mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-07-05 02:38:31 +00:00
Make improvements
- Make rand64() thread safe - Introduce lemur64 lcg prng - Improve strace on New Technology - Improve msync() on New Technology
This commit is contained in:
parent
43ba3009b2
commit
29bf8b1a30
73 changed files with 888 additions and 269 deletions
|
@ -43,7 +43,7 @@ static bool have_getrandom;
|
|||
/**
|
||||
* Returns cryptographic random data.
|
||||
*
|
||||
* This random number seed generator blends information from:
|
||||
* This random number seed generator obtains information from:
|
||||
*
|
||||
* - getrandom() on Linux
|
||||
* - RtlGenRandom() on Windows
|
||||
|
@ -61,6 +61,9 @@ static bool have_getrandom;
|
|||
* This function is safe to use with fork() and vfork(). It will also
|
||||
* close any file descriptor it ends up needing before it returns.
|
||||
*
|
||||
* @note this function could block a nontrivial time on old computers
|
||||
* @note this function is indeed intended for cryptography
|
||||
* @note this function takes around 900 cycles
|
||||
* @asyncsignalsafe
|
||||
* @restartable
|
||||
* @vforksafe
|
||||
|
|
|
@ -7,7 +7,7 @@ forceinline uint64_t KnuthLinearCongruentialGenerator(uint64_t prev[1]) {
|
|||
Seminumerical Algorithms, Third Edition, Addison-Wesley, 1998,
|
||||
p. 106 (line 26) & p. 108 */
|
||||
prev[0] = prev[0] * 6364136223846793005 + 1442695040888963407;
|
||||
return prev[0];
|
||||
return prev[0]; /* be sure to shift! */
|
||||
}
|
||||
|
||||
#endif /* !(__ASSEMBLER__ + __LINKER__ + 0) */
|
||||
|
|
45
libc/rand/lemur64.c
Normal file
45
libc/rand/lemur64.c
Normal file
|
@ -0,0 +1,45 @@
|
|||
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||||
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
||||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||||
│ Copyright 2022 Justine Alexandra Roberts Tunney │
|
||||
│ │
|
||||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||||
│ any purpose with or without fee is hereby granted, provided that the │
|
||||
│ above copyright notice and this permission notice appear in all copies. │
|
||||
│ │
|
||||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/rand/rand.h"
|
||||
|
||||
/**
|
||||
* Returns linear congruential deterministic pseudorandom data, e.g.
|
||||
*
|
||||
* uint64_t x = lemur64();
|
||||
*
|
||||
* You can generate different types of numbers as follows:
|
||||
*
|
||||
* int64_t x = lemur64() >> 1; // make positive signed integer
|
||||
* double x = _real1(lemur64()); // make float on [0,1]-interval
|
||||
*
|
||||
* If you want a fast pseudorandom number generator that seeds itself
|
||||
* automatically on startup and fork() then consider rand64(). If you
|
||||
* want true random data then consider rdseed, rdrand, and getrandom.
|
||||
*
|
||||
* @return 64 bits of pseudorandom data
|
||||
* @note this is Lemire's Lehmer generator
|
||||
* @note this function takes at minimum 1 cycle
|
||||
* @note this function passes bigcrush and practrand
|
||||
* @note this function is not intended for cryptography
|
||||
* @see rand64(), rngset(), _real1(), _real2(), _real3()
|
||||
*/
|
||||
uint64_t lemur64(void) {
|
||||
static uint128_t s = 2131259787901769494;
|
||||
return (s *= 15750249268501108917ull) >> 64;
|
||||
}
|
|
@ -21,11 +21,18 @@
|
|||
#include "libc/rand/rand.h"
|
||||
|
||||
/**
|
||||
* Returns 31-bit random number using a linear congruential generator.
|
||||
* Returns 31-bit linear congruential pseudorandom number, e.g.
|
||||
*
|
||||
* Please note that, unlike rand32(), the rand() function uses the same
|
||||
* seed at startup by default, unless srand() is called. This makes it
|
||||
* useful in cases where deterministic behavior is needed.
|
||||
* int x = rand();
|
||||
* assert(x >= 0);
|
||||
*
|
||||
* This function always returns a positive number. If srand() isn't
|
||||
* called, then it'll return the same sequence each time your program
|
||||
* runs. Faster and more modern alternatives exist to this function.
|
||||
*
|
||||
* @note this function does well on bigcrush and practrand
|
||||
* @note this function is not intended for cryptography
|
||||
* @see lemur64(), rand64(), rdrand()
|
||||
*/
|
||||
int rand(void) {
|
||||
return KnuthLinearCongruentialGenerator(&g_rando) >> 33;
|
||||
|
|
|
@ -23,12 +23,13 @@ char *setstate(char *);
|
|||
long random(void);
|
||||
void srandom(unsigned);
|
||||
|
||||
uint64_t lemur64(void);
|
||||
uint64_t rand64(void);
|
||||
uint64_t vigna(void);
|
||||
uint64_t vigna_r(uint64_t[hasatleast 1]);
|
||||
void svigna(uint64_t);
|
||||
uint64_t rdrand(void);
|
||||
uint64_t rdseed(void);
|
||||
uint64_t rand64(void);
|
||||
void _smt19937(uint64_t);
|
||||
void _Smt19937(uint64_t[], size_t);
|
||||
uint64_t _mt19937(void);
|
||||
|
|
|
@ -16,59 +16,80 @@
|
|||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/assert.h"
|
||||
#include "libc/bits/bits.h"
|
||||
#include "libc/bits/xadd.h"
|
||||
#include "libc/bits/lockcmpxchg16b.internal.h"
|
||||
#include "libc/bits/lockxadd.internal.h"
|
||||
#include "libc/bits/weaken.h"
|
||||
#include "libc/calls/calls.h"
|
||||
#include "libc/intrin/kprintf.h"
|
||||
#include "libc/nexgen32e/rdtsc.h"
|
||||
#include "libc/nexgen32e/x86feature.h"
|
||||
#include "libc/nt/thread.h"
|
||||
#include "libc/rand/rand.h"
|
||||
#include "libc/runtime/runtime.h"
|
||||
#include "libc/sysv/consts/auxv.h"
|
||||
#include "libc/thread/create.h"
|
||||
|
||||
static uint64_t thepool;
|
||||
extern int __pid;
|
||||
static int thepid;
|
||||
static int thecount;
|
||||
static uint128_t thepool;
|
||||
|
||||
/**
|
||||
* Returns nondeterministic random data.
|
||||
*
|
||||
* This function automatically seeds itself on startup and reseeds
|
||||
* itself after fork() and vfork(). It takes about nanosecond to run.
|
||||
* That makes it much slower than vigna() and rand() but much faster
|
||||
* than rdrand() and rdseed().
|
||||
* This function is similar to lemur64() except it'thepool intended to
|
||||
* be unpredictable. This PRNG automatically seeds itself on startup
|
||||
* using a much stronger and faster random source than `srand(time(0))`.
|
||||
* This function will automatically reseed itself when new processes and
|
||||
* threads are spawned. This function is thread safe in the sense that a
|
||||
* race condition can't happen where two threads return the same result.
|
||||
*
|
||||
* @see rdseed(), rdrand(), rand(), random(), rngset()
|
||||
* @note based on vigna's algorithm
|
||||
* @note this function is not intended for cryptography
|
||||
* @note this function passes bigcrush and practrand
|
||||
* @note this function takes at minimum 30 cycles
|
||||
* @asyncsignalsafe
|
||||
* @threadsafe
|
||||
* @vforksafe
|
||||
*/
|
||||
uint64_t rand64(void) {
|
||||
bool cf;
|
||||
register uint64_t t;
|
||||
if (X86_HAVE(RDSEED)) {
|
||||
asm volatile(CFLAG_ASM("rdseed\t%1")
|
||||
: CFLAG_CONSTRAINT(cf), "=r"(t)
|
||||
: /* no inputs */
|
||||
: "cc");
|
||||
if (cf) {
|
||||
thepool ^= t;
|
||||
return t;
|
||||
void *d;
|
||||
int c1, p1, p2;
|
||||
uint128_t s1, s2;
|
||||
do {
|
||||
p1 = __pid;
|
||||
p2 = thepid;
|
||||
c1 = thecount;
|
||||
asm volatile("" ::: "memory");
|
||||
s1 = thepool;
|
||||
if (p1 == p2) {
|
||||
// fast path
|
||||
s2 = s1;
|
||||
} else {
|
||||
// slow path
|
||||
if (!p2) {
|
||||
// first call so get some cheap entropy
|
||||
if ((d = (void *)getauxval(AT_RANDOM))) {
|
||||
memcpy(&s2, d, 16); // kernel entropy
|
||||
} else {
|
||||
s2 = kStartTsc; // rdtsc() @ _start()
|
||||
}
|
||||
} else {
|
||||
// process contention so blend a timestamp
|
||||
s2 = s1 ^ rdtsc();
|
||||
}
|
||||
// toss the new pid in there
|
||||
s2 ^= p1;
|
||||
// ordering for thepid probably doesn't matter
|
||||
thepid = p1;
|
||||
}
|
||||
}
|
||||
t = _xadd(&thepool, 0x9e3779b97f4a7c15);
|
||||
t ^= (getpid() * 0x1001111111110001ull + 0xdeaadead) >> 31;
|
||||
t = (t ^ (t >> 30)) * 0xbf58476d1ce4e5b9;
|
||||
t = (t ^ (t >> 27)) * 0x94d049bb133111eb;
|
||||
return t ^ (t >> 31);
|
||||
// lemur64 pseudorandom number generator
|
||||
s2 *= 15750249268501108917ull;
|
||||
// sadly 128-bit values aren't atomic on x86
|
||||
_lockcmpxchg16b(&thepool, &s1, s2);
|
||||
// do it again if there's thread contention
|
||||
} while (_lockxadd(&thecount, 1) != c1);
|
||||
// the most important step in the prng
|
||||
return s2 >> 64;
|
||||
}
|
||||
|
||||
static textstartup void rand64_init(int argc, char **argv, char **envp,
|
||||
intptr_t *auxv) {
|
||||
for (; auxv[0]; auxv += 2) {
|
||||
if (auxv[0] == AT_RANDOM) {
|
||||
thepool = READ64LE((const char *)auxv[1]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
thepool = kStartTsc;
|
||||
}
|
||||
|
||||
const void *const g_rand64_init[] initarray = {rand64_init};
|
||||
|
|
|
@ -55,9 +55,12 @@ static dontinline uint64_t rdrand_failover(void) {
|
|||
* aren't available then we try /dev/urandom and if that fails, we try
|
||||
* getauxval(AT_RANDOM), and if not we finally use RDTSC and getpid().
|
||||
*
|
||||
* This function takes between 10 nanoseconds to several microseconds.
|
||||
*
|
||||
* @note this function could block a nontrivial time on old computers
|
||||
* @note this function is indeed intended for cryptography
|
||||
* @note this function takes around 300 cycles
|
||||
* @see rngset(), rdseed(), rand64()
|
||||
* @asyncsignalsafe
|
||||
* @vforksafe
|
||||
*/
|
||||
uint64_t rdrand(void) {
|
||||
int i;
|
||||
|
|
|
@ -31,9 +31,12 @@
|
|||
* sysctl(KERN_ARND). If those aren't available then we try /dev/urandom
|
||||
* and if that fails, we use RDTSC and getpid().
|
||||
*
|
||||
* This function takes about 32 nanoseconds.
|
||||
*
|
||||
* @note this function could block a nontrivial time on old computers
|
||||
* @note this function is indeed intended for cryptography
|
||||
* @note this function takes around 800 cycles
|
||||
* @see rngset(), rdrand(), rand64()
|
||||
* @asyncsignalsafe
|
||||
* @vforksafe
|
||||
*/
|
||||
uint64_t rdseed(void) {
|
||||
int i;
|
||||
|
|
|
@ -21,9 +21,9 @@
|
|||
/**
|
||||
* Generates number on [0,1]-real-interval, e.g.
|
||||
*
|
||||
* double x = _real1(vigna())
|
||||
* double x = _real1(lemur64())
|
||||
*
|
||||
* @see vigna(), mt19937()
|
||||
* @see lemur64(), mt19937()
|
||||
*/
|
||||
double _real1(uint64_t x) {
|
||||
return 1. / 9007199254740991. * (x >> 11);
|
||||
|
|
|
@ -21,9 +21,9 @@
|
|||
/**
|
||||
* Generates number on [0,1)-real-interval, e.g.
|
||||
*
|
||||
* double x = _real2(vigna())
|
||||
* double x = _real2(lemur64())
|
||||
*
|
||||
* @see vigna(), mt19937()
|
||||
* @see lemur64(), mt19937()
|
||||
*/
|
||||
double _real2(uint64_t x) {
|
||||
return 1. / 9007199254740992. * (x >> 11);
|
||||
|
|
|
@ -21,9 +21,9 @@
|
|||
/**
|
||||
* Generates number on (0,1)-real-interval, e.g.
|
||||
*
|
||||
* double x = _real3(vigna())
|
||||
* double x = _real3(lemur64())
|
||||
*
|
||||
* @see vigna(), mt19937()
|
||||
* @see lemur64(), mt19937()
|
||||
*/
|
||||
double _real3(uint64_t x) {
|
||||
return 1. / 4503599627370496. * ((x >> 12) + .5);
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/bits/xadd.h"
|
||||
#include "libc/rand/rand.h"
|
||||
|
||||
static uint64_t g_vigna;
|
||||
|
@ -40,9 +39,8 @@ static uint64_t g_vigna;
|
|||
* static uint64_t s = 0;
|
||||
* uint64_t x = svigna_r(&s);
|
||||
*
|
||||
* This function is the fastest way to generate good scalar pseudorandom
|
||||
* numbers that aren't truncated. If you want to fill a buffer with data
|
||||
* then rngset() implements vigna's algorithm to do that extremely well:
|
||||
* If you want to fill a buffer with data then rngset() implements
|
||||
* vigna's algorithm to do that extremely well:
|
||||
*
|
||||
* char buf[4096];
|
||||
* rngset(buf, sizeof(buf), vigna, 0);
|
||||
|
@ -52,6 +50,9 @@ static uint64_t g_vigna;
|
|||
* want true random data then consider rdseed, rdrand, and getrandom.
|
||||
*
|
||||
* @return 64 bits of pseudorandom data
|
||||
* @note this function is not intended for cryptography
|
||||
* @note this function passes bigcrush and practrand
|
||||
* @note this function takes at minimum 4 cycles
|
||||
*/
|
||||
uint64_t vigna(void) {
|
||||
return vigna_r(&g_vigna);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue