mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-07-01 16:58:30 +00:00
Add LLVM libcxxabi (#1063)
* third_party: Add libcxxabi Added libcxxabi from LLVM 17.0.6 The library implements the Itanium C++ exception handling ABI. * third_party/libcxxabi: Enable __cxa_thread_atexit Enable `__cxa_thread_atexit` from libcxxabi. `__cxa_thread_atexit_impl` is still implemented by the cosmo libc. The original `__cxa_thread_atexit` has been removed. * third_party/libcxx: Build with exceptions Build libcxx with exceptions enabled. - Removed `_LIBCPP_NO_EXCEPTIONS` from `__config`. - Switched the exception implementation to `libcxxabi`. These two files are taken from the same `libcxx` version as mentioned in `README.cosmo`. - Removed `new_handler_fallback` in favor of `libcxxabi` implementation. - Enable `-fexceptions` and `-frtti` for `libcxx`. - Removed `THIRD_PARTY_LIBCXX` dependency from `libcxxabi` and `libunwind`. These libraries do not use any runtime `libcxx` functions, just headers. * libc: Remove remaining redundant cxa functions - `__cxa_pure_virtual` in `libcxxabi` is also a stub similar to the existing one. - `__cxa_guard_*` from `libcxxabi` is used instead of the ones from Android. Now there should be no more duplicate implementations. `__cxa_thread_atexit_impl`, `__cxa_atexit`, and related supporting functions, are still left to other libraries as in `libcxxabi`. `libcxxabi` is also now added to `cosmopolitan.a` to make up for the removed functions. Affected in-tree libraries (`third_party/double-conversion`) have been updated.
This commit is contained in:
parent
94bab1618d
commit
8b33204f37
53 changed files with 14606 additions and 372 deletions
674
third_party/libcxxabi/cxa_guard_impl.h
vendored
Normal file
674
third_party/libcxxabi/cxa_guard_impl.h
vendored
Normal file
|
@ -0,0 +1,674 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
|
||||
#define LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
|
||||
|
||||
/* cxa_guard_impl.h - Implements the C++ runtime support for function local
|
||||
* static guards.
|
||||
* The layout of the guard object is the same across ARM and Itanium.
|
||||
*
|
||||
* The first "guard byte" (which is checked by the compiler) is set only upon
|
||||
* the completion of cxa release.
|
||||
*
|
||||
* The second "init byte" does the rest of the bookkeeping. It tracks if
|
||||
* initialization is complete or pending, and if there are waiting threads.
|
||||
*
|
||||
* If the guard variable is 64-bits and the platforms supplies a 32-bit thread
|
||||
* identifier, it is used to detect recursive initialization. The thread ID of
|
||||
* the thread currently performing initialization is stored in the second word.
|
||||
*
|
||||
* Guard Object Layout:
|
||||
* ---------------------------------------------------------------------------
|
||||
* | a+0: guard byte | a+1: init byte | a+2: unused ... | a+4: thread-id ... |
|
||||
* ---------------------------------------------------------------------------
|
||||
*
|
||||
* Note that we don't do what the ABI docs suggest (put a mutex in the guard
|
||||
* object which we acquire in cxa_guard_acquire and release in
|
||||
* cxa_guard_release). Instead we use the init byte to imitate that behaviour,
|
||||
* but without actually holding anything mutex related between aquire and
|
||||
* release/abort.
|
||||
*
|
||||
* Access Protocol:
|
||||
* For each implementation the guard byte is checked and set before accessing
|
||||
* the init byte.
|
||||
*
|
||||
* Overall Design:
|
||||
* The implementation was designed to allow each implementation to be tested
|
||||
* independent of the C++ runtime or platform support.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "third_party/libcxxabi/include/__cxxabi_config.h"
|
||||
#include "third_party/libcxx/include/atomic_support.hh" // from libc++
|
||||
#if defined(__has_include)
|
||||
# if __has_include(<sys/syscall.h>)
|
||||
# include <sys/syscall.h>
|
||||
# endif
|
||||
# if __has_include(<unistd.h>)
|
||||
# include <unistd.h>
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include "third_party/libcxx/__threading_support"
|
||||
#include "third_party/libcxx/cstdint"
|
||||
#include "third_party/libcxx/cstring"
|
||||
#include "libc/isystem/limits.h"
|
||||
#include "libc/isystem/stdlib.h"
|
||||
|
||||
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
||||
# if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
|
||||
# pragma comment(lib, "pthread")
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wtautological-pointer-compare"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Waddress"
|
||||
#endif
|
||||
|
||||
// To make testing possible, this header is included from both cxa_guard.cpp
|
||||
// and a number of tests.
|
||||
//
|
||||
// For this reason we place everything in an anonymous namespace -- even though
|
||||
// we're in a header. We want the actual implementation and the tests to have
|
||||
// unique definitions of the types in this header (since the tests may depend
|
||||
// on function local statics).
|
||||
//
|
||||
// To enforce this either `BUILDING_CXA_GUARD` or `TESTING_CXA_GUARD` must be
|
||||
// defined when including this file. Only `src/cxa_guard.cpp` should define
|
||||
// the former.
|
||||
#ifdef BUILDING_CXA_GUARD
|
||||
# include "third_party/libcxxabi/abort_message.h"
|
||||
# define ABORT_WITH_MESSAGE(...) ::abort_message(__VA_ARGS__)
|
||||
#elif defined(TESTING_CXA_GUARD)
|
||||
# define ABORT_WITH_MESSAGE(...) ::abort()
|
||||
#else
|
||||
# error "Either BUILDING_CXA_GUARD or TESTING_CXA_GUARD must be defined"
|
||||
#endif
|
||||
|
||||
#if __has_feature(thread_sanitizer)
|
||||
extern "C" void __tsan_acquire(void*);
|
||||
extern "C" void __tsan_release(void*);
|
||||
#else
|
||||
# define __tsan_acquire(addr) ((void)0)
|
||||
# define __tsan_release(addr) ((void)0)
|
||||
#endif
|
||||
|
||||
namespace __cxxabiv1 {
|
||||
// Use an anonymous namespace to ensure that the tests and actual implementation
|
||||
// have unique definitions of these symbols.
|
||||
namespace {
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Misc Utilities
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template <class T, T (*Init)()>
|
||||
struct LazyValue {
|
||||
LazyValue() : is_init(false) {}
|
||||
|
||||
T& get() {
|
||||
if (!is_init) {
|
||||
value = Init();
|
||||
is_init = true;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
private:
|
||||
T value;
|
||||
bool is_init = false;
|
||||
};
|
||||
|
||||
template <class IntType>
|
||||
class AtomicInt {
|
||||
public:
|
||||
using MemoryOrder = std::__libcpp_atomic_order;
|
||||
|
||||
explicit AtomicInt(IntType* b) : b_(b) {}
|
||||
AtomicInt(AtomicInt const&) = delete;
|
||||
AtomicInt& operator=(AtomicInt const&) = delete;
|
||||
|
||||
IntType load(MemoryOrder ord) { return std::__libcpp_atomic_load(b_, ord); }
|
||||
void store(IntType val, MemoryOrder ord) { std::__libcpp_atomic_store(b_, val, ord); }
|
||||
IntType exchange(IntType new_val, MemoryOrder ord) { return std::__libcpp_atomic_exchange(b_, new_val, ord); }
|
||||
bool compare_exchange(IntType* expected, IntType desired, MemoryOrder ord_success, MemoryOrder ord_failure) {
|
||||
return std::__libcpp_atomic_compare_exchange(b_, expected, desired, ord_success, ord_failure);
|
||||
}
|
||||
|
||||
private:
|
||||
IntType* b_;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// PlatformGetThreadID
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if defined(__APPLE__) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
|
||||
uint32_t PlatformThreadID() {
|
||||
static_assert(sizeof(mach_port_t) == sizeof(uint32_t), "");
|
||||
return static_cast<uint32_t>(pthread_mach_thread_np(std::__libcpp_thread_get_current_id()));
|
||||
}
|
||||
#elif defined(SYS_gettid) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
|
||||
uint32_t PlatformThreadID() {
|
||||
static_assert(sizeof(pid_t) == sizeof(uint32_t), "");
|
||||
return static_cast<uint32_t>(syscall(SYS_gettid));
|
||||
}
|
||||
#else
|
||||
constexpr uint32_t (*PlatformThreadID)() = nullptr;
|
||||
#endif
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// GuardByte
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static constexpr uint8_t UNSET = 0;
|
||||
static constexpr uint8_t COMPLETE_BIT = (1 << 0);
|
||||
static constexpr uint8_t PENDING_BIT = (1 << 1);
|
||||
static constexpr uint8_t WAITING_BIT = (1 << 2);
|
||||
|
||||
/// Manages reads and writes to the guard byte.
|
||||
struct GuardByte {
|
||||
GuardByte() = delete;
|
||||
GuardByte(GuardByte const&) = delete;
|
||||
GuardByte& operator=(GuardByte const&) = delete;
|
||||
|
||||
explicit GuardByte(uint8_t* const guard_byte_address) : guard_byte(guard_byte_address) {}
|
||||
|
||||
public:
|
||||
/// The guard byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
// if guard_byte is non-zero, we have already completed initialization
|
||||
// (i.e. release has been called)
|
||||
return guard_byte.load(std::_AO_Acquire) != UNSET;
|
||||
}
|
||||
|
||||
/// The guard byte portion of cxa_guard_release.
|
||||
void release() { guard_byte.store(COMPLETE_BIT, std::_AO_Release); }
|
||||
|
||||
/// The guard byte portion of cxa_guard_abort.
|
||||
void abort() {} // Nothing to do
|
||||
|
||||
private:
|
||||
AtomicInt<uint8_t> guard_byte;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// InitByte Implementations
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Each initialization byte implementation supports the following methods:
|
||||
//
|
||||
// InitByte(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
// Construct the InitByte object, initializing our member variables
|
||||
//
|
||||
// bool acquire()
|
||||
// Called before we start the initialization. Check if someone else has already started, and if
|
||||
// not to signal our intent to start it ourselves. We determine the current status from the init
|
||||
// byte, which is one of 4 possible values:
|
||||
// COMPLETE: Initialization was finished by somebody else. Return true.
|
||||
// PENDING: Somebody has started the initialization already, set the WAITING bit,
|
||||
// then wait for the init byte to get updated with a new value.
|
||||
// (PENDING|WAITING): Somebody has started the initialization already, and we're not the
|
||||
// first one waiting. Wait for the init byte to get updated.
|
||||
// UNSET: Initialization hasn't successfully completed, and nobody is currently
|
||||
// performing the initialization. Set the PENDING bit to indicate our
|
||||
// intention to start the initialization, and return false.
|
||||
// The return value indicates whether initialization has already been completed.
|
||||
//
|
||||
// void release()
|
||||
// Called after successfully completing the initialization. Update the init byte to reflect
|
||||
// that, then if anybody else is waiting, wake them up.
|
||||
//
|
||||
// void abort()
|
||||
// Called after an error is thrown during the initialization. Reset the init byte to UNSET to
|
||||
// indicate that we're no longer performing the initialization, then if anybody is waiting, wake
|
||||
// them up so they can try performing the initialization.
|
||||
//
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Single Threaded Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// InitByteNoThreads - Doesn't use any inter-thread synchronization when
|
||||
/// managing reads and writes to the init byte.
|
||||
struct InitByteNoThreads {
|
||||
InitByteNoThreads() = delete;
|
||||
InitByteNoThreads(InitByteNoThreads const&) = delete;
|
||||
InitByteNoThreads& operator=(InitByteNoThreads const&) = delete;
|
||||
|
||||
explicit InitByteNoThreads(uint8_t* _init_byte_address, uint32_t*) : init_byte_address(_init_byte_address) {}
|
||||
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
if (*init_byte_address == COMPLETE_BIT)
|
||||
return true;
|
||||
if (*init_byte_address & PENDING_BIT)
|
||||
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
|
||||
*init_byte_address = PENDING_BIT;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() { *init_byte_address = COMPLETE_BIT; }
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() { *init_byte_address = UNSET; }
|
||||
|
||||
private:
|
||||
/// The address of the byte used during initialization.
|
||||
uint8_t* const init_byte_address;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Global Mutex Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct LibcppMutex;
|
||||
struct LibcppCondVar;
|
||||
|
||||
#ifndef _LIBCXXABI_HAS_NO_THREADS
|
||||
struct LibcppMutex {
|
||||
LibcppMutex() = default;
|
||||
LibcppMutex(LibcppMutex const&) = delete;
|
||||
LibcppMutex& operator=(LibcppMutex const&) = delete;
|
||||
|
||||
bool lock() { return std::__libcpp_mutex_lock(&mutex); }
|
||||
bool unlock() { return std::__libcpp_mutex_unlock(&mutex); }
|
||||
|
||||
private:
|
||||
friend struct LibcppCondVar;
|
||||
std::__libcpp_mutex_t mutex = _LIBCPP_MUTEX_INITIALIZER;
|
||||
};
|
||||
|
||||
struct LibcppCondVar {
|
||||
LibcppCondVar() = default;
|
||||
LibcppCondVar(LibcppCondVar const&) = delete;
|
||||
LibcppCondVar& operator=(LibcppCondVar const&) = delete;
|
||||
|
||||
bool wait(LibcppMutex& mut) { return std::__libcpp_condvar_wait(&cond, &mut.mutex); }
|
||||
bool broadcast() { return std::__libcpp_condvar_broadcast(&cond); }
|
||||
|
||||
private:
|
||||
std::__libcpp_condvar_t cond = _LIBCPP_CONDVAR_INITIALIZER;
|
||||
};
|
||||
#else
|
||||
struct LibcppMutex {};
|
||||
struct LibcppCondVar {};
|
||||
#endif // !defined(_LIBCXXABI_HAS_NO_THREADS)
|
||||
|
||||
/// InitByteGlobalMutex - Uses a global mutex and condition variable (common to
|
||||
/// all static local variables) to manage reads and writes to the init byte.
|
||||
template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
|
||||
uint32_t (*GetThreadID)() = PlatformThreadID>
|
||||
struct InitByteGlobalMutex {
|
||||
|
||||
explicit InitByteGlobalMutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
: init_byte_address(_init_byte_address), thread_id_address(_thread_id_address),
|
||||
has_thread_id_support(_thread_id_address != nullptr && GetThreadID != nullptr) {}
|
||||
|
||||
public:
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
LockGuard g("__cxa_guard_acquire");
|
||||
// Check for possible recursive initialization.
|
||||
if (has_thread_id_support && (*init_byte_address & PENDING_BIT)) {
|
||||
if (*thread_id_address == current_thread_id.get())
|
||||
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
|
||||
}
|
||||
|
||||
// Wait until the pending bit is not set.
|
||||
while (*init_byte_address & PENDING_BIT) {
|
||||
*init_byte_address |= WAITING_BIT;
|
||||
global_cond.wait(global_mutex);
|
||||
}
|
||||
|
||||
if (*init_byte_address == COMPLETE_BIT)
|
||||
return true;
|
||||
|
||||
if (has_thread_id_support)
|
||||
*thread_id_address = current_thread_id.get();
|
||||
|
||||
*init_byte_address = PENDING_BIT;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() {
|
||||
bool has_waiting;
|
||||
{
|
||||
LockGuard g("__cxa_guard_release");
|
||||
has_waiting = *init_byte_address & WAITING_BIT;
|
||||
*init_byte_address = COMPLETE_BIT;
|
||||
}
|
||||
if (has_waiting) {
|
||||
if (global_cond.broadcast()) {
|
||||
ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_release");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() {
|
||||
bool has_waiting;
|
||||
{
|
||||
LockGuard g("__cxa_guard_abort");
|
||||
if (has_thread_id_support)
|
||||
*thread_id_address = 0;
|
||||
has_waiting = *init_byte_address & WAITING_BIT;
|
||||
*init_byte_address = UNSET;
|
||||
}
|
||||
if (has_waiting) {
|
||||
if (global_cond.broadcast()) {
|
||||
ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_abort");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/// The address of the byte used during initialization.
|
||||
uint8_t* const init_byte_address;
|
||||
/// An optional address storing an identifier for the thread performing initialization.
|
||||
/// It's used to detect recursive initialization.
|
||||
uint32_t* const thread_id_address;
|
||||
|
||||
const bool has_thread_id_support;
|
||||
LazyValue<uint32_t, GetThreadID> current_thread_id;
|
||||
|
||||
private:
|
||||
struct LockGuard {
|
||||
LockGuard() = delete;
|
||||
LockGuard(LockGuard const&) = delete;
|
||||
LockGuard& operator=(LockGuard const&) = delete;
|
||||
|
||||
explicit LockGuard(const char* calling_func) : calling_func_(calling_func) {
|
||||
if (global_mutex.lock())
|
||||
ABORT_WITH_MESSAGE("%s failed to acquire mutex", calling_func_);
|
||||
}
|
||||
|
||||
~LockGuard() {
|
||||
if (global_mutex.unlock())
|
||||
ABORT_WITH_MESSAGE("%s failed to release mutex", calling_func_);
|
||||
}
|
||||
|
||||
private:
|
||||
const char* const calling_func_;
|
||||
};
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Futex Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if defined(SYS_futex)
|
||||
void PlatformFutexWait(int* addr, int expect) {
|
||||
constexpr int WAIT = 0;
|
||||
syscall(SYS_futex, addr, WAIT, expect, 0);
|
||||
__tsan_acquire(addr);
|
||||
}
|
||||
void PlatformFutexWake(int* addr) {
|
||||
constexpr int WAKE = 1;
|
||||
__tsan_release(addr);
|
||||
syscall(SYS_futex, addr, WAKE, INT_MAX);
|
||||
}
|
||||
#else
|
||||
constexpr void (*PlatformFutexWait)(int*, int) = nullptr;
|
||||
constexpr void (*PlatformFutexWake)(int*) = nullptr;
|
||||
#endif
|
||||
|
||||
constexpr bool PlatformSupportsFutex() { return +PlatformFutexWait != nullptr; }
|
||||
|
||||
/// InitByteFutex - Uses a futex to manage reads and writes to the init byte.
|
||||
template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
|
||||
uint32_t (*GetThreadIDArg)() = PlatformThreadID>
|
||||
struct InitByteFutex {
|
||||
|
||||
explicit InitByteFutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
: init_byte(_init_byte_address),
|
||||
has_thread_id_support(_thread_id_address != nullptr && GetThreadIDArg != nullptr),
|
||||
thread_id(_thread_id_address),
|
||||
base_address(reinterpret_cast<int*>(/*_init_byte_address & ~0x3*/ _init_byte_address - 1)) {}
|
||||
|
||||
public:
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
while (true) {
|
||||
uint8_t last_val = UNSET;
|
||||
if (init_byte.compare_exchange(&last_val, PENDING_BIT, std::_AO_Acq_Rel, std::_AO_Acquire)) {
|
||||
if (has_thread_id_support) {
|
||||
thread_id.store(current_thread_id.get(), std::_AO_Relaxed);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (last_val == COMPLETE_BIT)
|
||||
return true;
|
||||
|
||||
if (last_val & PENDING_BIT) {
|
||||
|
||||
// Check for recursive initialization
|
||||
if (has_thread_id_support && thread_id.load(std::_AO_Relaxed) == current_thread_id.get()) {
|
||||
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
|
||||
}
|
||||
|
||||
if ((last_val & WAITING_BIT) == 0) {
|
||||
// This compare exchange can fail for several reasons
|
||||
// (1) another thread finished the whole thing before we got here
|
||||
// (2) another thread set the waiting bit we were trying to thread
|
||||
// (3) another thread had an exception and failed to finish
|
||||
if (!init_byte.compare_exchange(&last_val, PENDING_BIT | WAITING_BIT, std::_AO_Acq_Rel, std::_AO_Release)) {
|
||||
// (1) success, via someone else's work!
|
||||
if (last_val == COMPLETE_BIT)
|
||||
return true;
|
||||
|
||||
// (3) someone else, bailed on doing the work, retry from the start!
|
||||
if (last_val == UNSET)
|
||||
continue;
|
||||
|
||||
// (2) the waiting bit got set, so we are happy to keep waiting
|
||||
}
|
||||
}
|
||||
wait_on_initialization();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() {
|
||||
uint8_t old = init_byte.exchange(COMPLETE_BIT, std::_AO_Acq_Rel);
|
||||
if (old & WAITING_BIT)
|
||||
wake_all();
|
||||
}
|
||||
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() {
|
||||
if (has_thread_id_support)
|
||||
thread_id.store(0, std::_AO_Relaxed);
|
||||
|
||||
uint8_t old = init_byte.exchange(UNSET, std::_AO_Acq_Rel);
|
||||
if (old & WAITING_BIT)
|
||||
wake_all();
|
||||
}
|
||||
|
||||
private:
|
||||
/// Use the futex to wait on the current guard variable. Futex expects a
|
||||
/// 32-bit 4-byte aligned address as the first argument, so we use the 4-byte
|
||||
/// aligned address that encompasses the init byte (i.e. the address of the
|
||||
/// raw guard object that was passed to __cxa_guard_acquire/release/abort).
|
||||
void wait_on_initialization() { Wait(base_address, expected_value_for_futex(PENDING_BIT | WAITING_BIT)); }
|
||||
void wake_all() { Wake(base_address); }
|
||||
|
||||
private:
|
||||
AtomicInt<uint8_t> init_byte;
|
||||
|
||||
const bool has_thread_id_support;
|
||||
// Unsafe to use unless has_thread_id_support
|
||||
AtomicInt<uint32_t> thread_id;
|
||||
LazyValue<uint32_t, GetThreadIDArg> current_thread_id;
|
||||
|
||||
/// the 4-byte-aligned address that encompasses the init byte (i.e. the
|
||||
/// address of the raw guard object).
|
||||
int* const base_address;
|
||||
|
||||
/// Create the expected integer value for futex `wait(int* addr, int expected)`.
|
||||
/// We pass the base address as the first argument, So this function creates
|
||||
/// an zero-initialized integer with `b` copied at the correct offset.
|
||||
static int expected_value_for_futex(uint8_t b) {
|
||||
int dest_val = 0;
|
||||
std::memcpy(reinterpret_cast<char*>(&dest_val) + 1, &b, 1);
|
||||
return dest_val;
|
||||
}
|
||||
|
||||
static_assert(Wait != nullptr && Wake != nullptr, "");
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// GuardObject
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
enum class AcquireResult {
|
||||
INIT_IS_DONE,
|
||||
INIT_IS_PENDING,
|
||||
};
|
||||
constexpr AcquireResult INIT_IS_DONE = AcquireResult::INIT_IS_DONE;
|
||||
constexpr AcquireResult INIT_IS_PENDING = AcquireResult::INIT_IS_PENDING;
|
||||
|
||||
/// Co-ordinates between GuardByte and InitByte.
|
||||
template <class InitByteT>
|
||||
struct GuardObject {
|
||||
GuardObject() = delete;
|
||||
GuardObject(GuardObject const&) = delete;
|
||||
GuardObject& operator=(GuardObject const&) = delete;
|
||||
|
||||
private:
|
||||
GuardByte guard_byte;
|
||||
InitByteT init_byte;
|
||||
|
||||
public:
|
||||
/// ARM Constructor
|
||||
explicit GuardObject(uint32_t* raw_guard_object)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
|
||||
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, nullptr) {}
|
||||
|
||||
/// Itanium Constructor
|
||||
explicit GuardObject(uint64_t* raw_guard_object)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
|
||||
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, reinterpret_cast<uint32_t*>(raw_guard_object) + 1) {
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_acquire.
|
||||
AcquireResult cxa_guard_acquire() {
|
||||
// Use short-circuit evaluation to avoid calling init_byte.acquire when
|
||||
// guard_byte.acquire returns true. (i.e. don't call it when we know from
|
||||
// the guard byte that initialization has already been completed)
|
||||
if (guard_byte.acquire() || init_byte.acquire())
|
||||
return INIT_IS_DONE;
|
||||
return INIT_IS_PENDING;
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_release.
|
||||
void cxa_guard_release() {
|
||||
// Update guard byte first, so if somebody is woken up by init_byte.release
|
||||
// and comes all the way back around to __cxa_guard_acquire again, they see
|
||||
// it as having completed initialization.
|
||||
guard_byte.release();
|
||||
init_byte.release();
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_abort.
|
||||
void cxa_guard_abort() {
|
||||
guard_byte.abort();
|
||||
init_byte.abort();
|
||||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convenience Classes
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// NoThreadsGuard - Manages initialization without performing any inter-thread
|
||||
/// synchronization.
|
||||
using NoThreadsGuard = GuardObject<InitByteNoThreads>;
|
||||
|
||||
/// GlobalMutexGuard - Manages initialization using a global mutex and
|
||||
/// condition variable.
|
||||
template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
|
||||
uint32_t (*GetThreadID)() = PlatformThreadID>
|
||||
using GlobalMutexGuard = GuardObject<InitByteGlobalMutex<Mutex, CondVar, global_mutex, global_cond, GetThreadID>>;
|
||||
|
||||
/// FutexGuard - Manages initialization using atomics and the futex syscall for
|
||||
/// waiting and waking.
|
||||
template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
|
||||
uint32_t (*GetThreadIDArg)() = PlatformThreadID>
|
||||
using FutexGuard = GuardObject<InitByteFutex<Wait, Wake, GetThreadIDArg>>;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template <class T>
|
||||
struct GlobalStatic {
|
||||
static T instance;
|
||||
};
|
||||
template <class T>
|
||||
_LIBCPP_CONSTINIT T GlobalStatic<T>::instance = {};
|
||||
|
||||
enum class Implementation { NoThreads, GlobalMutex, Futex };
|
||||
|
||||
template <Implementation Impl>
|
||||
struct SelectImplementation;
|
||||
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::NoThreads> {
|
||||
using type = NoThreadsGuard;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::GlobalMutex> {
|
||||
using type = GlobalMutexGuard<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
|
||||
GlobalStatic<LibcppCondVar>::instance, PlatformThreadID>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::Futex> {
|
||||
using type = FutexGuard<PlatformFutexWait, PlatformFutexWake, PlatformThreadID>;
|
||||
};
|
||||
|
||||
// TODO(EricWF): We should prefer the futex implementation when available. But
|
||||
// it should be done in a separate step from adding the implementation.
|
||||
constexpr Implementation CurrentImplementation =
|
||||
#if defined(_LIBCXXABI_HAS_NO_THREADS)
|
||||
Implementation::NoThreads;
|
||||
#elif defined(_LIBCXXABI_USE_FUTEX)
|
||||
Implementation::Futex;
|
||||
#else
|
||||
Implementation::GlobalMutex;
|
||||
#endif
|
||||
|
||||
static_assert(CurrentImplementation != Implementation::Futex || PlatformSupportsFutex(),
|
||||
"Futex selected but not supported");
|
||||
|
||||
using SelectedImplementation = SelectImplementation<CurrentImplementation>::type;
|
||||
|
||||
} // end namespace
|
||||
} // end namespace __cxxabiv1
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#endif // LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
|
Loading…
Add table
Add a link
Reference in a new issue