mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 22:02:27 +00:00
python-3.6.zip added from Github
README.cosmo contains the necessary links.
This commit is contained in:
parent
75fc601ff5
commit
0c4c56ff39
4219 changed files with 1968626 additions and 0 deletions
154
third_party/python/Tools/demo/hanoi.py
vendored
Executable file
154
third_party/python/Tools/demo/hanoi.py
vendored
Executable file
|
@ -0,0 +1,154 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
Animated Towers of Hanoi using Tk with optional bitmap file in background.
|
||||
|
||||
Usage: hanoi.py [n [bitmapfile]]
|
||||
|
||||
n is the number of pieces to animate; default is 4, maximum 15.
|
||||
|
||||
The bitmap file can be any X11 bitmap file (look in /usr/include/X11/bitmaps for
|
||||
samples); it is displayed as the background of the animation. Default is no
|
||||
bitmap.
|
||||
"""
|
||||
|
||||
from tkinter import Tk, Canvas
|
||||
|
||||
# Basic Towers-of-Hanoi algorithm: move n pieces from a to b, using c
|
||||
# as temporary. For each move, call report()
|
||||
def hanoi(n, a, b, c, report):
|
||||
if n <= 0: return
|
||||
hanoi(n-1, a, c, b, report)
|
||||
report(n, a, b)
|
||||
hanoi(n-1, c, b, a, report)
|
||||
|
||||
|
||||
# The graphical interface
|
||||
class Tkhanoi:
|
||||
|
||||
# Create our objects
|
||||
def __init__(self, n, bitmap = None):
|
||||
self.n = n
|
||||
self.tk = tk = Tk()
|
||||
self.canvas = c = Canvas(tk)
|
||||
c.pack()
|
||||
width, height = tk.getint(c['width']), tk.getint(c['height'])
|
||||
|
||||
# Add background bitmap
|
||||
if bitmap:
|
||||
self.bitmap = c.create_bitmap(width//2, height//2,
|
||||
bitmap=bitmap,
|
||||
foreground='blue')
|
||||
|
||||
# Generate pegs
|
||||
pegwidth = 10
|
||||
pegheight = height//2
|
||||
pegdist = width//3
|
||||
x1, y1 = (pegdist-pegwidth)//2, height*1//3
|
||||
x2, y2 = x1+pegwidth, y1+pegheight
|
||||
self.pegs = []
|
||||
p = c.create_rectangle(x1, y1, x2, y2, fill='black')
|
||||
self.pegs.append(p)
|
||||
x1, x2 = x1+pegdist, x2+pegdist
|
||||
p = c.create_rectangle(x1, y1, x2, y2, fill='black')
|
||||
self.pegs.append(p)
|
||||
x1, x2 = x1+pegdist, x2+pegdist
|
||||
p = c.create_rectangle(x1, y1, x2, y2, fill='black')
|
||||
self.pegs.append(p)
|
||||
self.tk.update()
|
||||
|
||||
# Generate pieces
|
||||
pieceheight = pegheight//16
|
||||
maxpiecewidth = pegdist*2//3
|
||||
minpiecewidth = 2*pegwidth
|
||||
self.pegstate = [[], [], []]
|
||||
self.pieces = {}
|
||||
x1, y1 = (pegdist-maxpiecewidth)//2, y2-pieceheight-2
|
||||
x2, y2 = x1+maxpiecewidth, y1+pieceheight
|
||||
dx = (maxpiecewidth-minpiecewidth) // (2*max(1, n-1))
|
||||
for i in range(n, 0, -1):
|
||||
p = c.create_rectangle(x1, y1, x2, y2, fill='red')
|
||||
self.pieces[i] = p
|
||||
self.pegstate[0].append(i)
|
||||
x1, x2 = x1 + dx, x2-dx
|
||||
y1, y2 = y1 - pieceheight-2, y2-pieceheight-2
|
||||
self.tk.update()
|
||||
self.tk.after(25)
|
||||
|
||||
# Run -- never returns
|
||||
def run(self):
|
||||
while 1:
|
||||
hanoi(self.n, 0, 1, 2, self.report)
|
||||
hanoi(self.n, 1, 2, 0, self.report)
|
||||
hanoi(self.n, 2, 0, 1, self.report)
|
||||
hanoi(self.n, 0, 2, 1, self.report)
|
||||
hanoi(self.n, 2, 1, 0, self.report)
|
||||
hanoi(self.n, 1, 0, 2, self.report)
|
||||
|
||||
# Reporting callback for the actual hanoi function
|
||||
def report(self, i, a, b):
|
||||
if self.pegstate[a][-1] != i: raise RuntimeError # Assertion
|
||||
del self.pegstate[a][-1]
|
||||
p = self.pieces[i]
|
||||
c = self.canvas
|
||||
|
||||
# Lift the piece above peg a
|
||||
ax1, ay1, ax2, ay2 = c.bbox(self.pegs[a])
|
||||
while 1:
|
||||
x1, y1, x2, y2 = c.bbox(p)
|
||||
if y2 < ay1: break
|
||||
c.move(p, 0, -1)
|
||||
self.tk.update()
|
||||
|
||||
# Move it towards peg b
|
||||
bx1, by1, bx2, by2 = c.bbox(self.pegs[b])
|
||||
newcenter = (bx1+bx2)//2
|
||||
while 1:
|
||||
x1, y1, x2, y2 = c.bbox(p)
|
||||
center = (x1+x2)//2
|
||||
if center == newcenter: break
|
||||
if center > newcenter: c.move(p, -1, 0)
|
||||
else: c.move(p, 1, 0)
|
||||
self.tk.update()
|
||||
|
||||
# Move it down on top of the previous piece
|
||||
pieceheight = y2-y1
|
||||
newbottom = by2 - pieceheight*len(self.pegstate[b]) - 2
|
||||
while 1:
|
||||
x1, y1, x2, y2 = c.bbox(p)
|
||||
if y2 >= newbottom: break
|
||||
c.move(p, 0, 1)
|
||||
self.tk.update()
|
||||
|
||||
# Update peg state
|
||||
self.pegstate[b].append(i)
|
||||
|
||||
|
||||
def main():
|
||||
import sys
|
||||
|
||||
# First argument is number of pegs, default 4
|
||||
if sys.argv[1:]:
|
||||
n = int(sys.argv[1])
|
||||
else:
|
||||
n = 4
|
||||
|
||||
# Second argument is bitmap file, default none
|
||||
if sys.argv[2:]:
|
||||
bitmap = sys.argv[2]
|
||||
# Reverse meaning of leading '@' compared to Tk
|
||||
if bitmap[0] == '@': bitmap = bitmap[1:]
|
||||
else: bitmap = '@' + bitmap
|
||||
else:
|
||||
bitmap = None
|
||||
|
||||
# Create the graphical objects...
|
||||
h = Tkhanoi(n, bitmap)
|
||||
|
||||
# ...and run!
|
||||
h.run()
|
||||
|
||||
|
||||
# Call main when run as script
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Add table
Add a link
Reference in a new issue