mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-26 22:38:30 +00:00
Release Cosmopolitan v3.6.0
This release is an atomic upgrade to GCC 14.1.0 with C23 and C++23
This commit is contained in:
parent
62ace3623a
commit
5660ec4741
1585 changed files with 117353 additions and 271644 deletions
372
third_party/libcxx/__random/poisson_distribution.h
vendored
372
third_party/libcxx/__random/poisson_distribution.h
vendored
|
@ -28,250 +28,210 @@ _LIBCPP_PUSH_MACROS
|
|||
|
||||
_LIBCPP_BEGIN_NAMESPACE_STD
|
||||
|
||||
template<class _IntType = int>
|
||||
class _LIBCPP_TEMPLATE_VIS poisson_distribution
|
||||
{
|
||||
static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
|
||||
template <class _IntType = int>
|
||||
class _LIBCPP_TEMPLATE_VIS poisson_distribution {
|
||||
static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
|
||||
|
||||
public:
|
||||
// types
|
||||
typedef _IntType result_type;
|
||||
// types
|
||||
typedef _IntType result_type;
|
||||
|
||||
class _LIBCPP_TEMPLATE_VIS param_type
|
||||
{
|
||||
double __mean_;
|
||||
double __s_;
|
||||
double __d_;
|
||||
double __l_;
|
||||
double __omega_;
|
||||
double __c0_;
|
||||
double __c1_;
|
||||
double __c2_;
|
||||
double __c3_;
|
||||
double __c_;
|
||||
class _LIBCPP_TEMPLATE_VIS param_type {
|
||||
double __mean_;
|
||||
double __s_;
|
||||
double __d_;
|
||||
double __l_;
|
||||
double __omega_;
|
||||
double __c0_;
|
||||
double __c1_;
|
||||
double __c2_;
|
||||
double __c3_;
|
||||
double __c_;
|
||||
|
||||
public:
|
||||
typedef poisson_distribution distribution_type;
|
||||
public:
|
||||
typedef poisson_distribution distribution_type;
|
||||
|
||||
_LIBCPP_HIDE_FROM_ABI explicit param_type(double __mean = 1.0);
|
||||
_LIBCPP_HIDE_FROM_ABI explicit param_type(double __mean = 1.0);
|
||||
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
double mean() const {return __mean_;}
|
||||
_LIBCPP_HIDE_FROM_ABI double mean() const { return __mean_; }
|
||||
|
||||
friend _LIBCPP_INLINE_VISIBILITY
|
||||
bool operator==(const param_type& __x, const param_type& __y)
|
||||
{return __x.__mean_ == __y.__mean_;}
|
||||
friend _LIBCPP_INLINE_VISIBILITY
|
||||
bool operator!=(const param_type& __x, const param_type& __y)
|
||||
{return !(__x == __y);}
|
||||
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) {
|
||||
return __x.__mean_ == __y.__mean_;
|
||||
}
|
||||
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); }
|
||||
|
||||
friend class poisson_distribution;
|
||||
};
|
||||
friend class poisson_distribution;
|
||||
};
|
||||
|
||||
private:
|
||||
param_type __p_;
|
||||
param_type __p_;
|
||||
|
||||
public:
|
||||
// constructors and reset functions
|
||||
// constructors and reset functions
|
||||
#ifndef _LIBCPP_CXX03_LANG
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
poisson_distribution() : poisson_distribution(1.0) {}
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
explicit poisson_distribution(double __mean)
|
||||
: __p_(__mean) {}
|
||||
_LIBCPP_HIDE_FROM_ABI poisson_distribution() : poisson_distribution(1.0) {}
|
||||
_LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean) : __p_(__mean) {}
|
||||
#else
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
explicit poisson_distribution(double __mean = 1.0)
|
||||
: __p_(__mean) {}
|
||||
_LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {}
|
||||
#endif
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
void reset() {}
|
||||
_LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
|
||||
_LIBCPP_HIDE_FROM_ABI void reset() {}
|
||||
|
||||
// generating functions
|
||||
template<class _URNG>
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
result_type operator()(_URNG& __g)
|
||||
{return (*this)(__g, __p_);}
|
||||
template<class _URNG>
|
||||
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
|
||||
// generating functions
|
||||
template <class _URNG>
|
||||
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) {
|
||||
return (*this)(__g, __p_);
|
||||
}
|
||||
template <class _URNG>
|
||||
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
|
||||
|
||||
// property functions
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
double mean() const {return __p_.mean();}
|
||||
// property functions
|
||||
_LIBCPP_HIDE_FROM_ABI double mean() const { return __p_.mean(); }
|
||||
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
param_type param() const {return __p_;}
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
void param(const param_type& __p) {__p_ = __p;}
|
||||
_LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; }
|
||||
_LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; }
|
||||
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
result_type min() const {return 0;}
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
result_type max() const {return numeric_limits<result_type>::max();}
|
||||
_LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; }
|
||||
_LIBCPP_HIDE_FROM_ABI result_type max() const { return numeric_limits<result_type>::max(); }
|
||||
|
||||
friend _LIBCPP_INLINE_VISIBILITY
|
||||
bool operator==(const poisson_distribution& __x,
|
||||
const poisson_distribution& __y)
|
||||
{return __x.__p_ == __y.__p_;}
|
||||
friend _LIBCPP_INLINE_VISIBILITY
|
||||
bool operator!=(const poisson_distribution& __x,
|
||||
const poisson_distribution& __y)
|
||||
{return !(__x == __y);}
|
||||
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const poisson_distribution& __x, const poisson_distribution& __y) {
|
||||
return __x.__p_ == __y.__p_;
|
||||
}
|
||||
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const poisson_distribution& __x, const poisson_distribution& __y) {
|
||||
return !(__x == __y);
|
||||
}
|
||||
};
|
||||
|
||||
template<class _IntType>
|
||||
template <class _IntType>
|
||||
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
||||
// According to the standard `inf` is a valid input, but it causes the
|
||||
// distribution to hang, so we replace it with the maximum representable
|
||||
// mean.
|
||||
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
|
||||
{
|
||||
if (__mean_ < 10)
|
||||
{
|
||||
__s_ = 0;
|
||||
__d_ = 0;
|
||||
__l_ = _VSTD::exp(-__mean_);
|
||||
__omega_ = 0;
|
||||
__c3_ = 0;
|
||||
__c2_ = 0;
|
||||
__c1_ = 0;
|
||||
__c0_ = 0;
|
||||
__c_ = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
__s_ = _VSTD::sqrt(__mean_);
|
||||
__d_ = 6 * __mean_ * __mean_;
|
||||
__l_ = _VSTD::trunc(__mean_ - 1.1484);
|
||||
__omega_ = .3989423 / __s_;
|
||||
double __b1 = .4166667E-1 / __mean_;
|
||||
double __b2 = .3 * __b1 * __b1;
|
||||
__c3_ = .1428571 * __b1 * __b2;
|
||||
__c2_ = __b2 - 15. * __c3_;
|
||||
__c1_ = __b1 - 6. * __b2 + 45. * __c3_;
|
||||
__c0_ = 1. - __b1 + 3. * __b2 - 15. * __c3_;
|
||||
__c_ = .1069 / __mean_;
|
||||
}
|
||||
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean) {
|
||||
if (__mean_ < 10) {
|
||||
__s_ = 0;
|
||||
__d_ = 0;
|
||||
__l_ = std::exp(-__mean_);
|
||||
__omega_ = 0;
|
||||
__c3_ = 0;
|
||||
__c2_ = 0;
|
||||
__c1_ = 0;
|
||||
__c0_ = 0;
|
||||
__c_ = 0;
|
||||
} else {
|
||||
__s_ = std::sqrt(__mean_);
|
||||
__d_ = 6 * __mean_ * __mean_;
|
||||
__l_ = std::trunc(__mean_ - 1.1484);
|
||||
__omega_ = .3989423 / __s_;
|
||||
double __b1 = .4166667E-1 / __mean_;
|
||||
double __b2 = .3 * __b1 * __b1;
|
||||
__c3_ = .1428571 * __b1 * __b2;
|
||||
__c2_ = __b2 - 15. * __c3_;
|
||||
__c1_ = __b1 - 6. * __b2 + 45. * __c3_;
|
||||
__c0_ = 1. - __b1 + 3. * __b2 - 15. * __c3_;
|
||||
__c_ = .1069 / __mean_;
|
||||
}
|
||||
}
|
||||
|
||||
template <class _IntType>
|
||||
template<class _URNG>
|
||||
_IntType
|
||||
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
||||
{
|
||||
static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
|
||||
double __tx;
|
||||
uniform_real_distribution<double> __urd;
|
||||
if (__pr.__mean_ < 10)
|
||||
{
|
||||
__tx = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
||||
__p *= __urd(__urng);
|
||||
template <class _URNG>
|
||||
_IntType poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) {
|
||||
static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
|
||||
double __tx;
|
||||
uniform_real_distribution<double> __urd;
|
||||
if (__pr.__mean_ < 10) {
|
||||
__tx = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
||||
__p *= __urd(__urng);
|
||||
} else {
|
||||
double __difmuk;
|
||||
double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
|
||||
double __u;
|
||||
if (__g > 0) {
|
||||
__tx = std::trunc(__g);
|
||||
if (__tx >= __pr.__l_)
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__u = __urd(__urng);
|
||||
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
else
|
||||
{
|
||||
double __difmuk;
|
||||
double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
|
||||
double __u;
|
||||
if (__g > 0)
|
||||
{
|
||||
__tx = _VSTD::trunc(__g);
|
||||
if (__tx >= __pr.__l_)
|
||||
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__u = __urd(__urng);
|
||||
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
||||
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
exponential_distribution<double> __edist;
|
||||
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
||||
{
|
||||
double __e;
|
||||
if (__using_exp_dist || __g <= 0)
|
||||
{
|
||||
double __t;
|
||||
do
|
||||
{
|
||||
__e = __edist(__urng);
|
||||
__u = __urd(__urng);
|
||||
__u += __u - 1;
|
||||
__t = 1.8 + (__u < 0 ? -__e : __e);
|
||||
} while (__t <= -.6744);
|
||||
__tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__using_exp_dist = true;
|
||||
}
|
||||
double __px;
|
||||
double __py;
|
||||
if (__tx < 10 && __tx >= 0)
|
||||
{
|
||||
const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
||||
40320, 362880};
|
||||
__px = -__pr.__mean_;
|
||||
__py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
||||
}
|
||||
else
|
||||
{
|
||||
double __del = .8333333E-1 / __tx;
|
||||
__del -= 4.8 * __del * __del * __del;
|
||||
double __v = __difmuk / __tx;
|
||||
if (_VSTD::abs(__v) > 0.25)
|
||||
__px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||
else
|
||||
__px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
||||
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
||||
__py = .3989423 / _VSTD::sqrt(__tx);
|
||||
}
|
||||
double __r = (0.5 - __difmuk) / __pr.__s_;
|
||||
double __r2 = __r * __r;
|
||||
double __fx = -0.5 * __r2;
|
||||
double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
|
||||
__r2 + __pr.__c1_) * __r2 + __pr.__c0_);
|
||||
if (__using_exp_dist)
|
||||
{
|
||||
if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) -
|
||||
__fy * _VSTD::exp(__fx + __e))
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx))
|
||||
break;
|
||||
}
|
||||
}
|
||||
exponential_distribution<double> __edist;
|
||||
for (bool __using_exp_dist = false; true; __using_exp_dist = true) {
|
||||
double __e;
|
||||
if (__using_exp_dist || __g <= 0) {
|
||||
double __t;
|
||||
do {
|
||||
__e = __edist(__urng);
|
||||
__u = __urd(__urng);
|
||||
__u += __u - 1;
|
||||
__t = 1.8 + (__u < 0 ? -__e : __e);
|
||||
} while (__t <= -.6744);
|
||||
__tx = std::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__using_exp_dist = true;
|
||||
}
|
||||
double __px;
|
||||
double __py;
|
||||
if (__tx < 10 && __tx >= 0) {
|
||||
const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
|
||||
__px = -__pr.__mean_;
|
||||
__py = std::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
||||
} else {
|
||||
double __del = .8333333E-1 / __tx;
|
||||
__del -= 4.8 * __del * __del * __del;
|
||||
double __v = __difmuk / __tx;
|
||||
if (std::abs(__v) > 0.25)
|
||||
__px = __tx * std::log(1 + __v) - __difmuk - __del;
|
||||
else
|
||||
__px = __tx * __v * __v *
|
||||
(((((((.1250060 * __v + -.1384794) * __v + .1421878) * __v + -.1661269) * __v + .2000118) * __v +
|
||||
-.2500068) *
|
||||
__v +
|
||||
.3333333) *
|
||||
__v +
|
||||
-.5) -
|
||||
__del;
|
||||
__py = .3989423 / std::sqrt(__tx);
|
||||
}
|
||||
double __r = (0.5 - __difmuk) / __pr.__s_;
|
||||
double __r2 = __r * __r;
|
||||
double __fx = -0.5 * __r2;
|
||||
double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) * __r2 + __pr.__c1_) * __r2 + __pr.__c0_);
|
||||
if (__using_exp_dist) {
|
||||
if (__pr.__c_ * std::abs(__u) <= __py * std::exp(__px + __e) - __fy * std::exp(__fx + __e))
|
||||
break;
|
||||
} else {
|
||||
if (__fy - __u * __fy <= __py * std::exp(__px - __fx))
|
||||
break;
|
||||
}
|
||||
}
|
||||
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _IntType>
|
||||
_LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const poisson_distribution<_IntType>& __x)
|
||||
{
|
||||
__save_flags<_CharT, _Traits> __lx(__os);
|
||||
typedef basic_ostream<_CharT, _Traits> _OStream;
|
||||
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
|
||||
_OStream::scientific);
|
||||
return __os << __x.mean();
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os, const poisson_distribution<_IntType>& __x) {
|
||||
__save_flags<_CharT, _Traits> __lx(__os);
|
||||
typedef basic_ostream<_CharT, _Traits> _OStream;
|
||||
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific);
|
||||
return __os << __x.mean();
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _IntType>
|
||||
_LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
poisson_distribution<_IntType>& __x)
|
||||
{
|
||||
typedef poisson_distribution<_IntType> _Eng;
|
||||
typedef typename _Eng::param_type param_type;
|
||||
__save_flags<_CharT, _Traits> __lx(__is);
|
||||
typedef basic_istream<_CharT, _Traits> _Istream;
|
||||
__is.flags(_Istream::dec | _Istream::skipws);
|
||||
double __mean;
|
||||
__is >> __mean;
|
||||
if (!__is.fail())
|
||||
__x.param(param_type(__mean));
|
||||
return __is;
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is, poisson_distribution<_IntType>& __x) {
|
||||
typedef poisson_distribution<_IntType> _Eng;
|
||||
typedef typename _Eng::param_type param_type;
|
||||
__save_flags<_CharT, _Traits> __lx(__is);
|
||||
typedef basic_istream<_CharT, _Traits> _Istream;
|
||||
__is.flags(_Istream::dec | _Istream::skipws);
|
||||
double __mean;
|
||||
__is >> __mean;
|
||||
if (!__is.fail())
|
||||
__x.param(param_type(__mean));
|
||||
return __is;
|
||||
}
|
||||
|
||||
_LIBCPP_END_NAMESPACE_STD
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue