Make more code aarch64 friendly

This commit is contained in:
Justine Tunney 2023-05-02 13:38:16 -07:00
parent ca2860947f
commit 2b73e72d59
No known key found for this signature in database
GPG key ID: BE714B4575D6E328
568 changed files with 2197 additions and 1061 deletions

View file

@ -1,28 +1,182 @@
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2021 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
Optimized Routines
Copyright (c) 1999-2022, Arm Limited.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/intrin/likely.h"
#include "libc/math.h"
#include "libc/tinymath/atanf_common.internal.h"
#include "libc/tinymath/internal.h"
/**
* Returns arc tangent of 𝑦/𝑥.
*/
float atan2f(float y, float x) {
long double st;
asm("fpatan" : "=t"(st) : "0"((long double)x), "u"((long double)y) : "st(1)");
return st;
asm(".ident\t\"\\n\\n\
Optimized Routines (MIT License)\\n\
Copyright 2022 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
/* clang-format off */
#define Pi (0x1.921fb6p+1f)
#define PiOver2 (0x1.921fb6p+0f)
#define PiOver4 (0x1.921fb6p-1f)
#define SignMask (0x80000000)
/* We calculate atan2f by P(n/d), where n and d are similar to the input
arguments, and P is a polynomial. The polynomial may underflow.
POLY_UFLOW_BOUND is the lower bound of the difference in exponents of n and d
for which P underflows, and is used to special-case such inputs. */
#define POLY_UFLOW_BOUND 24
static inline int32_t
biased_exponent (float f)
{
uint32_t fi = asuint (f);
int32_t ex = (int32_t) ((fi & 0x7f800000) >> 23);
if (UNLIKELY (ex == 0))
{
/* Subnormal case - we still need to get the exponent right for subnormal
numbers as division may take us back inside the normal range. */
return ex - __builtin_clz (fi << 9);
}
return ex;
}
/* Fast implementation of scalar atan2f. Largest observed error is
2.88ulps in [99.0, 101.0] x [99.0, 101.0]:
atan2f(0x1.9332d8p+6, 0x1.8cb6c4p+6) got 0x1.964646p-1
want 0x1.964640p-1. */
float
atan2f (float y, float x)
{
uint32_t ix = asuint (x);
uint32_t iy = asuint (y);
uint32_t sign_x = ix & SignMask;
uint32_t sign_y = iy & SignMask;
uint32_t iax = ix & ~SignMask;
uint32_t iay = iy & ~SignMask;
/* x or y is NaN. */
if ((iax > 0x7f800000) || (iay > 0x7f800000))
return x + y;
/* m = 2 * sign(x) + sign(y). */
uint32_t m = ((iy >> 31) & 1) | ((ix >> 30) & 2);
/* The following follows glibc ieee754 implementation, except
that we do not use +-tiny shifts (non-nearest rounding mode). */
int32_t exp_diff = biased_exponent (x) - biased_exponent (y);
/* Special case for (x, y) either on or very close to the x axis. Either y =
0, or y is tiny and x is huge (difference in exponents >=
POLY_UFLOW_BOUND). In the second case, we only want to use this special
case when x is negative (i.e. quadrants 2 or 3). */
if (UNLIKELY (iay == 0 || (exp_diff >= POLY_UFLOW_BOUND && m >= 2)))
{
switch (m)
{
case 0:
case 1:
return y; /* atan(+-0,+anything)=+-0. */
case 2:
return Pi; /* atan(+0,-anything) = pi. */
case 3:
return -Pi; /* atan(-0,-anything) =-pi. */
}
}
/* Special case for (x, y) either on or very close to the y axis. Either x =
0, or x is tiny and y is huge (difference in exponents >=
POLY_UFLOW_BOUND). */
if (UNLIKELY (iax == 0 || exp_diff <= -POLY_UFLOW_BOUND))
return sign_y ? -PiOver2 : PiOver2;
/* x is INF. */
if (iax == 0x7f800000)
{
if (iay == 0x7f800000)
{
switch (m)
{
case 0:
return PiOver4; /* atan(+INF,+INF). */
case 1:
return -PiOver4; /* atan(-INF,+INF). */
case 2:
return 3.0f * PiOver4; /* atan(+INF,-INF). */
case 3:
return -3.0f * PiOver4; /* atan(-INF,-INF). */
}
}
else
{
switch (m)
{
case 0:
return 0.0f; /* atan(+...,+INF). */
case 1:
return -0.0f; /* atan(-...,+INF). */
case 2:
return Pi; /* atan(+...,-INF). */
case 3:
return -Pi; /* atan(-...,-INF). */
}
}
}
/* y is INF. */
if (iay == 0x7f800000)
return sign_y ? -PiOver2 : PiOver2;
uint32_t sign_xy = sign_x ^ sign_y;
float ax = asfloat (iax);
float ay = asfloat (iay);
bool pred_aygtax = (ay > ax);
/* Set up z for call to atanf. */
float n = pred_aygtax ? -ax : ay;
float d = pred_aygtax ? ay : ax;
float z = n / d;
float ret;
if (UNLIKELY (m < 2 && exp_diff >= POLY_UFLOW_BOUND))
{
/* If (x, y) is very close to x axis and x is positive, the polynomial
will underflow and evaluate to z. */
ret = z;
}
else
{
/* Work out the correct shift. */
float shift = sign_x ? -2.0f : 0.0f;
shift = pred_aygtax ? shift + 1.0f : shift;
shift *= PiOver2;
ret = eval_poly (z, z, shift);
}
/* Account for the sign of x and y. */
return asfloat (asuint (ret) ^ sign_xy);
}