mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-30 16:28:30 +00:00
Introduce lgammal, tgammal, erfl, and erfcl
git://git.musl-libc.org/musl 79bdacff83a6bd5b70ff5ae5eb8b6de82c2f7c30
This commit is contained in:
parent
b4084dd6c6
commit
3b791d2f44
8 changed files with 1100 additions and 319 deletions
314
libc/tinymath/tgammal.c
Normal file
314
libc/tinymath/tgammal.c
Normal file
|
@ -0,0 +1,314 @@
|
|||
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
||||
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
|
||||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||||
│ │
|
||||
│ Musl Libc │
|
||||
│ Copyright © 2005-2014 Rich Felker, et al. │
|
||||
│ │
|
||||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||||
│ a copy of this software and associated documentation files (the │
|
||||
│ "Software"), to deal in the Software without restriction, including │
|
||||
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||||
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||||
│ permit persons to whom the Software is furnished to do so, subject to │
|
||||
│ the following conditions: │
|
||||
│ │
|
||||
│ The above copyright notice and this permission notice shall be │
|
||||
│ included in all copies or substantial portions of the Software. │
|
||||
│ │
|
||||
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||||
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||||
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||||
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||||
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||||
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||||
│ │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/math.h"
|
||||
#include "libc/tinymath/internal.h"
|
||||
#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
|
||||
asm(".ident\t\"\\n\\n\
|
||||
OpenBSD libm (ISC License)\\n\
|
||||
Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>\"");
|
||||
asm(".ident\t\"\\n\\n\
|
||||
Musl libc (MIT License)\\n\
|
||||
Copyright 2005-2014 Rich Felker, et. al.\"");
|
||||
asm(".include \"libc/disclaimer.inc\"");
|
||||
// clang-format off
|
||||
|
||||
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
/*
|
||||
* Gamma function
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, tgammal();
|
||||
*
|
||||
* y = tgammal( x );
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Returns gamma function of the argument. The result is
|
||||
* correctly signed.
|
||||
*
|
||||
* Arguments |x| <= 13 are reduced by recurrence and the function
|
||||
* approximated by a rational function of degree 7/8 in the
|
||||
* interval (2,3). Large arguments are handled by Stirling's
|
||||
* formula. Large negative arguments are made positive using
|
||||
* a reflection formula.
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE -40,+40 10000 3.6e-19 7.9e-20
|
||||
* IEEE -1755,+1755 10000 4.8e-18 6.5e-19
|
||||
*
|
||||
* Accuracy for large arguments is dominated by error in powl().
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
|
||||
0 <= x <= 1
|
||||
Relative error
|
||||
n=7, d=8
|
||||
Peak error = 1.83e-20
|
||||
Relative error spread = 8.4e-23
|
||||
*/
|
||||
static const long double P[8] = {
|
||||
4.212760487471622013093E-5L,
|
||||
4.542931960608009155600E-4L,
|
||||
4.092666828394035500949E-3L,
|
||||
2.385363243461108252554E-2L,
|
||||
1.113062816019361559013E-1L,
|
||||
3.629515436640239168939E-1L,
|
||||
8.378004301573126728826E-1L,
|
||||
1.000000000000000000009E0L,
|
||||
};
|
||||
static const long double Q[9] = {
|
||||
-1.397148517476170440917E-5L,
|
||||
2.346584059160635244282E-4L,
|
||||
-1.237799246653152231188E-3L,
|
||||
-7.955933682494738320586E-4L,
|
||||
2.773706565840072979165E-2L,
|
||||
-4.633887671244534213831E-2L,
|
||||
-2.243510905670329164562E-1L,
|
||||
4.150160950588455434583E-1L,
|
||||
9.999999999999999999908E-1L,
|
||||
};
|
||||
|
||||
/*
|
||||
static const long double P[] = {
|
||||
-3.01525602666895735709e0L,
|
||||
-3.25157411956062339893e1L,
|
||||
-2.92929976820724030353e2L,
|
||||
-1.70730828800510297666e3L,
|
||||
-7.96667499622741999770e3L,
|
||||
-2.59780216007146401957e4L,
|
||||
-5.99650230220855581642e4L,
|
||||
-7.15743521530849602425e4L
|
||||
};
|
||||
static const long double Q[] = {
|
||||
1.00000000000000000000e0L,
|
||||
-1.67955233807178858919e1L,
|
||||
8.85946791747759881659e1L,
|
||||
5.69440799097468430177e1L,
|
||||
-1.98526250512761318471e3L,
|
||||
3.31667508019495079814e3L,
|
||||
1.60577839621734713377e4L,
|
||||
-2.97045081369399940529e4L,
|
||||
-7.15743521530849602412e4L
|
||||
};
|
||||
*/
|
||||
#define MAXGAML 1755.455L
|
||||
/*static const long double LOGPI = 1.14472988584940017414L;*/
|
||||
|
||||
/* Stirling's formula for the gamma function
|
||||
tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
|
||||
z(x) = x
|
||||
13 <= x <= 1024
|
||||
Relative error
|
||||
n=8, d=0
|
||||
Peak error = 9.44e-21
|
||||
Relative error spread = 8.8e-4
|
||||
*/
|
||||
static const long double STIR[9] = {
|
||||
7.147391378143610789273E-4L,
|
||||
-2.363848809501759061727E-5L,
|
||||
-5.950237554056330156018E-4L,
|
||||
6.989332260623193171870E-5L,
|
||||
7.840334842744753003862E-4L,
|
||||
-2.294719747873185405699E-4L,
|
||||
-2.681327161876304418288E-3L,
|
||||
3.472222222230075327854E-3L,
|
||||
8.333333333333331800504E-2L,
|
||||
};
|
||||
|
||||
#define MAXSTIR 1024.0L
|
||||
static const long double SQTPI = 2.50662827463100050242E0L;
|
||||
|
||||
/* 1/tgamma(x) = z P(z)
|
||||
* z(x) = 1/x
|
||||
* 0 < x < 0.03125
|
||||
* Peak relative error 4.2e-23
|
||||
*/
|
||||
static const long double S[9] = {
|
||||
-1.193945051381510095614E-3L,
|
||||
7.220599478036909672331E-3L,
|
||||
-9.622023360406271645744E-3L,
|
||||
-4.219773360705915470089E-2L,
|
||||
1.665386113720805206758E-1L,
|
||||
-4.200263503403344054473E-2L,
|
||||
-6.558780715202540684668E-1L,
|
||||
5.772156649015328608253E-1L,
|
||||
1.000000000000000000000E0L,
|
||||
};
|
||||
|
||||
/* 1/tgamma(-x) = z P(z)
|
||||
* z(x) = 1/x
|
||||
* 0 < x < 0.03125
|
||||
* Peak relative error 5.16e-23
|
||||
* Relative error spread = 2.5e-24
|
||||
*/
|
||||
static const long double SN[9] = {
|
||||
1.133374167243894382010E-3L,
|
||||
7.220837261893170325704E-3L,
|
||||
9.621911155035976733706E-3L,
|
||||
-4.219773343731191721664E-2L,
|
||||
-1.665386113944413519335E-1L,
|
||||
-4.200263503402112910504E-2L,
|
||||
6.558780715202536547116E-1L,
|
||||
5.772156649015328608727E-1L,
|
||||
-1.000000000000000000000E0L,
|
||||
};
|
||||
|
||||
static const long double PIL = 3.1415926535897932384626L;
|
||||
|
||||
/* Gamma function computed by Stirling's formula.
|
||||
*/
|
||||
static long double stirf(long double x)
|
||||
{
|
||||
long double y, w, v;
|
||||
|
||||
w = 1.0/x;
|
||||
/* For large x, use rational coefficients from the analytical expansion. */
|
||||
if (x > 1024.0)
|
||||
w = (((((6.97281375836585777429E-5L * w
|
||||
+ 7.84039221720066627474E-4L) * w
|
||||
- 2.29472093621399176955E-4L) * w
|
||||
- 2.68132716049382716049E-3L) * w
|
||||
+ 3.47222222222222222222E-3L) * w
|
||||
+ 8.33333333333333333333E-2L) * w
|
||||
+ 1.0;
|
||||
else
|
||||
w = 1.0 + w * __polevll(w, STIR, 8);
|
||||
y = expl(x);
|
||||
if (x > MAXSTIR) { /* Avoid overflow in pow() */
|
||||
v = powl(x, 0.5L * x - 0.25L);
|
||||
y = v * (v / y);
|
||||
} else {
|
||||
y = powl(x, x - 0.5L) / y;
|
||||
}
|
||||
y = SQTPI * y * w;
|
||||
return y;
|
||||
}
|
||||
|
||||
long double tgammal(long double x)
|
||||
{
|
||||
long double p, q, z;
|
||||
|
||||
if (!isfinite(x))
|
||||
return x + INFINITY;
|
||||
|
||||
q = fabsl(x);
|
||||
if (q > 13.0) {
|
||||
if (x < 0.0) {
|
||||
p = floorl(q);
|
||||
z = q - p;
|
||||
if (z == 0)
|
||||
return 0 / z;
|
||||
if (q > MAXGAML) {
|
||||
z = 0;
|
||||
} else {
|
||||
if (z > 0.5) {
|
||||
p += 1.0;
|
||||
z = q - p;
|
||||
}
|
||||
z = q * sinl(PIL * z);
|
||||
z = fabsl(z) * stirf(q);
|
||||
z = PIL/z;
|
||||
}
|
||||
if (0.5 * p == floorl(q * 0.5))
|
||||
z = -z;
|
||||
} else if (x > MAXGAML) {
|
||||
z = x * 0x1p16383L;
|
||||
} else {
|
||||
z = stirf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
z = 1.0;
|
||||
while (x >= 3.0) {
|
||||
x -= 1.0;
|
||||
z *= x;
|
||||
}
|
||||
while (x < -0.03125L) {
|
||||
z /= x;
|
||||
x += 1.0;
|
||||
}
|
||||
if (x <= 0.03125L)
|
||||
goto small;
|
||||
while (x < 2.0) {
|
||||
z /= x;
|
||||
x += 1.0;
|
||||
}
|
||||
if (x == 2.0)
|
||||
return z;
|
||||
|
||||
x -= 2.0;
|
||||
p = __polevll(x, P, 7);
|
||||
q = __polevll(x, Q, 8);
|
||||
z = z * p / q;
|
||||
return z;
|
||||
|
||||
small:
|
||||
/* z==1 if x was originally +-0 */
|
||||
if (x == 0 && z != 1)
|
||||
return x / x;
|
||||
if (x < 0.0) {
|
||||
x = -x;
|
||||
q = z / (x * __polevll(x, SN, 8));
|
||||
} else
|
||||
q = z / (x * __polevll(x, S, 8));
|
||||
return q;
|
||||
}
|
||||
|
||||
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
||||
// TODO: broken implementation to make things compile
|
||||
long double tgammal(long double x)
|
||||
{
|
||||
return tgamma(x);
|
||||
}
|
||||
#endif /* long double is long */
|
Loading…
Add table
Add a link
Reference in a new issue