Make quality improvements

- Write some more unit tests
- memcpy() on ARM is now faster
- Address the Musl complex math FIXME comments
- Some libm funcs like pow() now support setting errno
- Import the latest and greatest math functions from ARM
- Use more accurate atan2f() and log1pf() implementations
- atoi() and atol() will no longer saturate or clobber errno
This commit is contained in:
Justine Tunney 2024-02-25 14:57:28 -08:00
parent af8f2bd19f
commit 592f6ebc20
No known key found for this signature in database
GPG key ID: BE714B4575D6E328
122 changed files with 6305 additions and 3859 deletions

View file

@ -1,9 +1,9 @@
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Optimized Routines
Copyright (c) 2018-2024, Arm Limited.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
@ -25,19 +25,9 @@
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/intrin/likely.h"
#include "libc/math.h"
#include "libc/tinymath/exp_data.internal.h"
#include "libc/tinymath/internal.h"
#include "libc/tinymath/arm.internal.h"
__static_yoink("arm_optimized_routines_notice");
/*
* Double-precision 2^x function.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
@ -46,6 +36,7 @@ __static_yoink("arm_optimized_routines_notice");
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]
#define C6 __exp_data.exp2_poly[5]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
@ -54,103 +45,121 @@ __static_yoink("arm_optimized_routines_notice");
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
double_t scale, y;
if ((ki & 0x80000000) == 0) {
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble(sbits);
y = 2 * (scale + scale * tmp);
return eval_as_double(y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble(sbits);
y = scale + scale * tmp;
if (y < 1.0) {
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = eval_as_double(hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return eval_as_double(y);
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (eval_as_double (y));
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = eval_as_double (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (eval_as_double (y));
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t top12(double x)
static inline uint32_t
top12 (double x)
{
return asuint64(x) >> 52;
return asuint64 (x) >> 52;
}
/**
* Returns 2^𝑥.
*/
double exp2(double x)
double
exp2 (double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
double_t kd, r, r2, scale, tail, tmp;
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, r, r2, scale, tail, tmp;
abstop = top12(x) & 0x7ff;
if (UNLIKELY(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
if (abstop - top12(0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12(1024.0)) {
if (asuint64(x) == asuint64(-INFINITY))
return 0.0;
if (abstop >= top12(INFINITY))
return 1.0 + x;
if (!(asuint64(x) >> 63))
return __math_oflow(0);
else if (asuint64(x) >= asuint64(-1075.0))
return __math_uflow(0);
}
if (2 * asuint64(x) > 2 * asuint64(928.0))
/* Large x is special cased below. */
abstop = 0;
abstop = top12 (x) & 0x7ff;
if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12 (1024.0))
{
if (asuint64 (x) == asuint64 (-INFINITY))
return 0.0;
if (abstop >= top12 (INFINITY))
return 1.0 + x;
if (!(asuint64 (x) >> 63))
return __math_oflow (0);
else if (asuint64 (x) >= asuint64 (-1075.0))
return __math_uflow (0);
}
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
/* Large x is special cased below. */
abstop = 0;
}
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = eval_as_double(x + Shift);
ki = asuint64(kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble(T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (UNLIKELY(abstop == 0))
return specialcase(tmp, sbits, ki);
scale = asdouble(sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return eval_as_double(scale + scale * tmp);
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = eval_as_double (x + Shift);
ki = asuint64 (kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
#if EXP2_POLY_ORDER == 4
tmp = tail + r * C1 + r2 * C2 + r * r2 * (C3 + r * C4);
#elif EXP2_POLY_ORDER == 5
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
#elif EXP2_POLY_ORDER == 6
tmp = tail + r * C1 + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
#endif
if (unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return eval_as_double (scale + scale * tmp);
}
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
__weak_reference(exp2, exp2l);
#if USE_GLIBC_ABI
strong_alias (exp2, __exp2_finite)
hidden_alias (exp2, __ieee754_exp2)
# if LDBL_MANT_DIG == 53
long double exp2l (long double x) { return exp2 (x); }
# endif
#endif