mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-03 03:02:28 +00:00
Check in ruler summation experiments
This commit is contained in:
parent
3dab207351
commit
8cdb3e136b
3 changed files with 474 additions and 54 deletions
|
@ -4,16 +4,25 @@
|
|||
#include "libc/macros.internal.h"
|
||||
#include "libc/math.h"
|
||||
#include "libc/mem/gc.h"
|
||||
#include "libc/mem/leaks.h"
|
||||
#include "libc/mem/mem.h"
|
||||
#include "libc/runtime/runtime.h"
|
||||
#include "libc/stdio/stdio.h"
|
||||
#include "libc/x/xasprintf.h"
|
||||
|
||||
#define EXPENSIVE_TESTS 0
|
||||
|
||||
#define CHUNK 8
|
||||
|
||||
#define FASTMATH __attribute__((__optimize__("-O3,-ffast-math")))
|
||||
#define PORTABLE __target_clones("avx512f,avx")
|
||||
|
||||
static unsigned long long lcg = 1;
|
||||
|
||||
int rand32(void) {
|
||||
/* Knuth, D.E., "The Art of Computer Programming," Vol 2,
|
||||
Seminumerical Algorithms, Third Edition, Addison-Wesley, 1998,
|
||||
p. 106 (line 26) & p. 108 */
|
||||
static unsigned long long lcg = 1;
|
||||
lcg *= 6364136223846793005;
|
||||
lcg += 1442695040888963407;
|
||||
return lcg >> 32;
|
||||
|
@ -27,24 +36,14 @@ float numba(void) { // (-1,1)
|
|||
return float01(rand32()) * 2 - 1;
|
||||
}
|
||||
|
||||
double fsumf_gold(const float *p, size_t n) {
|
||||
size_t i;
|
||||
double s;
|
||||
if (n > 8)
|
||||
return fsumf_gold(p, n / 2) + fsumf_gold(p + n / 2, n - n / 2);
|
||||
for (s = i = 0; i < n; ++i)
|
||||
s += p[i];
|
||||
return s;
|
||||
}
|
||||
|
||||
float fsumf_linear(const float *p, size_t n) {
|
||||
float s = 0;
|
||||
FASTMATH PORTABLE float fsumf_dubble(const float *p, size_t n) {
|
||||
double s = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
s += p[i];
|
||||
return s;
|
||||
}
|
||||
|
||||
float fsumf_kahan(const float *p, size_t n) {
|
||||
PORTABLE float fsumf_kahan(const float *p, size_t n) {
|
||||
size_t i;
|
||||
float err, sum, t, y;
|
||||
sum = err = 0;
|
||||
|
@ -57,33 +56,120 @@ float fsumf_kahan(const float *p, size_t n) {
|
|||
return sum;
|
||||
}
|
||||
|
||||
float fsumf_logarithmic(const float *p, size_t n) {
|
||||
size_t i;
|
||||
float s;
|
||||
if (n > 32)
|
||||
return fsumf_logarithmic(p, n / 2) +
|
||||
fsumf_logarithmic(p + n / 2, n - n / 2);
|
||||
for (s = i = 0; i < n; ++i)
|
||||
FASTMATH PORTABLE float fsumf_naive(const float *p, size_t n) {
|
||||
float s = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
s += p[i];
|
||||
return s;
|
||||
}
|
||||
|
||||
#define fsumf_naive_tester(A, n, tol) \
|
||||
do { \
|
||||
float err = fabsf(fsumf_naive(A, n) - fsumf_dubble(A, n)); \
|
||||
if (err > tol) { \
|
||||
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
||||
err); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
void test_fsumf_naive(void) {
|
||||
float *A = new float[2 * 1024 * 1024 + 1];
|
||||
for (size_t i = 0; i < 2 * 1024 * 1024 + 1; ++i)
|
||||
A[i] = numba();
|
||||
for (size_t n = 0; n < 1024; ++n)
|
||||
fsumf_naive_tester(A, n, 1e-4);
|
||||
#if EXPENSIVE_TESTS
|
||||
fsumf_naive_tester(A, 128 * 1024, 1e-2);
|
||||
fsumf_naive_tester(A, 256 * 1024, 1e-2);
|
||||
fsumf_naive_tester(A, 1024 * 1024, 1e-1);
|
||||
fsumf_naive_tester(A, 1024 * 1024 - 1, 1e-1);
|
||||
fsumf_naive_tester(A, 1024 * 1024 + 1, 1e-1);
|
||||
fsumf_naive_tester(A, 2 * 1024 * 1024, 1e-1);
|
||||
fsumf_naive_tester(A, 2 * 1024 * 1024 - 1, 1e-1);
|
||||
fsumf_naive_tester(A, 2 * 1024 * 1024 + 1, 1e-1);
|
||||
#endif
|
||||
delete[] A;
|
||||
}
|
||||
|
||||
template <int N>
|
||||
inline float hsum(const float *p) {
|
||||
forceinline float hsum(const float *p) {
|
||||
return hsum<N / 2>(p) + hsum<N / 2>(p + N / 2);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline float hsum<1>(const float *p) {
|
||||
forceinline float hsum<1>(const float *p) {
|
||||
return *p;
|
||||
}
|
||||
|
||||
#define CHUNK 8
|
||||
FASTMATH PORTABLE float fsumf_recursive(const float *p, size_t n) {
|
||||
if (n > 32) {
|
||||
float x, y;
|
||||
x = fsumf_recursive(p, n / 2);
|
||||
y = fsumf_recursive(p + n / 2, n - n / 2);
|
||||
return x + y;
|
||||
} else {
|
||||
float s;
|
||||
size_t i;
|
||||
for (s = i = 0; i < n; ++i)
|
||||
s += p[i];
|
||||
return s;
|
||||
}
|
||||
}
|
||||
|
||||
#define OPTIMIZE __attribute__((__optimize__("-O3")))
|
||||
#define PORTABLE __target_clones("avx512f,avx")
|
||||
FASTMATH PORTABLE float fsumf_ruler(const float *p, size_t n) {
|
||||
size_t i, sp = 0;
|
||||
int rule, step = 2;
|
||||
float stack[bsr(n / CHUNK + 1) + 1];
|
||||
for (i = 0; i + CHUNK * 4 <= n; i += CHUNK * 4, step += 2) {
|
||||
float sum = 0;
|
||||
for (size_t j = 0; j < CHUNK * 4; ++j)
|
||||
sum += p[i + j];
|
||||
for (rule = bsr(step & -step); --rule;)
|
||||
sum += stack[--sp];
|
||||
stack[sp++] = sum;
|
||||
}
|
||||
float res = 0;
|
||||
while (sp)
|
||||
res += stack[--sp];
|
||||
while (i < n)
|
||||
res += p[i++];
|
||||
return res;
|
||||
}
|
||||
|
||||
OPTIMIZE PORTABLE float fsumf_nonrecursive(const float *p, size_t n) {
|
||||
#define fsumf_ruler_tester(A, n, tol) \
|
||||
do { \
|
||||
float err = fabsf(fsumf_ruler(A, n) - fsumf_dubble(A, n)); \
|
||||
if (err > tol) { \
|
||||
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
||||
err); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
void test_fsumf_ruler(void) {
|
||||
float *A = new float[10 * 1024 * 1024 + 1];
|
||||
for (size_t i = 0; i < 10 * 1024 * 1024 + 1; ++i)
|
||||
A[i] = numba();
|
||||
fsumf_ruler_tester(A, 96, 1e-6);
|
||||
for (size_t n = 0; n < 1024; ++n)
|
||||
fsumf_ruler_tester(A, n, 1e-5);
|
||||
#if EXPENSIVE_TESTS
|
||||
fsumf_ruler_tester(A, 128 * 1024, 1e-4);
|
||||
fsumf_ruler_tester(A, 256 * 1024, 1e-4);
|
||||
fsumf_ruler_tester(A, 1024 * 1024, 1e-3);
|
||||
fsumf_ruler_tester(A, 1024 * 1024 - 1, 1e-3);
|
||||
fsumf_ruler_tester(A, 1024 * 1024 + 1, 1e-3);
|
||||
fsumf_ruler_tester(A, 2 * 1024 * 1024, 1e-3);
|
||||
fsumf_ruler_tester(A, 2 * 1024 * 1024 - 1, 1e-3);
|
||||
fsumf_ruler_tester(A, 2 * 1024 * 1024 + 1, 1e-3);
|
||||
fsumf_ruler_tester(A, 8 * 1024 * 1024, 1e-3);
|
||||
fsumf_ruler_tester(A, 10 * 1024 * 1024, 1e-3);
|
||||
#endif
|
||||
delete[] A;
|
||||
}
|
||||
|
||||
FASTMATH PORTABLE float fsumf_hefty(const float *p, size_t n) {
|
||||
unsigned i, par, len = 0;
|
||||
float sum, res[n / CHUNK + 1];
|
||||
for (res[0] = i = 0; i + CHUNK <= n; i += CHUNK)
|
||||
|
@ -102,13 +188,35 @@ OPTIMIZE PORTABLE float fsumf_nonrecursive(const float *p, size_t n) {
|
|||
return res[0];
|
||||
}
|
||||
|
||||
void test_fsumf_nonrecursive(void) {
|
||||
float A[CHUNK * 3];
|
||||
for (int i = 0; i < CHUNK * 3; ++i)
|
||||
#define fsumf_hefty_tester(A, n, tol) \
|
||||
do { \
|
||||
float err = fabsf(fsumf_hefty(A, n) - fsumf_dubble(A, n)); \
|
||||
if (err > tol) { \
|
||||
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
||||
err); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
void test_fsumf_hefty(void) {
|
||||
float *A = new float[10 * 1024 * 1024 + 1];
|
||||
for (size_t i = 0; i < 10 * 1024 * 1024 + 1; ++i)
|
||||
A[i] = numba();
|
||||
for (int n = 0; n < CHUNK * 3; ++n)
|
||||
if (fabsf(fsumf_nonrecursive(A, n) - fsumf_kahan(A, n)) > 1e-3)
|
||||
exit(7);
|
||||
for (size_t n = 0; n < 1024; ++n)
|
||||
fsumf_hefty_tester(A, n, 1e-5);
|
||||
#if EXPENSIVE_TESTS
|
||||
fsumf_hefty_tester(A, 128 * 1024, 1e-4);
|
||||
fsumf_hefty_tester(A, 256 * 1024, 1e-4);
|
||||
fsumf_hefty_tester(A, 1024 * 1024, 1e-3);
|
||||
fsumf_hefty_tester(A, 1024 * 1024 - 1, 1e-3);
|
||||
fsumf_hefty_tester(A, 1024 * 1024 + 1, 1e-3);
|
||||
fsumf_hefty_tester(A, 2 * 1024 * 1024, 1e-3);
|
||||
fsumf_hefty_tester(A, 2 * 1024 * 1024 - 1, 1e-3);
|
||||
fsumf_hefty_tester(A, 2 * 1024 * 1024 + 1, 1e-3);
|
||||
fsumf_hefty_tester(A, 8 * 1024 * 1024, 1e-3);
|
||||
fsumf_hefty_tester(A, 10 * 1024 * 1024, 1e-3);
|
||||
#endif
|
||||
delete[] A;
|
||||
}
|
||||
|
||||
float nothing(float x) {
|
||||
|
@ -132,23 +240,34 @@ float (*barrier)(float) = nothing;
|
|||
} while (0)
|
||||
|
||||
int main() {
|
||||
ShowCrashReports();
|
||||
|
||||
#if EXPENSIVE_TESTS
|
||||
size_t n = 4 * 1024 * 1024;
|
||||
#else
|
||||
size_t n = 1024;
|
||||
float *p = (float *)malloc(sizeof(float) * n);
|
||||
#endif
|
||||
|
||||
float *p = new float[n];
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
p[i] = numba();
|
||||
float kahan, gold, linear, logarithmic, nonrecursive;
|
||||
test_fsumf_nonrecursive();
|
||||
BENCH(100, 1, (kahan = barrier(fsumf_kahan(p, n))));
|
||||
BENCH(100, 1, (gold = barrier(fsumf_gold(p, n))));
|
||||
BENCH(100, 1, (linear = barrier(fsumf_linear(p, n))));
|
||||
BENCH(100, 1, (logarithmic = barrier(fsumf_logarithmic(p, n))));
|
||||
BENCH(100, 1, (nonrecursive = barrier(fsumf_nonrecursive(p, n))));
|
||||
printf("gold = %.12g (%.12g)\n", gold, fabs(gold - gold));
|
||||
printf("linear = %.12g (%.12g)\n", linear, fabs(linear - gold));
|
||||
printf("kahan = %.12g (%.12g)\n", kahan, fabs(kahan - gold));
|
||||
printf("logarithmic = %.12g (%.12g)\n", logarithmic,
|
||||
fabs(logarithmic - gold));
|
||||
printf("nonrecursive = %.12g (%.12g)\n", nonrecursive,
|
||||
fabs(nonrecursive - gold));
|
||||
free(p);
|
||||
float kahan, naive, dubble, recursive, hefty, ruler;
|
||||
test_fsumf_naive();
|
||||
test_fsumf_hefty();
|
||||
test_fsumf_ruler();
|
||||
BENCH(20, 1, (kahan = barrier(fsumf_kahan(p, n))));
|
||||
BENCH(20, 1, (dubble = barrier(fsumf_dubble(p, n))));
|
||||
BENCH(20, 1, (naive = barrier(fsumf_naive(p, n))));
|
||||
BENCH(20, 1, (recursive = barrier(fsumf_recursive(p, n))));
|
||||
BENCH(20, 1, (ruler = barrier(fsumf_ruler(p, n))));
|
||||
BENCH(20, 1, (hefty = barrier(fsumf_hefty(p, n))));
|
||||
printf("dubble = %f (%g)\n", dubble, fabs(dubble - dubble));
|
||||
printf("kahan = %f (%g)\n", kahan, fabs(kahan - dubble));
|
||||
printf("naive = %f (%g)\n", naive, fabs(naive - dubble));
|
||||
printf("recursive = %f (%g)\n", recursive, fabs(recursive - dubble));
|
||||
printf("ruler = %f (%g)\n", ruler, fabs(ruler - dubble));
|
||||
printf("hefty = %f (%g)\n", hefty, fabs(hefty - dubble));
|
||||
delete[] p;
|
||||
|
||||
CheckForMemoryLeaks();
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue