
|
||||
|
||||
static Py_ssize_t
|
||||
keep_top_bit(Py_ssize_t n)
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
while (n > 1) {
|
||||
n >>= 1;
|
||||
i++;
|
||||
}
|
||||
return n << i;
|
||||
}
|
||||
|
||||
/* Cache friendly version of heapify()
|
||||
-----------------------------------
|
||||
|
||||
Build-up a heap in O(n) time by performing siftup() operations
|
||||
on nodes whose children are already heaps.
|
||||
|
||||
The simplest way is to sift the nodes in reverse order from
|
||||
n//2-1 to 0 inclusive. The downside is that children may be
|
||||
out of cache by the time their parent is reached.
|
||||
|
||||
A better way is to not wait for the children to go out of cache.
|
||||
Once a sibling pair of child nodes have been sifted, immediately
|
||||
sift their parent node (while the children are still in cache).
|
||||
|
||||
Both ways build child heaps before their parents, so both ways
|
||||
do the exact same number of comparisons and produce exactly
|
||||
the same heap. The only difference is that the traversal
|
||||
order is optimized for cache efficiency.
|
||||
*/
|
||||
|
||||
static PyObject *
|
||||
cache_friendly_heapify(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
|
||||
{
|
||||
Py_ssize_t i, j, m, mhalf, leftmost;
|
||||
|
||||
m = PyList_GET_SIZE(heap) >> 1; /* index of first childless node */
|
||||
leftmost = keep_top_bit(m + 1) - 1; /* leftmost node in row of m */
|
||||
mhalf = m >> 1; /* parent of first childless node */
|
||||
|
||||
for (i = leftmost - 1 ; i >= mhalf ; i--) {
|
||||
j = i;
|
||||
while (1) {
|
||||
if (siftup_func((PyListObject *)heap, j))
|
||||
return NULL;
|
||||
if (!(j & 1))
|
||||
break;
|
||||
j >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = m - 1 ; i >= leftmost ; i--) {
|
||||
j = i;
|
||||
while (1) {
|
||||
if (siftup_func((PyListObject *)heap, j))
|
||||
return NULL;
|
||||
if (!(j & 1))
|
||||
break;
|
||||
j >>= 1;
|
||||
}
|
||||
}
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heapify_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
|
||||
{
|
||||
Py_ssize_t i, n;
|
||||
|
||||
if (!PyList_Check(heap)) {
|
||||
PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* For heaps likely to be bigger than L1 cache, we use the cache
|
||||
friendly heapify function. For smaller heaps that fit entirely
|
||||
in cache, we prefer the simpler algorithm with less branching.
|
||||
*/
|
||||
n = PyList_GET_SIZE(heap);
|
||||
if (n > 2500)
|
||||
return cache_friendly_heapify(heap, siftup_func);
|
||||
|
||||
/* Transform bottom-up. The largest index there's any point to
|
||||
looking at is the largest with a child index in-range, so must
|
||||
have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is
|
||||
(2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If
|
||||
n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
|
||||
and that's again n//2-1.
|
||||
*/
|
||||
for (i = (n >> 1) - 1 ; i >= 0 ; i--)
|
||||
if (siftup_func((PyListObject *)heap, i))
|
||||
return NULL;
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heapify(PyObject *self, PyObject *heap)
|
||||
{
|
||||
return heapify_internal(heap, siftup);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heapify_doc,
|
||||
"Transform list into a heap, in-place, in O(len(heap)) time.");
|
||||
|
||||
static int
|
||||
siftdown_max(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
||||
{
|
||||
PyObject *newitem, *parent, **arr;
|
||||
Py_ssize_t parentpos, size;
|
||||
int cmp;
|
||||
|
||||
assert(PyList_Check(heap));
|
||||
size = PyList_GET_SIZE(heap);
|
||||
if (pos >= size) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Follow the path to the root, moving parents down until finding
|
||||
a place newitem fits. */
|
||||
arr = _PyList_ITEMS(heap);
|
||||
newitem = arr[pos];
|
||||
while (pos > startpos) {
|
||||
parentpos = (pos - 1) >> 1;
|
||||
parent = arr[parentpos];
|
||||
Py_INCREF(parent);
|
||||
Py_INCREF(newitem);
|
||||
cmp = PyObject_RichCompareBool(parent, newitem, Py_LT);
|
||||
Py_DECREF(parent);
|
||||
Py_DECREF(newitem);
|
||||
if (cmp < 0)
|
||||
return -1;
|
||||
if (size != PyList_GET_SIZE(heap)) {
|
||||
PyErr_SetString(PyExc_RuntimeError,
|
||||
"list changed size during iteration");
|
||||
return -1;
|
||||
}
|
||||
if (cmp == 0)
|
||||
break;
|
||||
arr = _PyList_ITEMS(heap);
|
||||
parent = arr[parentpos];
|
||||
newitem = arr[pos];
|
||||
arr[parentpos] = newitem;
|
||||
arr[pos] = parent;
|
||||
pos = parentpos;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
siftup_max(PyListObject *heap, Py_ssize_t pos)
|
||||
{
|
||||
Py_ssize_t startpos, endpos, childpos, limit;
|
||||
PyObject *tmp1, *tmp2, **arr;
|
||||
int cmp;
|
||||
|
||||
assert(PyList_Check(heap));
|
||||
endpos = PyList_GET_SIZE(heap);
|
||||
startpos = pos;
|
||||
if (pos >= endpos) {
|
||||
PyErr_SetString(PyExc_IndexError, "index out of range");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Bubble up the smaller child until hitting a leaf. */
|
||||
arr = _PyList_ITEMS(heap);
|
||||
limit = endpos >> 1; /* smallest pos that has no child */
|
||||
while (pos < limit) {
|
||||
/* Set childpos to index of smaller child. */
|
||||
childpos = 2*pos + 1; /* leftmost child position */
|
||||
if (childpos + 1 < endpos) {
|
||||
PyObject* a = arr[childpos + 1];
|
||||
PyObject* b = arr[childpos];
|
||||
Py_INCREF(a);
|
||||
Py_INCREF(b);
|
||||
cmp = PyObject_RichCompareBool(a, b, Py_LT);
|
||||
Py_DECREF(a);
|
||||
Py_DECREF(b);
|
||||
if (cmp < 0)
|
||||
return -1;
|
||||
childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
|
||||
arr = _PyList_ITEMS(heap); /* arr may have changed */
|
||||
if (endpos != PyList_GET_SIZE(heap)) {
|
||||
PyErr_SetString(PyExc_RuntimeError,
|
||||
"list changed size during iteration");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
/* Move the smaller child up. */
|
||||
tmp1 = arr[childpos];
|
||||
tmp2 = arr[pos];
|
||||
arr[childpos] = tmp2;
|
||||
arr[pos] = tmp1;
|
||||
pos = childpos;
|
||||
}
|
||||
/* Bubble it up to its final resting place (by sifting its parents down). */
|
||||
return siftdown_max(heap, startpos, pos);
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
heappop_max(PyObject *self, PyObject *heap)
|
||||
{
|
||||
return heappop_internal(heap, siftup_max);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heappop_max_doc, "Maxheap variant of heappop.");
|
||||
|
||||
static PyObject *
|
||||
heapreplace_max(PyObject *self, PyObject *args)
|
||||
{
|
||||
return heapreplace_internal(args, siftup_max);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heapreplace_max_doc, "Maxheap variant of heapreplace");
|
||||
|
||||
static PyObject *
|
||||
heapify_max(PyObject *self, PyObject *heap)
|
||||
{
|
||||
return heapify_internal(heap, siftup_max);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(heapify_max_doc, "Maxheap variant of heapify.");
|
||||
|
||||
static PyMethodDef heapq_methods[] = {
|
||||
{"heappush", (PyCFunction)heappush,
|
||||
METH_VARARGS, heappush_doc},
|
||||
{"heappushpop", (PyCFunction)heappushpop,
|
||||
METH_VARARGS, heappushpop_doc},
|
||||
{"heappop", (PyCFunction)heappop,
|
||||
METH_O, heappop_doc},
|
||||
{"heapreplace", (PyCFunction)heapreplace,
|
||||
METH_VARARGS, heapreplace_doc},
|
||||
{"heapify", (PyCFunction)heapify,
|
||||
METH_O, heapify_doc},
|
||||
{"_heappop_max", (PyCFunction)heappop_max,
|
||||
METH_O, heappop_max_doc},
|
||||
{"_heapreplace_max",(PyCFunction)heapreplace_max,
|
||||
METH_VARARGS, heapreplace_max_doc},
|
||||
{"_heapify_max", (PyCFunction)heapify_max,
|
||||
METH_O, heapify_max_doc},
|
||||
{NULL, NULL} /* sentinel */
|
||||
};
|
||||
|
||||
PyDoc_STRVAR(module_doc,
|
||||
"Heap queue algorithm (a.k.a. priority queue).\n\
|
||||
\n\
|
||||
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
||||
all k, counting elements from 0. For the sake of comparison,\n\
|
||||
non-existing elements are considered to be infinite. The interesting\n\
|
||||
property of a heap is that a[0] is always its smallest element.\n\
|
||||
\n\
|
||||
Usage:\n\
|
||||
\n\
|
||||
heap = [] # creates an empty heap\n\
|
||||
heappush(heap, item) # pushes a new item on the heap\n\
|
||||
item = heappop(heap) # pops the smallest item from the heap\n\
|
||||
item = heap[0] # smallest item on the heap without popping it\n\
|
||||
heapify(x) # transforms list into a heap, in-place, in linear time\n\
|
||||
item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
|
||||
# new item; the heap size is unchanged\n\
|
||||
\n\
|
||||
Our API differs from textbook heap algorithms as follows:\n\
|
||||
\n\
|
||||
- We use 0-based indexing. This makes the relationship between the\n\
|
||||
index for a node and the indexes for its children slightly less\n\
|
||||
obvious, but is more suitable since Python uses 0-based indexing.\n\
|
||||
\n\
|
||||
- Our heappop() method returns the smallest item, not the largest.\n\
|
||||
\n\
|
||||
These two make it possible to view the heap as a regular Python list\n\
|
||||
without surprises: heap[0] is the smallest item, and heap.sort()\n\
|
||||
maintains the heap invariant!\n");
|
||||
|
||||
|
||||
PyDoc_STRVAR(__about__,
|
||||
"Heap queues\n\
|
||||
\n\
|
||||
[explanation by Fran\xc3\xa7ois Pinard]\n\
|
||||
\n\
|
||||
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
||||
all k, counting elements from 0. For the sake of comparison,\n\
|
||||
non-existing elements are considered to be infinite. The interesting\n\
|
||||
property of a heap is that a[0] is always its smallest element.\n"
|
||||
"\n\
|
||||
The strange invariant above is meant to be an efficient memory\n\
|
||||
representation for a tournament. The numbers below are `k', not a[k]:\n\
|
||||
\n\
|
||||
0\n\
|
||||
\n\
|
||||
1 2\n\
|
||||
\n\
|
||||
3 4 5 6\n\
|
||||
\n\
|
||||
7 8 9 10 11 12 13 14\n\
|
||||
\n\
|
||||
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\
|
||||
\n\
|
||||
\n\
|
||||
In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\
|
||||
a usual binary tournament we see in sports, each cell is the winner\n\
|
||||
over the two cells it tops, and we can trace the winner down the tree\n\
|
||||
to see all opponents s/he had. However, in many computer applications\n\
|
||||
of such tournaments, we do not need to trace the history of a winner.\n\
|
||||
To be more memory efficient, when a winner is promoted, we try to\n\
|
||||
replace it by something else at a lower level, and the rule becomes\n\
|
||||
that a cell and the two cells it tops contain three different items,\n\
|
||||
but the top cell \"wins\" over the two topped cells.\n"
|
||||
"\n\
|
||||
If this heap invariant is protected at all time, index 0 is clearly\n\
|
||||
the overall winner. The simplest algorithmic way to remove it and\n\
|
||||
find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
|
||||
diagram above) into the 0 position, and then percolate this new 0 down\n\
|
||||
the tree, exchanging values, until the invariant is re-established.\n\
|
||||
This is clearly logarithmic on the total number of items in the tree.\n\
|
||||
By iterating over all items, you get an O(n ln n) sort.\n"
|
||||
"\n\
|
||||
A nice feature of this sort is that you can efficiently insert new\n\
|
||||
items while the sort is going on, provided that the inserted items are\n\
|
||||
not \"better\" than the last 0'th element you extracted. This is\n\
|
||||
especially useful in simulation contexts, where the tree holds all\n\
|
||||
incoming events, and the \"win\" condition means the smallest scheduled\n\
|
||||
time. When an event schedule other events for execution, they are\n\
|
||||
scheduled into the future, so they can easily go into the heap. So, a\n\
|
||||
heap is a good structure for implementing schedulers (this is what I\n\
|
||||
used for my MIDI sequencer :-).\n"
|
||||
"\n\
|
||||
Various structures for implementing schedulers have been extensively\n\
|
||||
studied, and heaps are good for this, as they are reasonably speedy,\n\
|
||||
the speed is almost constant, and the worst case is not much different\n\
|
||||
than the average case. However, there are other representations which\n\
|
||||
are more efficient overall, yet the worst cases might be terrible.\n"
|
||||
"\n\
|
||||
Heaps are also very useful in big disk sorts. You most probably all\n\
|
||||
know that a big sort implies producing \"runs\" (which are pre-sorted\n\
|
||||
sequences, which size is usually related to the amount of CPU memory),\n\
|
||||
followed by a merging passes for these runs, which merging is often\n\
|
||||
very cleverly organised[1]. It is very important that the initial\n\
|
||||
sort produces the longest runs possible. Tournaments are a good way\n\
|
||||
to that. If, using all the memory available to hold a tournament, you\n\
|
||||
replace and percolate items that happen to fit the current run, you'll\n\
|
||||
produce runs which are twice the size of the memory for random input,\n\
|
||||
and much better for input fuzzily ordered.\n"
|
||||
"\n\
|
||||
Moreover, if you output the 0'th item on disk and get an input which\n\
|
||||
may not fit in the current tournament (because the value \"wins\" over\n\
|
||||
the last output value), it cannot fit in the heap, so the size of the\n\
|
||||
heap decreases. The freed memory could be cleverly reused immediately\n\
|
||||
for progressively building a second heap, which grows at exactly the\n\
|
||||
same rate the first heap is melting. When the first heap completely\n\
|
||||
vanishes, you switch heaps and start a new run. Clever and quite\n\
|
||||
effective!\n\
|
||||
\n\
|
||||
In a word, heaps are useful memory structures to know. I use them in\n\
|
||||
a few applications, and I think it is good to keep a `heap' module\n\
|
||||
around. :-)\n"
|
||||
"\n\
|
||||
--------------------\n\
|
||||
[1] The disk balancing algorithms which are current, nowadays, are\n\
|
||||
more annoying than clever, and this is a consequence of the seeking\n\
|
||||
capabilities of the disks. On devices which cannot seek, like big\n\
|
||||
tape drives, the story was quite different, and one had to be very\n\
|
||||
clever to ensure (far in advance) that each tape movement will be the\n\
|
||||
most effective possible (that is, will best participate at\n\
|
||||
\"progressing\" the merge). Some tapes were even able to read\n\
|
||||
backwards, and this was also used to avoid the rewinding time.\n\
|
||||
Believe me, real good tape sorts were quite spectacular to watch!\n\
|
||||
From all times, sorting has always been a Great Art! :-)\n");
|
||||
|
||||
|
||||
static struct PyModuleDef _heapqmodule = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"_heapq",
|
||||
module_doc,
|
||||
-1,
|
||||
heapq_methods,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC
|
||||
PyInit__heapq(void)
|
||||
{
|
||||
PyObject *m, *about;
|
||||
|
||||
m = PyModule_Create(&_heapqmodule);
|
||||
if (m == NULL)
|
||||
return NULL;
|
||||
about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL);
|
||||
PyModule_AddObject(m, "__about__", about);
|
||||
return m;
|
||||
}
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue