Make improvements

- Emulator can now test the αcτµαlly pδrταblε εxεcµταblε bootloader

- Whipped up a webserver named redbean. It services 150k requests per
  second on a single core. Bundling assets inside zip enables extremely
  fast serving for two reasons. The first is that zip central directory
  lookups go faster than stat() system calls. The second is that both
  zip and gzip content-encoding use DEFLATE, therefore, compressed
  responses can be served via the sendfile() system call which does an
  in-kernel copy directly from the zip executable structure. Also note
  that red bean zip executables can be deployed easily to all platforms,
  since these native executables work on Linux, Mac, BSD, and Windows.

- Address sanitizer now works very well
This commit is contained in:
Justine Tunney 2020-09-06 21:39:00 -07:00
parent 7327c345f9
commit 416fd86676
230 changed files with 9835 additions and 5682 deletions

View file

@ -5,46 +5,56 @@
#if !(__ASSEMBLER__ + __LINKER__ + 0)
COSMOPOLITAN_C_START_
#define SibBase(x) ((x & 000007000000) >> 022)
#define SibIndex(x) ((x & 000700000000) >> 030)
#define ModrmRm(x) ((x & 000000000700) >> 006)
#define ModrmReg(x) ((x & 000000000007) >> 000)
#define ModrmSrm(x) ((x & 000000070000) >> 014)
#define ModrmMod(x) ((x & 000060000000) >> 026)
#define RegLog2(x) ((x & 006000000000) >> 034)
#define Rexx(x) ((x & 001000000000) >> 033)
#define Asz(x) ((x & 000000400000) >> 021)
#define Rexw(x) ((x & 000000004000) >> 013)
#define Rexr(x) ((x & 000000000010) >> 003)
#define Rexb(x) ((x & 000010000000) >> 025)
#define Rex(x) ((x & 000000000020) >> 004)
#define Osz(x) ((x & 000000000040) >> 005)
#define Rep(x) ((x & 030000000000) >> 036)
#define Rexr(x) ((x & 000000000010) >> 003)
#define Rexw(x) ((x & 000000000100) >> 006)
#define Rexb(x) ((x & 000000002000) >> 012)
#define Sego(x) ((x & 000007000000) >> 022)
#define Mode(x) ((x & 001400000000) >> 032)
#define Eamode(x) ((x & 000300000000) >> 030)
#define RexbRm(x) ((x & 000000003600) >> 007)
#define RexrReg(x) ((x & 000000000017) >> 000)
#define RegLog2(x) ((x & 006000000000) >> 034)
#define ModrmRm(x) ((x & 000000001600) >> 007)
#define ModrmReg(x) ((x & 000000000007) >> 000)
#define ModrmSrm(x) ((x & 000000070000) >> 014)
#define ModrmMod(x) ((x & 000060000000) >> 026)
#define IsModrmRegister(x) (ModrmMod(x) == 3)
#define SibExists(x) (ModrmRm(x) == 4)
#define SibHasIndex(x) (SibIndex(x) != 4 || Rexx(x))
#define SibHasBase(x) (SibBase(x) != 5 || ModrmMod(x))
#define SibIsAbsolute(x) (!SibHasBase(x) && !SibHasIndex(x))
#define IsRipRelative(x) (ModrmRm(x) == 5 && !ModrmMod(x))
#define AddrByteReg(m, k) ((uint8_t *)m->reg + kByteReg[k])
#define ByteRexrReg(m, x) AddrByteReg(m, (x & 00000000037) >> 0)
#define ByteRexbRm(m, x) AddrByteReg(m, (x & 00000007600) >> 7)
#define ByteRexbSrm(m, x) AddrByteReg(m, (x & 00000370000) >> 12)
#define RexbBase(m, x) (Rexb(x) << 3 | m->xedd->op.base)
#define RegSrm(m, x) Abp8(m->reg[(x & 00000070000) >> 12])
#define RegRexbRm(m, x) Abp8(m->reg[RexbRm(x)])
#define RegRexbSrm(m, x) Abp8(m->reg[(x & 00000170000) >> 12])
#define RegRexrReg(m, x) Abp8(m->reg[RexrReg(x)])
#define RegRexbBase(m, x) Abp8(m->reg[RexbBase(m, x)])
#define RegRexxIndex(m) Abp8(m->reg[m->xedd->op.rexx << 3 | m->xedd->op.index])
#define MmRm(m, x) Abp16(m->xmm[(x & 00000001600) >> 7])
#define MmReg(m, x) Abp16(m->xmm[(x & 00000000007) >> 0])
#define XmmRexbRm(m, x) Abp16(m->xmm[RexbRm(x)])
#define XmmRexrReg(m, x) Abp16(m->xmm[RexrReg(x)])
#define ByteRexrReg(m, x) m->beg[(x & 00000000037) >> 0]
#define ByteRexbRm(m, x) m->beg[(x & 00000003700) >> 6]
#define ByteRexbSrm(m, x) m->beg[(x & 00000370000) >> 12]
#define RegRexbSrm(m, x) Abp8(m->reg[(x & 00000170000) >> 12])
#define RegRexrReg(m, x) Abp8(m->reg[(x & 00000000017) >> 0])
#define RegRexbRm(m, x) Abp8(m->reg[(x & 00000001700) >> 6])
#define RegRexbBase(m, x) Abp8(m->reg[(x & 00017000000) >> 18])
#define RegRexxIndex(m, x) Abp8(m->reg[(x & 01700000000) >> 24])
#define XmmRexrReg(m, x) Abp16(m->veg[(x & 00000000017) >> 0])
#define XmmRexbRm(m, x) Abp16(m->veg[(x & 00000001700) >> 6])
#define MmReg(m, x) Abp16(m->veg[(x & 00000000007) >> 0])
#define MmRm(m, x) Abp16(m->veg[(x & 00000000700) >> 6])
#define Rexx(m) m->op.rexx
#define SibBase(m) m->op.base
#define SibIndex(m) m->op.index
#define SibExists(x) (ModrmRm(x) == 4)
#define IsModrmRegister(x) (ModrmMod(x) == 3)
#define SibHasIndex(x) (SibIndex(x) != 4 || Rexx(x))
#define SibHasBase(x, r) (SibBase(x) != 5 || ModrmMod(r))
#define SibIsAbsolute(x, r) (!SibHasBase(x, r) && !SibHasIndex(x))
#define IsRipRelative(x) (ModrmRm(x) == 5 && !ModrmMod(x))
extern const uint8_t kByteReg[32];
int64_t ComputeAddress(const struct Machine *, uint32_t) nosideeffect;
void *ComputeReserveAddressRead(struct Machine *, uint32_t, size_t);
void *ComputeReserveAddressRead1(struct Machine *, uint32_t);
void *ComputeReserveAddressRead4(struct Machine *, uint32_t);
void *ComputeReserveAddressRead8(struct Machine *, uint32_t);
void *ComputeReserveAddressWrite(struct Machine *, uint32_t, size_t);
void *ComputeReserveAddressWrite1(struct Machine *, uint32_t);