mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-24 06:12:27 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
412
third_party/python/Python/thread_nt.h
vendored
Normal file
412
third_party/python/Python/thread_nt.h
vendored
Normal file
|
@ -0,0 +1,412 @@
|
|||
|
||||
/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
|
||||
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
|
||||
/* Eliminated some memory leaks, gsw@agere.com */
|
||||
|
||||
#include <windows.h>
|
||||
#include <limits.h>
|
||||
#ifdef HAVE_PROCESS_H
|
||||
#include <process.h>
|
||||
#endif
|
||||
|
||||
/* options */
|
||||
#ifndef _PY_USE_CV_LOCKS
|
||||
#define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */
|
||||
#endif
|
||||
|
||||
/* Now, define a non-recursive mutex using either condition variables
|
||||
* and critical sections (fast) or using operating system mutexes
|
||||
* (slow)
|
||||
*/
|
||||
|
||||
#if _PY_USE_CV_LOCKS
|
||||
|
||||
#include "condvar.h"
|
||||
|
||||
typedef struct _NRMUTEX
|
||||
{
|
||||
PyMUTEX_T cs;
|
||||
PyCOND_T cv;
|
||||
int locked;
|
||||
} NRMUTEX;
|
||||
typedef NRMUTEX *PNRMUTEX;
|
||||
|
||||
PNRMUTEX
|
||||
AllocNonRecursiveMutex()
|
||||
{
|
||||
PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
|
||||
if (!m)
|
||||
return NULL;
|
||||
if (PyCOND_INIT(&m->cv))
|
||||
goto fail;
|
||||
if (PyMUTEX_INIT(&m->cs)) {
|
||||
PyCOND_FINI(&m->cv);
|
||||
goto fail;
|
||||
}
|
||||
m->locked = 0;
|
||||
return m;
|
||||
fail:
|
||||
PyMem_RawFree(m);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
VOID
|
||||
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
||||
{
|
||||
if (mutex) {
|
||||
PyCOND_FINI(&mutex->cv);
|
||||
PyMUTEX_FINI(&mutex->cs);
|
||||
PyMem_RawFree(mutex);
|
||||
}
|
||||
}
|
||||
|
||||
DWORD
|
||||
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
||||
{
|
||||
DWORD result = WAIT_OBJECT_0;
|
||||
if (PyMUTEX_LOCK(&mutex->cs))
|
||||
return WAIT_FAILED;
|
||||
if (milliseconds == INFINITE) {
|
||||
while (mutex->locked) {
|
||||
if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
|
||||
result = WAIT_FAILED;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (milliseconds != 0) {
|
||||
/* wait at least until the target */
|
||||
DWORD now, target = GetTickCount() + milliseconds;
|
||||
while (mutex->locked) {
|
||||
if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, (long long)milliseconds*1000) < 0) {
|
||||
result = WAIT_FAILED;
|
||||
break;
|
||||
}
|
||||
now = GetTickCount();
|
||||
if (target <= now)
|
||||
break;
|
||||
milliseconds = target-now;
|
||||
}
|
||||
}
|
||||
if (!mutex->locked) {
|
||||
mutex->locked = 1;
|
||||
result = WAIT_OBJECT_0;
|
||||
} else if (result == WAIT_OBJECT_0)
|
||||
result = WAIT_TIMEOUT;
|
||||
/* else, it is WAIT_FAILED */
|
||||
PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
|
||||
return result;
|
||||
}
|
||||
|
||||
BOOL
|
||||
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
||||
{
|
||||
BOOL result;
|
||||
if (PyMUTEX_LOCK(&mutex->cs))
|
||||
return FALSE;
|
||||
mutex->locked = 0;
|
||||
result = PyCOND_SIGNAL(&mutex->cv);
|
||||
result &= PyMUTEX_UNLOCK(&mutex->cs);
|
||||
return result;
|
||||
}
|
||||
|
||||
#else /* if ! _PY_USE_CV_LOCKS */
|
||||
|
||||
/* NR-locks based on a kernel mutex */
|
||||
#define PNRMUTEX HANDLE
|
||||
|
||||
PNRMUTEX
|
||||
AllocNonRecursiveMutex()
|
||||
{
|
||||
return CreateSemaphore(NULL, 1, 1, NULL);
|
||||
}
|
||||
|
||||
VOID
|
||||
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
||||
{
|
||||
/* No in-use check */
|
||||
CloseHandle(mutex);
|
||||
}
|
||||
|
||||
DWORD
|
||||
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
||||
{
|
||||
return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
|
||||
}
|
||||
|
||||
BOOL
|
||||
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
||||
{
|
||||
return ReleaseSemaphore(mutex, 1, NULL);
|
||||
}
|
||||
#endif /* _PY_USE_CV_LOCKS */
|
||||
|
||||
long PyThread_get_thread_ident(void);
|
||||
|
||||
/*
|
||||
* Initialization of the C package, should not be needed.
|
||||
*/
|
||||
static void
|
||||
PyThread__init_thread(void)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Thread support.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
void (*func)(void*);
|
||||
void *arg;
|
||||
} callobj;
|
||||
|
||||
/* thunker to call adapt between the function type used by the system's
|
||||
thread start function and the internally used one. */
|
||||
static unsigned __stdcall
|
||||
bootstrap(void *call)
|
||||
{
|
||||
callobj *obj = (callobj*)call;
|
||||
void (*func)(void*) = obj->func;
|
||||
void *arg = obj->arg;
|
||||
HeapFree(GetProcessHeap(), 0, obj);
|
||||
func(arg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
long
|
||||
PyThread_start_new_thread(void (*func)(void *), void *arg)
|
||||
{
|
||||
HANDLE hThread;
|
||||
unsigned threadID;
|
||||
callobj *obj;
|
||||
|
||||
dprintf(("%ld: PyThread_start_new_thread called\n",
|
||||
PyThread_get_thread_ident()));
|
||||
if (!initialized)
|
||||
PyThread_init_thread();
|
||||
|
||||
obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
|
||||
if (!obj)
|
||||
return -1;
|
||||
obj->func = func;
|
||||
obj->arg = arg;
|
||||
hThread = (HANDLE)_beginthreadex(0,
|
||||
Py_SAFE_DOWNCAST(_pythread_stacksize,
|
||||
Py_ssize_t, unsigned int),
|
||||
bootstrap, obj,
|
||||
0, &threadID);
|
||||
if (hThread == 0) {
|
||||
/* I've seen errno == EAGAIN here, which means "there are
|
||||
* too many threads".
|
||||
*/
|
||||
int e = errno;
|
||||
dprintf(("%ld: PyThread_start_new_thread failed, errno %d\n",
|
||||
PyThread_get_thread_ident(), e));
|
||||
threadID = (unsigned)-1;
|
||||
HeapFree(GetProcessHeap(), 0, obj);
|
||||
}
|
||||
else {
|
||||
dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n",
|
||||
PyThread_get_thread_ident(), (void*)hThread));
|
||||
CloseHandle(hThread);
|
||||
}
|
||||
return (long) threadID;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the thread Id instead of a handle. The Id is said to uniquely identify the
|
||||
* thread in the system
|
||||
*/
|
||||
long
|
||||
PyThread_get_thread_ident(void)
|
||||
{
|
||||
if (!initialized)
|
||||
PyThread_init_thread();
|
||||
|
||||
return GetCurrentThreadId();
|
||||
}
|
||||
|
||||
void
|
||||
PyThread_exit_thread(void)
|
||||
{
|
||||
dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
|
||||
if (!initialized)
|
||||
exit(0);
|
||||
_endthreadex(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Lock support. It has to be implemented as semaphores.
|
||||
* I [Dag] tried to implement it with mutex but I could find a way to
|
||||
* tell whether a thread already own the lock or not.
|
||||
*/
|
||||
PyThread_type_lock
|
||||
PyThread_allocate_lock(void)
|
||||
{
|
||||
PNRMUTEX aLock;
|
||||
|
||||
dprintf(("PyThread_allocate_lock called\n"));
|
||||
if (!initialized)
|
||||
PyThread_init_thread();
|
||||
|
||||
aLock = AllocNonRecursiveMutex() ;
|
||||
|
||||
dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));
|
||||
|
||||
return (PyThread_type_lock) aLock;
|
||||
}
|
||||
|
||||
void
|
||||
PyThread_free_lock(PyThread_type_lock aLock)
|
||||
{
|
||||
dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
|
||||
|
||||
FreeNonRecursiveMutex(aLock) ;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return 1 on success if the lock was acquired
|
||||
*
|
||||
* and 0 if the lock was not acquired. This means a 0 is returned
|
||||
* if the lock has already been acquired by this thread!
|
||||
*/
|
||||
PyLockStatus
|
||||
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
|
||||
PY_TIMEOUT_T microseconds, int intr_flag)
|
||||
{
|
||||
/* Fow now, intr_flag does nothing on Windows, and lock acquires are
|
||||
* uninterruptible. */
|
||||
PyLockStatus success;
|
||||
PY_TIMEOUT_T milliseconds;
|
||||
|
||||
if (microseconds >= 0) {
|
||||
milliseconds = microseconds / 1000;
|
||||
if (microseconds % 1000 > 0)
|
||||
++milliseconds;
|
||||
if ((DWORD) milliseconds != milliseconds)
|
||||
Py_FatalError("Timeout too large for a DWORD, "
|
||||
"please check PY_TIMEOUT_MAX");
|
||||
}
|
||||
else
|
||||
milliseconds = INFINITE;
|
||||
|
||||
dprintf(("%ld: PyThread_acquire_lock_timed(%p, %lld) called\n",
|
||||
PyThread_get_thread_ident(), aLock, microseconds));
|
||||
|
||||
if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
|
||||
(DWORD)milliseconds) == WAIT_OBJECT_0) {
|
||||
success = PY_LOCK_ACQUIRED;
|
||||
}
|
||||
else {
|
||||
success = PY_LOCK_FAILURE;
|
||||
}
|
||||
|
||||
dprintf(("%ld: PyThread_acquire_lock(%p, %lld) -> %d\n",
|
||||
PyThread_get_thread_ident(), aLock, microseconds, success));
|
||||
|
||||
return success;
|
||||
}
|
||||
int
|
||||
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
|
||||
{
|
||||
return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
|
||||
}
|
||||
|
||||
void
|
||||
PyThread_release_lock(PyThread_type_lock aLock)
|
||||
{
|
||||
dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
|
||||
|
||||
if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
|
||||
dprintf(("%ld: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
|
||||
}
|
||||
|
||||
/* minimum/maximum thread stack sizes supported */
|
||||
#define THREAD_MIN_STACKSIZE 0x8000 /* 32kB */
|
||||
#define THREAD_MAX_STACKSIZE 0x10000000 /* 256MB */
|
||||
|
||||
/* set the thread stack size.
|
||||
* Return 0 if size is valid, -1 otherwise.
|
||||
*/
|
||||
static int
|
||||
_pythread_nt_set_stacksize(size_t size)
|
||||
{
|
||||
/* set to default */
|
||||
if (size == 0) {
|
||||
_pythread_stacksize = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* valid range? */
|
||||
if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
|
||||
_pythread_stacksize = size;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
|
||||
|
||||
|
||||
/* use native Windows TLS functions */
|
||||
#define Py_HAVE_NATIVE_TLS
|
||||
|
||||
#ifdef Py_HAVE_NATIVE_TLS
|
||||
int
|
||||
PyThread_create_key(void)
|
||||
{
|
||||
DWORD result= TlsAlloc();
|
||||
if (result == TLS_OUT_OF_INDEXES)
|
||||
return -1;
|
||||
return (int)result;
|
||||
}
|
||||
|
||||
void
|
||||
PyThread_delete_key(int key)
|
||||
{
|
||||
TlsFree(key);
|
||||
}
|
||||
|
||||
int
|
||||
PyThread_set_key_value(int key, void *value)
|
||||
{
|
||||
BOOL ok;
|
||||
|
||||
ok = TlsSetValue(key, value);
|
||||
if (!ok)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void *
|
||||
PyThread_get_key_value(int key)
|
||||
{
|
||||
/* because TLS is used in the Py_END_ALLOW_THREAD macro,
|
||||
* it is necessary to preserve the windows error state, because
|
||||
* it is assumed to be preserved across the call to the macro.
|
||||
* Ideally, the macro should be fixed, but it is simpler to
|
||||
* do it here.
|
||||
*/
|
||||
DWORD error = GetLastError();
|
||||
void *result = TlsGetValue(key);
|
||||
SetLastError(error);
|
||||
return result;
|
||||
}
|
||||
|
||||
void
|
||||
PyThread_delete_key_value(int key)
|
||||
{
|
||||
/* NULL is used as "key missing", and it is also the default
|
||||
* given by TlsGetValue() if nothing has been set yet.
|
||||
*/
|
||||
TlsSetValue(key, NULL);
|
||||
}
|
||||
|
||||
/* reinitialization of TLS is not necessary after fork when using
|
||||
* the native TLS functions. And forking isn't supported on Windows either.
|
||||
*/
|
||||
void
|
||||
PyThread_ReInitTLS(void)
|
||||
{}
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue