more modeline errata (#1019)

Somehow or another, I previously had missed `BUILD.mk` files.

In the process I found a few straggler cases where the modeline was
different from the file, including one very involved manual fix where a
file had been treated like it was ts=2 and ts=8 on separate occasions.

The commit history in the PR shows the gory details; the BUILD.mk was
automated, everything else was mostly manual.
This commit is contained in:
Jōshin 2023-12-16 23:07:10 -05:00 committed by GitHub
parent 60813003a3
commit 3a8e01a77a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
202 changed files with 879 additions and 879 deletions

View file

@ -292,229 +292,229 @@ static long double powil(long double, int);
long double powl(long double x, long double y)
{
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
int i, nflg, iyflg, yoddint;
long e;
volatile long double z=0;
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
int i, nflg, iyflg, yoddint;
long e;
volatile long double z=0;
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
/* make sure no invalid exception is raised by nan comparision */
if (isnan(x)) {
if (!isnan(y) && y == 0.0)
return 1.0;
return x;
}
if (isnan(y)) {
if (x == 1.0)
return 1.0;
return y;
}
if (x == 1.0)
return 1.0; /* 1**y = 1, even if y is nan */
if (x == -1.0 && !isfinite(y))
return 1.0; /* -1**inf = 1 */
if (y == 0.0)
return 1.0; /* x**0 = 1, even if x is nan */
if (y == 1.0)
return x;
if (y >= LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return INFINITY;
if (x != 0.0)
return 0.0;
}
if (y <= -LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return 0.0;
if (x != 0.0 || y == -INFINITY)
return INFINITY;
}
if (x >= LDBL_MAX) {
if (y > 0.0)
return INFINITY;
return 0.0;
}
/* make sure no invalid exception is raised by nan comparision */
if (isnan(x)) {
if (!isnan(y) && y == 0.0)
return 1.0;
return x;
}
if (isnan(y)) {
if (x == 1.0)
return 1.0;
return y;
}
if (x == 1.0)
return 1.0; /* 1**y = 1, even if y is nan */
if (x == -1.0 && !isfinite(y))
return 1.0; /* -1**inf = 1 */
if (y == 0.0)
return 1.0; /* x**0 = 1, even if x is nan */
if (y == 1.0)
return x;
if (y >= LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return INFINITY;
if (x != 0.0)
return 0.0;
}
if (y <= -LDBL_MAX) {
if (x > 1.0 || x < -1.0)
return 0.0;
if (x != 0.0 || y == -INFINITY)
return INFINITY;
}
if (x >= LDBL_MAX) {
if (y > 0.0)
return INFINITY;
return 0.0;
}
w = floorl(y);
w = floorl(y);
/* Set iyflg to 1 if y is an integer. */
iyflg = 0;
if (w == y)
iyflg = 1;
/* Set iyflg to 1 if y is an integer. */
iyflg = 0;
if (w == y)
iyflg = 1;
/* Test for odd integer y. */
yoddint = 0;
if (iyflg) {
ya = fabsl(y);
ya = floorl(0.5 * ya);
yb = 0.5 * fabsl(w);
if( ya != yb )
yoddint = 1;
}
/* Test for odd integer y. */
yoddint = 0;
if (iyflg) {
ya = fabsl(y);
ya = floorl(0.5 * ya);
yb = 0.5 * fabsl(w);
if( ya != yb )
yoddint = 1;
}
if (x <= -LDBL_MAX) {
if (y > 0.0) {
if (yoddint)
return -INFINITY;
return INFINITY;
}
if (y < 0.0) {
if (yoddint)
return -0.0;
return 0.0;
}
}
nflg = 0; /* (x<0)**(odd int) */
if (x <= 0.0) {
if (x == 0.0) {
if (y < 0.0) {
if (signbit(x) && yoddint)
/* (-0.0)**(-odd int) = -inf, divbyzero */
return -1.0/0.0;
/* (+-0.0)**(negative) = inf, divbyzero */
return 1.0/0.0;
}
if (signbit(x) && yoddint)
return -0.0;
return 0.0;
}
if (iyflg == 0)
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
/* (x<0)**(integer) */
if (yoddint)
nflg = 1; /* negate result */
x = -x;
}
/* (+integer)**(integer) */
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y);
return nflg ? -w : w;
}
if (x <= -LDBL_MAX) {
if (y > 0.0) {
if (yoddint)
return -INFINITY;
return INFINITY;
}
if (y < 0.0) {
if (yoddint)
return -0.0;
return 0.0;
}
}
nflg = 0; /* (x<0)**(odd int) */
if (x <= 0.0) {
if (x == 0.0) {
if (y < 0.0) {
if (signbit(x) && yoddint)
/* (-0.0)**(-odd int) = -inf, divbyzero */
return -1.0/0.0;
/* (+-0.0)**(negative) = inf, divbyzero */
return 1.0/0.0;
}
if (signbit(x) && yoddint)
return -0.0;
return 0.0;
}
if (iyflg == 0)
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
/* (x<0)**(integer) */
if (yoddint)
nflg = 1; /* negate result */
x = -x;
}
/* (+integer)**(integer) */
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y);
return nflg ? -w : w;
}
/* separate significand from exponent */
x = frexpl(x, &i);
e = i;
/* separate significand from exponent */
x = frexpl(x, &i);
e = i;
/* find significand in antilog table A[] */
i = 1;
if (x <= A[17])
i = 17;
if (x <= A[i+8])
i += 8;
if (x <= A[i+4])
i += 4;
if (x <= A[i+2])
i += 2;
if (x >= A[1])
i = -1;
i += 1;
/* find significand in antilog table A[] */
i = 1;
if (x <= A[17])
i = 17;
if (x <= A[i+8])
i += 8;
if (x <= A[i+4])
i += 4;
if (x <= A[i+2])
i += 2;
if (x >= A[1])
i = -1;
i += 1;
/* Find (x - A[i])/A[i]
* in order to compute log(x/A[i]):
*
* log(x) = log( a x/a ) = log(a) + log(x/a)
*
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
*/
x -= A[i];
x -= B[i/2];
x /= A[i];
/* Find (x - A[i])/A[i]
* in order to compute log(x/A[i]):
*
* log(x) = log( a x/a ) = log(a) + log(x/a)
*
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
*/
x -= A[i];
x -= B[i/2];
x /= A[i];
/* rational approximation for log(1+v):
*
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
*/
z = x*x;
w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
w = w - 0.5*z;
/* rational approximation for log(1+v):
*
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
*/
z = x*x;
w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
w = w - 0.5*z;
/* Convert to base 2 logarithm:
* multiply by log2(e) = 1 + LOG2EA
*/
z = LOG2EA * w;
z += w;
z += LOG2EA * x;
z += x;
/* Convert to base 2 logarithm:
* multiply by log2(e) = 1 + LOG2EA
*/
z = LOG2EA * w;
z += w;
z += LOG2EA * x;
z += x;
/* Compute exponent term of the base 2 logarithm. */
w = -i;
w /= NXT;
w += e;
/* Now base 2 log of x is w + z. */
/* Compute exponent term of the base 2 logarithm. */
w = -i;
w /= NXT;
w += e;
/* Now base 2 log of x is w + z. */
/* Multiply base 2 log by y, in extended precision. */
/* Multiply base 2 log by y, in extended precision. */
/* separate y into large part ya
* and small part yb less than 1/NXT
*/
ya = reducl(y);
yb = y - ya;
/* separate y into large part ya
* and small part yb less than 1/NXT
*/
ya = reducl(y);
yb = y - ya;
/* (w+z)(ya+yb)
* = w*ya + w*yb + z*y
*/
F = z * y + w * yb;
Fa = reducl(F);
Fb = F - Fa;
/* (w+z)(ya+yb)
* = w*ya + w*yb + z*y
*/
F = z * y + w * yb;
Fa = reducl(F);
Fb = F - Fa;
G = Fa + w * ya;
Ga = reducl(G);
Gb = G - Ga;
G = Fa + w * ya;
Ga = reducl(G);
Gb = G - Ga;
H = Fb + Gb;
Ha = reducl(H);
w = (Ga + Ha) * NXT;
H = Fb + Gb;
Ha = reducl(H);
w = (Ga + Ha) * NXT;
/* Test the power of 2 for overflow */
if (w > MEXP)
return huge * huge; /* overflow */
if (w < MNEXP)
return twom10000 * twom10000; /* underflow */
/* Test the power of 2 for overflow */
if (w > MEXP)
return huge * huge; /* overflow */
if (w < MNEXP)
return twom10000 * twom10000; /* underflow */
e = w;
Hb = H - Ha;
e = w;
Hb = H - Ha;
if (Hb > 0.0) {
e += 1;
Hb -= 1.0/NXT; /*0.0625L;*/
}
if (Hb > 0.0) {
e += 1;
Hb -= 1.0/NXT; /*0.0625L;*/
}
/* Now the product y * log2(x) = Hb + e/NXT.
*
* Compute base 2 exponential of Hb,
* where -0.0625 <= Hb <= 0.
*/
z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
/* Now the product y * log2(x) = Hb + e/NXT.
*
* Compute base 2 exponential of Hb,
* where -0.0625 <= Hb <= 0.
*/
z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
* Find lookup table entry for the fractional power of 2.
*/
if (e < 0)
i = 0;
else
i = 1;
i = e/NXT + i;
e = NXT*i - e;
w = A[e];
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
z = z + w;
z = scalbnl(z, i); /* multiply by integer power of 2 */
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
* Find lookup table entry for the fractional power of 2.
*/
if (e < 0)
i = 0;
else
i = 1;
i = e/NXT + i;
e = NXT*i - e;
w = A[e];
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
z = z + w;
z = scalbnl(z, i); /* multiply by integer power of 2 */
if (nflg)
z = -z;
return z;
if (nflg)
z = -z;
return z;
}
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
static long double reducl(long double x)
{
long double t;
long double t;
t = x * NXT;
t = floorl(t);
t = t / NXT;
return t;
t = x * NXT;
t = floorl(t);
t = t / NXT;
return t;
}
/*
@ -551,66 +551,66 @@ static long double reducl(long double x)
static long double powil(long double x, int nn)
{
long double ww, y;
long double s;
int n, e, sign, lx;
long double ww, y;
long double s;
int n, e, sign, lx;
if (nn == 0)
return 1.0;
if (nn == 0)
return 1.0;
if (nn < 0) {
sign = -1;
n = -nn;
} else {
sign = 1;
n = nn;
}
if (nn < 0) {
sign = -1;
n = -nn;
} else {
sign = 1;
n = nn;
}
/* Overflow detection */
/* Overflow detection */
/* Calculate approximate logarithm of answer */
s = x;
s = frexpl( s, &lx);
e = (lx - 1)*n;
if ((e == 0) || (e > 64) || (e < -64)) {
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
} else {
s = LOGE2L * e;
}
/* Calculate approximate logarithm of answer */
s = x;
s = frexpl( s, &lx);
e = (lx - 1)*n;
if ((e == 0) || (e > 64) || (e < -64)) {
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
} else {
s = LOGE2L * e;
}
if (s > MAXLOGL)
return huge * huge; /* overflow */
if (s > MAXLOGL)
return huge * huge; /* overflow */
if (s < MINLOGL)
return twom10000 * twom10000; /* underflow */
/* Handle tiny denormal answer, but with less accuracy
* since roundoff error in 1.0/x will be amplified.
* The precise demarcation should be the gradual underflow threshold.
*/
if (s < -MAXLOGL+2.0) {
x = 1.0/x;
sign = -sign;
}
if (s < MINLOGL)
return twom10000 * twom10000; /* underflow */
/* Handle tiny denormal answer, but with less accuracy
* since roundoff error in 1.0/x will be amplified.
* The precise demarcation should be the gradual underflow threshold.
*/
if (s < -MAXLOGL+2.0) {
x = 1.0/x;
sign = -sign;
}
/* First bit of the power */
if (n & 1)
y = x;
else
y = 1.0;
/* First bit of the power */
if (n & 1)
y = x;
else
y = 1.0;
ww = x;
n >>= 1;
while (n) {
ww = ww * ww; /* arg to the 2-to-the-kth power */
if (n & 1) /* if that bit is set, then include in product */
y *= ww;
n >>= 1;
}
ww = x;
n >>= 1;
while (n) {
ww = ww * ww; /* arg to the 2-to-the-kth power */
if (n & 1) /* if that bit is set, then include in product */
y *= ww;
n >>= 1;
}
if (sign < 0)
y = 1.0/y;
return y;
if (sign < 0)
y = 1.0/y;
return y;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
@ -649,35 +649,35 @@ Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>\"");
/* powl(x,y) return x**y
*
* n
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
@ -792,10 +792,10 @@ powl(long double x, long double y)
/* +-NaN return x+y */
if ((ix > 0x7fff0000)
|| ((ix == 0x7fff0000)
&& ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
&& ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
|| (iy > 0x7fff0000)
|| ((iy == 0x7fff0000)
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
return nan_mix(x, y);
/* determine if y is an odd int when x < 0
@ -806,48 +806,48 @@ powl(long double x, long double y)
yisint = 0;
if (hx < 0)
{
if (iy >= 0x40700000) /* 2^113 */
yisint = 2; /* even integer y */
else if (iy >= 0x3fff0000) /* 1.0 */
{
if (floorl (y) == y)
{
z = 0.5 * y;
if (floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
if (iy >= 0x40700000) /* 2^113 */
yisint = 2; /* even integer y */
else if (iy >= 0x3fff0000) /* 1.0 */
{
if (floorl (y) == y)
{
z = 0.5 * y;
if (floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
/* special value of y */
if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
{
if (iy == 0x7fff0000) /* y is +-inf */
{
if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
p.parts32.lswlo) == 0)
return y - y; /* +-1**inf is NaN */
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (iy == 0x7fff0000) /* y is +-inf */
{
if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
p.parts32.lswlo) == 0)
return y - y; /* +-1**inf is NaN */
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (iy == 0x3fff0000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
return x * x; /* y is 2 */
if (hy == 0x3ffe0000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return sqrtl (x);
}
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return sqrtl (x);
}
}
ax = fabsl (x);
@ -855,21 +855,21 @@ powl(long double x, long double y)
if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
{
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3fff0000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3fff0000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
@ -883,17 +883,17 @@ powl(long double x, long double y)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x407d654b)
{
if (ix <= 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
{
if (ix <= 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny;
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix > 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny;
return (hy > 0) ? huge * huge : tiny * tiny;
}
n = 0;
@ -908,11 +908,11 @@ powl(long double x, long double y)
n += ((ix) >> 16) - 0x3fff;
j = ix & 0x0000ffff;
/* determine interval */
ix = j | 0x3fff0000; /* normalize ix */
ix = j | 0x3fff0000; /* normalize ix */
if (j <= 0x3988)
k = 0; /* |x|<sqrt(3/2) */
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb67)
k = 1; /* |x|<sqrt(3) */
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
@ -925,7 +925,7 @@ powl(long double x, long double y)
ax = o.value;
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = s;
@ -965,7 +965,7 @@ powl(long double x, long double y)
o.parts32.lswhi &= 0xf8000000;
p_h = o.value;
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
@ -979,7 +979,7 @@ powl(long double x, long double y)
/* s (sign of result -ve**odd) = -1 else = 1 */
s = one;
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */
s = -one; /* (-ve)**(odd int) */
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
yy1 = y;
@ -996,33 +996,33 @@ powl(long double x, long double y)
{
/* if z > 16384 */
if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo) != 0)
return s * huge * huge; /* overflow */
o.parts32.lswlo) != 0)
return s * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */
}
{
if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo)
!= 0)
return s * tiny * tiny; /* underflow */
o.parts32.lswlo)
!= 0)
return s * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */
}
{
if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 16) - 0x3fff;
n = 0;
if (i > 0x3ffe0000)
{ /* if |z| > 0.5, set n = [z+0.5] */
{ /* if |z| > 0.5, set n = [z+0.5] */
n = floorl (z + 0.5L);
t = n;
p_h -= t;
@ -1047,7 +1047,7 @@ powl(long double x, long double y)
j = o.parts32.mswhi;
j += (n << 16);
if ((j >> 16) <= 0)
z = scalbnl (z, n); /* subnormal output */
z = scalbnl (z, n); /* subnormal output */
else
{
o.parts32.mswhi = j;