Revert whitespace fixes to third_party (#501)

This commit is contained in:
Jared Miller 2022-07-22 00:46:07 -04:00 committed by GitHub
parent d4000bb8f7
commit 9de3d8f1e6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
365 changed files with 39190 additions and 39211 deletions

View file

@ -14,7 +14,7 @@
*/
STATIC_YOINK("huge_compiler_rt_license");
#include "third_party/compiler_rt/int_lib.h"
/* Returns: absolute value */

View file

@ -14,7 +14,7 @@
*/
STATIC_YOINK("huge_compiler_rt_license");
#include "third_party/compiler_rt/int_lib.h"
/* Returns: absolute value */

View file

@ -52,18 +52,18 @@ enum LE_RESULT {
COMPILER_RT_ABI enum LE_RESULT
__ledf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a floating-point compare.
if ((aInt & bInt) >= 0) {
@ -71,7 +71,7 @@ __ledf2(fp_t a, fp_t b) {
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
@ -98,12 +98,12 @@ enum GE_RESULT {
COMPILER_RT_ABI enum GE_RESULT
__gedf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
if ((aAbs | bAbs) == 0) return GE_EQUAL;
if ((aInt & bInt) >= 0) {

View file

@ -52,18 +52,18 @@ enum LE_RESULT {
COMPILER_RT_ABI enum LE_RESULT
__lesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a fp_ting-point compare.
if ((aInt & bInt) >= 0) {
@ -71,7 +71,7 @@ __lesf2(fp_t a, fp_t b) {
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
@ -98,12 +98,12 @@ enum GE_RESULT {
COMPILER_RT_ABI enum GE_RESULT
__gesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
if ((aAbs | bAbs) == 0) return GE_EQUAL;
if ((aInt & bInt) >= 0) {

View file

@ -25,36 +25,36 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__divdf3(fp_t a, fp_t b) {
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) return fromRep(qnanRep);
// infinity / anything else = +/- infinity
else return fromRep(aAbs | quotientSign);
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return fromRep(quotientSign);
if (!aAbs) {
// zero / zero = NaN
if (!bAbs) return fromRep(qnanRep);
@ -63,28 +63,28 @@ __divdf3(fp_t a, fp_t b) {
}
// anything else / zero = +/- infinity
if (!bAbs) return fromRep(infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale += normalize(&aSignificand);
if (bAbs < implicitBit) scale -= normalize(&bSignificand);
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
int quotientExponent = aExponent - bExponent + scale;
// Align the significand of b as a Q31 fixed-point number in the range
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const uint32_t q31b = bSignificand >> 21;
uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
@ -99,13 +99,13 @@ __divdf3(fp_t a, fp_t b) {
recip32 = (uint64_t)recip32 * correction32 >> 31;
correction32 = -((uint64_t)recip32 * q31b >> 32);
recip32 = (uint64_t)recip32 * correction32 >> 31;
// recip32 might have overflowed to exactly zero in the preceding
// computation if the high word of b is exactly 1.0. This would sabotage
// the full-width final stage of the computation that follows, so we adjust
// recip32 downward by one bit.
recip32--;
// We need to perform one more iteration to get us to 56 binary digits;
// The last iteration needs to happen with extra precision.
const uint32_t q63blo = bSignificand << 11;
@ -114,14 +114,14 @@ __divdf3(fp_t a, fp_t b) {
uint32_t cHi = correction >> 32;
uint32_t cLo = correction;
reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
// We already adjusted the 32-bit estimate, now we need to adjust the final
// 64-bit reciprocal estimate downward to ensure that it is strictly smaller
// than the infinitely precise exact reciprocal. Because the computation
// of the Newton-Raphson step is truncating at every step, this adjustment
// is small; most of the work is already done.
reciprocal -= 2;
// The numerical reciprocal is accurate to within 2^-56, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
@ -131,12 +131,12 @@ __divdf3(fp_t a, fp_t b) {
// 2. q is in the interval [0.5, 2.0)
// 3. the error in q is bounded away from 2^-53 (actually, we have a
// couple of bits to spare, but this is all we need).
// We need a 64 x 64 multiply high to compute q, which isn't a basic
// operation in C, so we need to be a little bit fussy.
rep_t quotient, quotientLo;
wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
@ -145,7 +145,7 @@ __divdf3(fp_t a, fp_t b) {
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
//
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
@ -158,20 +158,20 @@ __divdf3(fp_t a, fp_t b) {
quotient >>= 1;
residual = (aSignificand << 52) - quotient * bSignificand;
}
const int writtenExponent = quotientExponent + exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return fromRep(infRep | quotientSign);
}
else if (writtenExponent < 1) {
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return fromRep(quotientSign);
}
else {
const bool round = (residual << 1) > bSignificand;
// Clear the implicit bit

View file

@ -24,7 +24,7 @@ __divmodsi4(si_int a, si_int b, si_int* rem)
{
si_int d = __divsi3(a,b);
*rem = a - (d*b);
return d;
return d;
}

View file

@ -25,36 +25,36 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__divsf3(fp_t a, fp_t b) {
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) return fromRep(qnanRep);
// infinity / anything else = +/- infinity
else return fromRep(aAbs | quotientSign);
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return fromRep(quotientSign);
if (!aAbs) {
// zero / zero = NaN
if (!bAbs) return fromRep(qnanRep);
@ -63,28 +63,28 @@ __divsf3(fp_t a, fp_t b) {
}
// anything else / zero = +/- infinity
if (!bAbs) return fromRep(infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale += normalize(&aSignificand);
if (bAbs < implicitBit) scale -= normalize(&bSignificand);
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
int quotientExponent = aExponent - bExponent + scale;
// Align the significand of b as a Q31 fixed-point number in the range
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
uint32_t q31b = bSignificand << 8;
uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
@ -99,7 +99,7 @@ __divsf3(fp_t a, fp_t b) {
reciprocal = (uint64_t)reciprocal * correction >> 31;
correction = -((uint64_t)reciprocal * q31b >> 32);
reciprocal = (uint64_t)reciprocal * correction >> 31;
// Exhaustive testing shows that the error in reciprocal after three steps
// is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
// expectations. We bump the reciprocal by a tiny value to force the error
@ -107,7 +107,7 @@ __divsf3(fp_t a, fp_t b) {
// be specific). This also causes 1/1 to give a sensible approximation
// instead of zero (due to overflow).
reciprocal -= 2;
// The numerical reciprocal is accurate to within 2^-28, lies in the
// interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
// than the true reciprocal of b. Multiplying a by this reciprocal thus
@ -119,9 +119,9 @@ __divsf3(fp_t a, fp_t b) {
// from the fact that we truncate the product, and the 2^27 term
// is the error in the reciprocal of b scaled by the maximum
// possible value of a. As a consequence of this error bound,
// either q or nextafter(q) is the correctly rounded
// either q or nextafter(q) is the correctly rounded
rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
@ -130,7 +130,7 @@ __divsf3(fp_t a, fp_t b) {
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
//
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
@ -145,18 +145,18 @@ __divsf3(fp_t a, fp_t b) {
}
const int writtenExponent = quotientExponent + exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return fromRep(infRep | quotientSign);
}
else if (writtenExponent < 1) {
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return fromRep(quotientSign);
}
else {
const bool round = (residual << 1) > bSignificand;
// Clear the implicit bit

View file

@ -25,7 +25,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
* du_int is a 64 bit integral type
* value in long double is representable in du_int or is negative
* value in long double is representable in du_int or is negative
* (no range checking performed)
*/

View file

@ -25,7 +25,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
* su_int is a 32 bit integral type
* value in long double is representable in su_int or is negative
* value in long double is representable in su_int or is negative
*/
/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |

View file

@ -25,7 +25,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
* tu_int is a 128 bit integral type
* value in long double is representable in tu_int or is negative
* value in long double is representable in tu_int or is negative
*/
/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |

View file

@ -17,9 +17,9 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Returns: convert a to a float, rounding toward even.*/
/* Assumption: float is a IEEE 32 bit floating point type
/* Assumption: float is a IEEE 32 bit floating point type
* di_int is a 64 bit integral type
*/
*/
/* seee eeee emmm mmmm mmmm mmmm mmmm mmmm */
@ -37,13 +37,13 @@ __floatdisf(di_int a)
int e = sd - 1; /* exponent */
if (sd > FLT_MANT_DIG)
{
/* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
* finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
* 12345678901234567890123456
* 1 = msb 1 bit
* P = bit FLT_MANT_DIG-1 bits to the right of 1
* Q = bit FLT_MANT_DIG bits to the right of 1
* R = "or" of all bits to the right of Q
/* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
* finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
* 12345678901234567890123456
* 1 = msb 1 bit
* P = bit FLT_MANT_DIG-1 bits to the right of 1
* Q = bit FLT_MANT_DIG bits to the right of 1
* R = "or" of all bits to the right of Q
*/
switch (sd)
{

View file

@ -11,7 +11,7 @@
* This file implements __floatdixf for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
*/
*/
STATIC_YOINK("huge_compiler_rt_license");

View file

@ -23,30 +23,30 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__floatsidf(int a) {
const int aWidth = sizeof a * CHAR_BIT;
// Handle zero as a special case to protect clz
if (a == 0)
return fromRep(0);
// All other cases begin by extracting the sign and absolute value of a
rep_t sign = 0;
if (a < 0) {
sign = signBit;
a = -a;
}
// Exponent of (fp_t)a is the width of abs(a).
const int exponent = (aWidth - 1) - __builtin_clz(a);
rep_t result;
// Shift a into the significand field and clear the implicit bit. Extra
// cast to unsigned int is necessary to get the correct behavior for
// the input INT_MIN.
const int shift = significandBits - exponent;
result = (rep_t)(unsigned int)a << shift ^ implicitBit;
// Insert the exponent
result += (rep_t)(exponent + exponentBias) << significandBits;
// Insert the sign bit and return

View file

@ -23,24 +23,24 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__floatsisf(int a) {
const int aWidth = sizeof a * CHAR_BIT;
// Handle zero as a special case to protect clz
if (a == 0)
return fromRep(0);
// All other cases begin by extracting the sign and absolute value of a
rep_t sign = 0;
if (a < 0) {
sign = signBit;
a = -a;
}
// Exponent of (fp_t)a is the width of abs(a).
const int exponent = (aWidth - 1) - __builtin_clz(a);
rep_t result;
// Shift a into the significand field, rounding if it is a right-shift
if (exponent <= significandBits) {
const int shift = significandBits - exponent;
@ -52,7 +52,7 @@ __floatsisf(int a) {
if (round > signBit) result++;
if (round == signBit) result += result & 1;
}
// Insert the exponent
result += (rep_t)(exponent + exponentBias) << significandBits;
// Insert the sign bit and return

View file

@ -21,7 +21,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Returns: convert a to a float, rounding toward even. */
/* Assumption: float is a IEEE 32 bit floating point type
/* Assumption: float is a IEEE 32 bit floating point type
* ti_int is a 128 bit integral type
*/

View file

@ -17,7 +17,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Returns: convert a to a float, rounding toward even. */
/* Assumption: float is a IEEE 32 bit floating point type
/* Assumption: float is a IEEE 32 bit floating point type
* du_int is a 64 bit integral type
*/

View file

@ -23,20 +23,20 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__floatunsidf(unsigned int a) {
const int aWidth = sizeof a * CHAR_BIT;
// Handle zero as a special case to protect clz
if (a == 0) return fromRep(0);
// Exponent of (fp_t)a is the width of abs(a).
const int exponent = (aWidth - 1) - __builtin_clz(a);
rep_t result;
// Shift a into the significand field and clear the implicit bit.
const int shift = significandBits - exponent;
result = (rep_t)a << shift ^ implicitBit;
// Insert the exponent
result += (rep_t)(exponent + exponentBias) << significandBits;
return fromRep(result);

View file

@ -23,16 +23,16 @@ STATIC_YOINK("huge_compiler_rt_license");
COMPILER_RT_ABI fp_t
__floatunsisf(unsigned int a) {
const int aWidth = sizeof a * CHAR_BIT;
// Handle zero as a special case to protect clz
if (a == 0) return fromRep(0);
// Exponent of (fp_t)a is the width of abs(a).
const int exponent = (aWidth - 1) - __builtin_clz(a);
rep_t result;
// Shift a into the significand field, rounding if it is a right-shift
if (exponent <= significandBits) {
const int shift = significandBits - exponent;
@ -44,7 +44,7 @@ __floatunsisf(unsigned int a) {
if (round > signBit) result++;
if (round == signBit) result += result & 1;
}
// Insert the exponent
result += (rep_t)(exponent + exponentBias) << significandBits;
return fromRep(result);

View file

@ -21,7 +21,7 @@ STATIC_YOINK("huge_compiler_rt_license");
/* Returns: convert a to a float, rounding toward even. */
/* Assumption: float is a IEEE 32 bit floating point type
/* Assumption: float is a IEEE 32 bit floating point type
* tu_int is a 128 bit integral type
*/

View file

@ -27,7 +27,7 @@ __mulodi4(di_int a, di_int b, int* overflow)
const int N = (int)(sizeof(di_int) * CHAR_BIT);
const di_int MIN = (di_int)1 << (N-1);
const di_int MAX = ~MIN;
*overflow = 0;
*overflow = 0;
di_int result = a * b;
if (a == MIN)
{

View file

@ -27,7 +27,7 @@ __mulosi4(si_int a, si_int b, int* overflow)
const int N = (int)(sizeof(si_int) * CHAR_BIT);
const si_int MIN = (si_int)1 << (N-1);
const si_int MAX = ~MIN;
*overflow = 0;
*overflow = 0;
si_int result = a * b;
if (a == MIN)
{

View file

@ -11,7 +11,7 @@
* This file implements __parityti2 for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
*/
*/
STATIC_YOINK("huge_compiler_rt_license");

View file

@ -64,7 +64,7 @@ __udivmoddi4(du_int a, du_int b, du_int* rem)
/* K X
* ---
* 0 0
*/
*/
if (rem)
*rem = n.s.high % d.s.low;
return n.s.high / d.s.low;