mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-02 02:32:27 +00:00
Fix compiler runtime for _Float16 type
This commit is contained in:
parent
0ef36489c8
commit
64a9e6fe56
14 changed files with 797 additions and 53 deletions
155
third_party/compiler_rt/fp16_trunc_impl.inc
vendored
Normal file
155
third_party/compiler_rt/fp16_trunc_impl.inc
vendored
Normal file
|
@ -0,0 +1,155 @@
|
|||
//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a fairly generic conversion from a wider to a narrower
|
||||
// IEEE-754 floating-point type in the default (round to nearest, ties to even)
|
||||
// rounding mode. The constants and types defined following the includes below
|
||||
// parameterize the conversion.
|
||||
//
|
||||
// This routine can be trivially adapted to support conversions to
|
||||
// half-precision or from quad-precision. It does not support types that don't
|
||||
// use the usual IEEE-754 interchange formats; specifically, some work would be
|
||||
// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
|
||||
// double-double format.
|
||||
//
|
||||
// Note please, however, that this implementation is only intended to support
|
||||
// *narrowing* operations; if you need to convert to a *wider* floating-point
|
||||
// type (e.g. float -> double), then this routine will not do what you want it
|
||||
// to.
|
||||
//
|
||||
// It also requires that integer types at least as large as both formats
|
||||
// are available on the target platform; this may pose a problem when trying
|
||||
// to add support for quad on some 32-bit systems, for example.
|
||||
//
|
||||
// Finally, the following assumptions are made:
|
||||
//
|
||||
// 1. Floating-point types and integer types have the same endianness on the
|
||||
// target platform.
|
||||
//
|
||||
// 2. Quiet NaNs, if supported, are indicated by the leading bit of the
|
||||
// significand field being set.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "fp16_trunc.inc"
|
||||
|
||||
// The destination type may use a usual IEEE-754 interchange format or Intel
|
||||
// 80-bit format. In particular, for the destination type dstSigFracBits may be
|
||||
// not equal to dstSigBits. The source type is assumed to be one of IEEE-754
|
||||
// standard types.
|
||||
static __inline dst_t __truncXfYf2__(src_t a) {
|
||||
// Various constants whose values follow from the type parameters.
|
||||
// Any reasonable optimizer will fold and propagate all of these.
|
||||
const int srcInfExp = (1 << srcExpBits) - 1;
|
||||
const int srcExpBias = srcInfExp >> 1;
|
||||
|
||||
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigFracBits;
|
||||
const src_rep_t roundMask =
|
||||
(SRC_REP_C(1) << (srcSigFracBits - dstSigFracBits)) - 1;
|
||||
const src_rep_t halfway = SRC_REP_C(1)
|
||||
<< (srcSigFracBits - dstSigFracBits - 1);
|
||||
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigFracBits - 1);
|
||||
const src_rep_t srcNaNCode = srcQNaN - 1;
|
||||
|
||||
const int dstInfExp = (1 << dstExpBits) - 1;
|
||||
const int dstExpBias = dstInfExp >> 1;
|
||||
const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
|
||||
|
||||
const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigFracBits - 1);
|
||||
const dst_rep_t dstNaNCode = dstQNaN - 1;
|
||||
|
||||
const src_rep_t aRep = srcToRep(a);
|
||||
const src_rep_t srcSign = extract_sign_from_src(aRep);
|
||||
const src_rep_t srcExp = extract_exp_from_src(aRep);
|
||||
const src_rep_t srcSigFrac = extract_sig_frac_from_src(aRep);
|
||||
|
||||
dst_rep_t dstSign = srcSign;
|
||||
dst_rep_t dstExp;
|
||||
dst_rep_t dstSigFrac;
|
||||
|
||||
// Same size exponents and a's significand tail is 0.
|
||||
// The significand can be truncated and the exponent can be copied over.
|
||||
const int sigFracTailBits = srcSigFracBits - dstSigFracBits;
|
||||
if (srcExpBits == dstExpBits &&
|
||||
((aRep >> sigFracTailBits) << sigFracTailBits) == aRep) {
|
||||
dstExp = srcExp;
|
||||
dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits);
|
||||
return dstFromRep(construct_dst_rep(dstSign, dstExp, dstSigFrac));
|
||||
}
|
||||
|
||||
const int dstExpCandidate = ((int)srcExp - srcExpBias) + dstExpBias;
|
||||
if (dstExpCandidate >= 1 && dstExpCandidate < dstInfExp) {
|
||||
// The exponent of a is within the range of normal numbers in the
|
||||
// destination format. We can convert by simply right-shifting with
|
||||
// rounding and adjusting the exponent.
|
||||
dstExp = dstExpCandidate;
|
||||
dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits);
|
||||
|
||||
const src_rep_t roundBits = srcSigFrac & roundMask;
|
||||
// Round to nearest.
|
||||
if (roundBits > halfway)
|
||||
dstSigFrac++;
|
||||
// Tie to even.
|
||||
else if (roundBits == halfway)
|
||||
dstSigFrac += dstSigFrac & 1;
|
||||
|
||||
// Rounding has changed the exponent.
|
||||
if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) {
|
||||
dstExp += 1;
|
||||
dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits);
|
||||
}
|
||||
} else if (srcExp == srcInfExp && srcSigFrac) {
|
||||
// a is NaN.
|
||||
// Conjure the result by beginning with infinity, setting the qNaN
|
||||
// bit and inserting the (truncated) trailing NaN field.
|
||||
dstExp = dstInfExp;
|
||||
dstSigFrac = dstQNaN;
|
||||
dstSigFrac |= ((srcSigFrac & srcNaNCode) >> sigFracTailBits) & dstNaNCode;
|
||||
} else if ((int)srcExp >= overflowExponent) {
|
||||
dstExp = dstInfExp;
|
||||
dstSigFrac = 0;
|
||||
} else {
|
||||
// a underflows on conversion to the destination type or is an exact
|
||||
// zero. The result may be a denormal or zero. Extract the exponent
|
||||
// to get the shift amount for the denormalization.
|
||||
src_rep_t significand = srcSigFrac;
|
||||
int shift = srcExpBias - dstExpBias - srcExp;
|
||||
|
||||
if (srcExp) {
|
||||
// Set the implicit integer bit if the source is a normal number.
|
||||
significand |= srcMinNormal;
|
||||
shift += 1;
|
||||
}
|
||||
|
||||
// Right shift by the denormalization amount with sticky.
|
||||
if (shift > srcSigFracBits) {
|
||||
dstExp = 0;
|
||||
dstSigFrac = 0;
|
||||
} else {
|
||||
dstExp = 0;
|
||||
const bool sticky = shift && ((significand << (srcBits - shift)) != 0);
|
||||
src_rep_t denormalizedSignificand = significand >> shift | sticky;
|
||||
dstSigFrac = denormalizedSignificand >> sigFracTailBits;
|
||||
const src_rep_t roundBits = denormalizedSignificand & roundMask;
|
||||
// Round to nearest
|
||||
if (roundBits > halfway)
|
||||
dstSigFrac++;
|
||||
// Ties to even
|
||||
else if (roundBits == halfway)
|
||||
dstSigFrac += dstSigFrac & 1;
|
||||
|
||||
// Rounding has changed the exponent.
|
||||
if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) {
|
||||
dstExp += 1;
|
||||
dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dstFromRep(construct_dst_rep(dstSign, dstExp, dstSigFrac));
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue