mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-27 14:58:30 +00:00
Make quality improvements
- Write some more unit tests - memcpy() on ARM is now faster - Address the Musl complex math FIXME comments - Some libm funcs like pow() now support setting errno - Import the latest and greatest math functions from ARM - Use more accurate atan2f() and log1pf() implementations - atoi() and atol() will no longer saturate or clobber errno
This commit is contained in:
parent
af8f2bd19f
commit
592f6ebc20
122 changed files with 6305 additions and 3859 deletions
|
@ -1,9 +1,9 @@
|
|||
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
||||
│ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │
|
||||
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||||
│ │
|
||||
│ Optimized Routines │
|
||||
│ Copyright (c) 1999-2022, Arm Limited. │
|
||||
│ Copyright (c) 2018-2024, Arm Limited. │
|
||||
│ │
|
||||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||||
│ a copy of this software and associated documentation files (the │
|
||||
|
@ -25,20 +25,9 @@
|
|||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||||
│ │
|
||||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||||
#include "libc/intrin/likely.h"
|
||||
#include "libc/math.h"
|
||||
#include "libc/tinymath/complex.internal.h"
|
||||
#include "libc/tinymath/internal.h"
|
||||
#include "libc/tinymath/log2f_data.internal.h"
|
||||
#include "libc/tinymath/arm.internal.h"
|
||||
__static_yoink("arm_optimized_routines_notice");
|
||||
|
||||
/*
|
||||
* Single-precision log2 function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
/*
|
||||
LOG2F_TABLE_BITS = 4
|
||||
LOG2F_POLY_ORDER = 4
|
||||
|
@ -53,52 +42,65 @@ Relative error: 1.9 * 2^-26 (before rounding.)
|
|||
#define OFF 0x3f330000
|
||||
|
||||
/**
|
||||
* Calculates log₂𝑥.
|
||||
* Returns base-2 logarithm of x.
|
||||
*
|
||||
* - ULP error: 0.752 (nearest rounding.)
|
||||
* - Relative error: 1.9 * 2^-26 (before rounding.)
|
||||
*/
|
||||
float log2f(float x)
|
||||
float
|
||||
log2f (float x)
|
||||
{
|
||||
double_t z, r, r2, p, y, y0, invc, logc;
|
||||
uint32_t ix, iz, top, tmp;
|
||||
int k, i;
|
||||
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
||||
double_t z, r, r2, p, y, y0, invc, logc;
|
||||
uint32_t ix, iz, top, tmp;
|
||||
int k, i;
|
||||
|
||||
ix = asuint(x);
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && UNLIKELY(ix == 0x3f800000))
|
||||
return 0;
|
||||
if (UNLIKELY(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
|
||||
/* x < 0x1p-126 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzerof(1);
|
||||
if (ix == 0x7f800000) /* log2(inf) == inf. */
|
||||
return x;
|
||||
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
||||
return __math_invalidf(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint(x * 0x1p23f);
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
ix = asuint (x);
|
||||
#if WANT_ROUNDING
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (unlikely (ix == 0x3f800000))
|
||||
return 0;
|
||||
#endif
|
||||
if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
|
||||
{
|
||||
/* x < 0x1p-126 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzerof (1);
|
||||
if (ix == 0x7f800000) /* log2(inf) == inf. */
|
||||
return x;
|
||||
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
||||
return __math_invalidf (x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint (x * 0x1p23f);
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
|
||||
top = tmp & 0xff800000;
|
||||
iz = ix - top;
|
||||
k = (int32_t)tmp >> 23; /* arithmetic shift */
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t)asfloat(iz);
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
|
||||
top = tmp & 0xff800000;
|
||||
iz = ix - top;
|
||||
k = (int32_t) tmp >> 23; /* arithmetic shift */
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t) asfloat (iz);
|
||||
|
||||
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t)k;
|
||||
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t) k;
|
||||
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
||||
r2 = r * r;
|
||||
y = A[1] * r + A[2];
|
||||
y = A[0] * r2 + y;
|
||||
p = A[3] * r + y0;
|
||||
y = y * r2 + p;
|
||||
return eval_as_float(y);
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
||||
r2 = r * r;
|
||||
y = A[1] * r + A[2];
|
||||
y = A[0] * r2 + y;
|
||||
p = A[3] * r + y0;
|
||||
y = y * r2 + p;
|
||||
return eval_as_float (y);
|
||||
}
|
||||
|
||||
#if USE_GLIBC_ABI
|
||||
strong_alias (log2f, __log2f_finite)
|
||||
hidden_alias (log2f, __ieee754_log2f)
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue