mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-27 06:48:31 +00:00
Make quality improvements
- Write some more unit tests - memcpy() on ARM is now faster - Address the Musl complex math FIXME comments - Some libm funcs like pow() now support setting errno - Import the latest and greatest math functions from ARM - Use more accurate atan2f() and log1pf() implementations - atoi() and atol() will no longer saturate or clobber errno
This commit is contained in:
parent
af8f2bd19f
commit
592f6ebc20
122 changed files with 6305 additions and 3859 deletions
|
@ -1,9 +1,9 @@
|
|||
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
||||
│ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │
|
||||
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||||
│ │
|
||||
│ Optimized Routines │
|
||||
│ Copyright (c) 1999-2022, Arm Limited. │
|
||||
│ Copyright (c) 2018-2024, Arm Limited. │
|
||||
│ │
|
||||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||||
│ a copy of this software and associated documentation files (the │
|
||||
|
@ -25,19 +25,9 @@
|
|||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||||
│ │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/intrin/likely.h"
|
||||
#include "libc/math.h"
|
||||
#include "libc/tinymath/exp2f_data.internal.h"
|
||||
#include "libc/tinymath/internal.h"
|
||||
#include "libc/tinymath/arm.internal.h"
|
||||
__static_yoink("arm_optimized_routines_notice");
|
||||
|
||||
/*
|
||||
* Single-precision e^x function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
/*
|
||||
EXP2F_TABLE_BITS = 5
|
||||
EXP2F_POLY_ORDER = 3
|
||||
|
@ -53,59 +43,79 @@ Non-nearest ULP error: 1 (rounded ULP error)
|
|||
#define T __exp2f_data.tab
|
||||
#define C __exp2f_data.poly_scaled
|
||||
|
||||
static inline uint32_t top12(float x)
|
||||
static inline uint32_t
|
||||
top12 (float x)
|
||||
{
|
||||
return asuint(x) >> 20;
|
||||
return asuint (x) >> 20;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns 𝑒^x.
|
||||
*
|
||||
* - ULP error: 0.502 (nearest rounding.)
|
||||
* - Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
|
||||
* - Wrong count: 170635 (all nearest rounding wrong results with fma.)
|
||||
* - Non-nearest ULP error: 1 (rounded ULP error)
|
||||
*
|
||||
* @raise ERANGE on overflow or underflow
|
||||
*/
|
||||
float expf(float x)
|
||||
float
|
||||
expf (float x)
|
||||
{
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
|
||||
xd = (double_t)x;
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (UNLIKELY(abstop >= top12(88.0f))) {
|
||||
/* |x| >= 88 or x is nan. */
|
||||
if (asuint(x) == asuint(-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return x + x;
|
||||
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
|
||||
return __math_oflowf(0);
|
||||
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
|
||||
return __math_uflowf(0);
|
||||
}
|
||||
xd = (double_t) x;
|
||||
abstop = top12 (x) & 0x7ff;
|
||||
if (unlikely (abstop >= top12 (88.0f)))
|
||||
{
|
||||
/* |x| >= 88 or x is nan. */
|
||||
if (asuint (x) == asuint (-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12 (INFINITY))
|
||||
return x + x;
|
||||
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
|
||||
return __math_oflowf (0);
|
||||
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
|
||||
return __math_uflowf (0);
|
||||
#if WANT_ERRNO_UFLOW
|
||||
if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */
|
||||
return __math_may_uflowf (0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
|
||||
z = InvLn2N * xd;
|
||||
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
|
||||
z = InvLn2N * xd;
|
||||
|
||||
/* Round and convert z to int, the result is in [-150*N, 128*N] and
|
||||
ideally ties-to-even rule is used, otherwise the magnitude of r
|
||||
can be bigger which gives larger approximation error. */
|
||||
/* Round and convert z to int, the result is in [-150*N, 128*N] and
|
||||
ideally nearest int is used, otherwise the magnitude of r can be
|
||||
bigger which gives larger approximation error. */
|
||||
#if TOINT_INTRINSICS
|
||||
kd = roundtoint(z);
|
||||
ki = converttoint(z);
|
||||
kd = roundtoint (z);
|
||||
ki = converttoint (z);
|
||||
#else
|
||||
# define SHIFT __exp2f_data.shift
|
||||
kd = eval_as_double(z + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT;
|
||||
kd = eval_as_double (z + SHIFT);
|
||||
ki = asuint64 (kd);
|
||||
kd -= SHIFT;
|
||||
#endif
|
||||
r = z - kd;
|
||||
r = z - kd;
|
||||
|
||||
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble (t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float (y);
|
||||
}
|
||||
|
||||
#if USE_GLIBC_ABI
|
||||
strong_alias (expf, __expf_finite)
|
||||
hidden_alias (expf, __ieee754_expf)
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue